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Abstract: Sub-aerial (dry) and submerged dense granular collapses are studied by means of a three-
phase unresolved computational fluid dynamics-discrete element method (CFD-DEM) numerical
model. Physical experiments are also performed to provide data for validation and further analysis.
Validations show good compatibility between the numerical and experimental results. Collapse
mechanism as well as post-collapse morphological parameters, such as granular surface profile
and runout distance, are analyzed. The spatiotemporal variation of solid volume fraction is also
investigated. The effect granular column aspect ratio is studied and found to be a key factor in
granular morphology for both submerged and dry conditions. The volume fraction analysis evolution
shows an expansion and re-compaction trend, correlated with the granular movement.

Keywords: dense granular collapse; sub-arial and submerged granular flow; unresolved CFD-DEM;
morphodynamics; volume fraction evolution

1. Introduction

Granular collapses are characterized by the rapid movement of granular material,
driven by gravity. They are widely encountered in various geophysical and engineering
processes, for example, in the submarine and sub-aerial landslides, debris flows, and
river back failures. Understanding the behavior of the granular collapses is crucial for
the prediction and mitigation of rated natural disasters with destructive consequences.
Nevertheless, granular collapses present very complex mechanics as they often include all
regimes of granular flows, i.e., quasi-static, dense flow, and kinetic (or gaseous) regimes
in the same setting [1]. The situation is still more complex when the granular collapses
are submerged. The interaction with an ambient viscous and dense fluid like water, in
presence of the free surface, creates a complex 3-phase system. The fluid inertia, viscosity,
and pore pressure can dramatically affect the granular behaviour [1–4].

There are a large number of experimental [1–3,5–10] and numerical [1,4,9,11–15]
studies on gravity-driven granular flows, particularly on granular collapses. While most
of the experimental researches focused on the dry (sub-aerial) collapses, a few studies on
the submerged condition have been reported (e.g., [1,9]). Earlier experimental studies of
Lajeunesse et al. [5], Balmforth and Kerswell [6], Lube et al. [8] investigated the factors
influencing the collapse mechanism, runout distance, and the final shape of the granular
assembly in the dry condition. They showed that the morphology of the granular mass
is largely dependent on the initial aspect ratio of the granular column. Experiments of
Rondon et al. [9] showed that the impact of initial volume fraction is more important than
the column aspect ratio in case of submerged granular collapses. Granular movement and
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shear can change volume (and volume faction), which can impact the granular behaviors,
especially in the presence of pore fluid in submerged cases [11]. However, this variation
volume fraction is not well understood as it has been challenging to quantify in the
past researches.

Numerical models have been effective tools for the study of granular collapses
in the past. The numerical methods used have been either based on the continuum
description [1,11–13,16] or discrete description [4,14,15,17,18] of granular material. The
continuum-based models treat the granular material as a body of a complex fluid whose
behavior is predicted using a rheological model such as Herschel–Bulkley and µ(I) rhe-
ology. Although these models are computationally affordable for large-scale problems,
the uncertainties associated with the rheological models may cause inaccuracies, espe-
cially in submerged situations. Discrete description, whose most famous example is the
discrete element method (DEM) [19], models the individual grains based on Newton’s
laws. These methods have been widely used and proven their accuracy for dry collapses
(e.g., in [17,18]). DEM can be applied to the submerged granular flow by coupling DEM
with Lagrangian fluid models or Eulerian computation fluid dynamics (CFD) techniques.
However, the application to the submerged granular collapses is limited to only a few
studies (e.g., [4,14,15]).

CFD and DEM coupling techniques for granular flows have been either resolved (fine-
grid) [20,21] or unresolved (coarse-grid) [22–25]. In the resolved CFD-DEM coupling, the
CFD cells are much smaller than the granular particles allowing detailed flow simulation
around each particle. Nevertheless, it is computationally demanding. In unresolved
CFD-DEM coupling, the CFD computational cell is larger than the granular particles, and
the fluid forces are locally averaged over particles. This makes the unresolved methods
more computationally affordable. Considering that the granular collapses problems often
involve free-surface flows, esp. when collapse-induced wave is important, the CFD-DEM
algorithms must deal with the three-phase (gas-liquid-solid) system. A few recent studies
(e.g., [24,25]) developed unresolved CFD-DEM methods associated with a 3-phase volume
of fluid (VOF) technique to deal with the submerged granular flows with the free surface.
Their capability to predict granular collapse remain unassessed.

The present work studies dense sub-aerial (dry) and submerged granular collapses
with different aspect ratios using an unresolved CFD-DEM model with three-phase VOF.
The numerical modeling is associated with complementary experimentation for validation
of the numerical model and further analysis of the mechanisms and processes. In the
developed model, the CFD-DEM coupling is based on the OpenFOAM open-source CFD
libraries and LIGGGHTS [26] open-source DEM software, coupled through the frame-
work of CFDEMproject [27]. In order to capture the free surface fluid, the volume of
fluid (VOF) is integrated into the CFDEM coupling using one of OpenFoam’s solvers for
modeling multiphase flows. The three-phase VOF is based on the solver cfdemSolverVOF
of Jing et al. [24]. The impact of aspect ratio and presence of ambient fluid on the collapse
mechanics, morphology, and running distance are investigated. Special attention will be
given to the spatial-temporal variation of volume fraction after the collapse, which has not
yet been well understood.

2. Numerical Method

We consider the submerged granular flows with the free surface as a three-phase
system that consists of one discrete phase (granular particles) and two continua (fluid)
phases of a liquid (water) and a gas (air). The numerical method of this study is based
on the coupling of a CFD method, solving the volume-averaged Navier–Stokes equation
for the continuum phase (i.e., the pore and ambient fluids), and a DEM method, solving
Newton’s laws of motion for the discrete phase. Here the coupling of these two methods
is based on an unresolved CFD-DEM coupling to reduce the computational time. In this
section, these two numerical methods and their coupling is described.
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2.1. Fluid Governing Equations

The equations governing the unsteady incompressible immiscible two-fluid (water-
air) system are the volume-averaged Navier–Stokes equations. A volume of fluid (VOF)
method is used to capture the interface of two fluids. In a three-phase system and assuming
the unresolved CFD-DEM approach, each CFD computational cell can be occupied by
liquid, gas and solid particles as shown in Figure 1. Disregarding the position of particles
in each cell, a void fraction for each fluid cell is calculated using a void fraction scheme [24].
Then, α f the void fraction or porosity can be written as:

α f = 1−∑
Vpi

Vc
=

V1 + V2

Vc
(1)

where Vpi is the volume of solid particles in each cell, Vc is the total volume of each
computational cell, and V1 and V2 are the volumes of two fluids (water and air, respectively).
We can define Vf = V1 + V2 as the void space (filled with fluids). In a three-phase system,
α1 = V1/Vf is the volume fraction of the water over the volume of void. Therefore,
α f α1 = V1/Vc indicates the local average phase fraction using the transport equation in the
VOF method. Therefore, the momentum, and continuity are given as:

∂(α f ρ f u f )

∂t
+∇.

(
α f ρu f u f

)
= −α f

(
∇Pm + (g.X)∇ρ f

)
+∇.

(
α f τ

)
+ fs − Fp f (2)

∂(ρ f α f )

∂t
+∇.

(
ρ f α f u f

)
= 0 (3)

where u f is the average velocity of the fluid in each cell. Pm = P− ρ f g · X is the dynamic

pressure of fluid X is the coordinate vector. τ = µ f (∇u f +
(
∇u f

)T
) is the stress tensor, fs

is surface tension force, Fp f is the fluid-particle interaction force. µ f = α1µ1 + (1− α1)µ2
and ρ f = α1ρ1 + (1− α1)ρ2 are the volume-weighted viscosity and density of two fluids,
respectively. The VOF transport equation, with an artificial compression term, which can
lead to sharper interface resolution [28], is given by:

∂(α f α1 )

∂t
+∇.

(
α f α1u f

)
+∇.

(
α f α1(1− α1)ur

)
= 0 (4)

where ur = u1 − u2 is the relative velocity (also called compression velocity) of two fluids.

Fluid 2 (air)

Granular particles

𝑉𝑐
𝑉𝑓

𝑉1 = 𝛼1𝑉𝑓 = 𝛼𝑓𝛼1𝑉𝑐

𝑉2 = (1 − 𝛼1)𝑉𝑓

Fluid 1 (water)

𝑉𝑔 = (1 − 𝛼𝑓)𝑉𝑐

Figure 1. Three-phase volume fraction in free surface granular flow.
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The fluid governing equations are solved in using finite volume method, with a PISO
(pressure implicit with splitting of operators) pressure-velocity coupling algorithm. The
VOF equation is solved with the flux-corrected transport (FCT) method [29].

2.2. Granular Phase Governing Equations

The motion of discrete phase (granular particles) is described by the DEM method. It
solves Newton’s second law motion, where the translational and rotational motion of a
particle i with mass mi and the moment of inertia Ii are governed by [30,31]:

mi
dui

dt2 =
nc

i

∑
j=1

Fc
ij + F f

i + mig (5)

Ii
dωi
dt

=
nc

i

∑
j=1

Mc
ij (6)

where ui and ωi are the translational and angular velocity of particle i respectively, Fc
ij is

the contact force between particles i and j, F f
i is the fluid force on the particle i. Mij is the

torque from particle j to particle i due to collision.
The contact force Fc

ij is the core of the DEM method and is consists of two components
in the normal (Fn

ij) and tangential (Ft
ij) directions. It is calculated using the widely used soft-

sphere approach, which assumes a small overlap between contacting rigid particles. Here
we use a Hertzian model, which accounts for non-linear elastic contact and damping as:

Fc
ij = Fn

ij + Ft
ij = knδn + γnVn

ij + ktδt + γtVt
ij (7)

where, δ is particles’ overlap, K is elastic stiffness coefficients, γ damping coefficient, and Vij
relative velocity. Indices n and t denote the normal and tangential components, respectively.
The stiffness and damping coefficients are calculated based on the material properties [31].
The tangential force is truncated to satisfy Coulomb’s friction law (Ft ≤ µgFn, µg being
friction coefficient).

The interaction forces between the fluid and particles include drag, lift, buoyancy,
and the forces due to acceleration of the particle with respect to the fluid (i.e., virtual
mass effect and the Basset force) [30]. However, in many multiphase systems, the main
and dominant forces are the drag and buoyancy forces, and the other forces are usually
considered insignificant [32]. In this study, the drag force and the buoyancy force are
considered as the main interaction forces. The buoyancy force is given by:

Fb =
1
6

πρ f d3
pg (8)

where dp is granular particle size. Here we use the Di Felice drag model [33], which has
been used in several of past studies (e.g., [24,34]. In this model the drag force Fd is given
by:

Fd = Kd(u f − uP)
where
Kd = 1

8 Cdρ f πd2
P(u f − uP)α f

1−χ
(9)

and Cd and χ are the drag coefficient and corrective factor, respectively, and are defined as
a function the particle Reynolds number.

2.3. CFD-DEM Coupling

Figure 2 summarized the CFD and DEM algorithms and their coupling. To save
computational time, different time resolutions are considered for the CFD and DEM
calculations. Given that the DEM usually requires a smaller time step than CFD, the
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data exchange between the CFD and DEM is only done every n (= ∆tCFD/∆tDEM) DEM
time steps. The computation starts with the DEM solver, detecting the particle positions,
contacts, and overlaps. The DEM solves the equation of motion and updates the position
and velocity of particles based on the contact, fluid, and gravity forces. Every n DEM step,
the particle data are passed to the CFD solver. The updated position of the particles is used
to calculate the local volume fraction (or porosity) in each CFD cell, and the momentum
exchange information is passed to the CFD side. In the CFD solver, the VOF method is
used to capture the free surface and update the volume fractions. Then the pressure and
velocity fields are calculated using the PISO algorithm. Fluid forces acting on particles
are then calculated and passed to the DEM solver. The model implementation is based
on the OpenFOAM and LIGGGHTS, coupled through the CFDEMproject [27], while the
three-phase VOF is based on the cfdemSolverVOF solver [24].

Detect contacts

Calculate forces 

on particles 

(contact, fluid, 

gravity)

Solve motion 

equations (Eq. 5,6)

Update particles 

velocity and 

position

Start

DEM

Update 

particle-fluid 

exchange Fpf

&

Porosity αf

Update fluid 

forces (drag 

and buoyancy) 

for DEM

Update cell volume 

fractions

Solve momentum 

equation

Correct pressure 

with continuity 

equation

Update fluid 

velocity

Solve 𝛼1 equation 

(Eq.4)

CFD

VOF

No NoYesYes
Converge?

n DEM 

time step 

done?

Coupling

Figure 2. Algorithm of CFD and DEM calculations and their coupling.

3. Experimentation

Experiments are performed on the dry (sub-aerial) and submerged granular collapses
to validate and evaluate the developed numerical model. As shown in Figure 3, the setup
configuration includes a horizontal-bed rectangular tank with the length, height and width
of lt = 0.30 m, ht = 0.15 m, and wt = 0.1 m respectively. Using a removable gate, the
tank is partially filled with granular materials to form a rectangular heap of length l0, and
height h0. In the submerged cases the tank is filled with an ambient fluid (water) of height
h f to completely submerge the granular materials. The gate is removed with a speed of
around vg = 1 m/s, which allows the near-instantaneous release of granular material. A
high-speed camera is used to capture the evolution of granular assembly after release.

The initial aspect ratio of the granular column, a = h0/h0, is known to have a key
role in the collapse mechanism, spreading distance, and the final shape of the granular
assembly [3,5,6]. Therefore, we consider two aspect ratios, one below and one above the
critical value of 0.7 (suggested by [5]), resulting in a narrow collapse and wide collapse.
This results in total of four test cases (D1, D2, S1, and S2) as summarized in Table 1. The
test cases have a similar total volume (with around 1% volume difference).
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Figure 3. Experimental setup. (a) geometry; (b) snapshot of the initial condition.

Table 1. Geometrical condition of the test cases.

Case Type l0 (m) h0 (m) a = h0/l0 h f (m)

D1 Dry 0.0975 0.049 0.50 -
D2 Dry 0.0575 0.084 1.46 -
S1 Submerged 0.0975 0.049 0.50 0.07
S2 Submerged 0.0575 0.084 1.46 0.10

For all cases the granular material is glass-beads with diameter of d = 0.0008 m, grain
density of ρg = 2500 kg/m3, a friction coefficient µg = 0.4 (measured friction angle of 22◦),
and initial solid volume fraction φ0 = 0.61± 0.005, i.e., a dense packing created through
tap induced compaction. The glass beads have been colored in a way to form some initially
vertical strips to better show the internal deformations. The material has Young’s modulus
of 60 GPa, restitution coefficient of 0.9 and a Poisson ratio of 0.45. The ambient fluid (for
the submerged cases) is water with density of ρ f = 1000 kg/m3 and dynamic viscosity
of µ f = 0.001 Pa.s. Considering the geometrical and material properties, the dry cases
(D1 and D2) cases are within the free-fall regime, and the submerged cases (S1 and S2) are
within the grain-inertia regime of granular flow.

4. Results and Discussion
4.1. Dry Granular Collapse

To evaluate the capability of the DEM model, in the absence of the CFD model, it is
applied to the dry granular collapse cases D1 and D2. The initial granular configuration is
built by feeding the spherical DEM particles from the top into the space bounded by the tank
and the gate until the desired packing is achieved. To create the vertical strips (similar to
the experiments) the grains of different colors are fed to different regions created by several
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virtual vertical separators. The material properties are assigned as of the experiments.
The gate is lifted with the same speed as experiments allowing the collapse and release of
granular material. The results are normalized using the characteristic length of l0 and h0
and characteristic time of

√
h0/g (the free-fall time scale).

Figures 4 and 5 show the snapshots of the experimental and numerical granular
assembly as well as velocity field in different dimensionless times ([T] = t/

√
h0/g). They

show very similar experimental and numerical configurations. One can differentiate the
yielded and non-yielded (immobile) regions from the granular configuration and the
velocity field. For case D1 (aspect ratio of a = 0.5), the failure starts with the collapse of
the front face. An almost trapezoidal non-yielded region (with a concave front and a flat
top) forms at the lower-left corner and grows with time as the yielded region vanishes.
Case D2 (with the larger aspect ratio of a = 1.46) has a two-stage process. In the beginning,
due to the large height, vertical acceleration is dominant so the failure starts by collapsing
the upper part of the granular assembly. Compare to case D1, here the not-yielded region
(at the lower-left corner) is smaller and has a triangular shape. Once the overall height of
granular assembly is decreased, the horizontal acceleration becomes dominant so the front
avalanches and are propagated along the channel. These findings agree with the literature
(e.g., [1,5]).

T=0.0

T=2.0

T=4.0

T=10.0

Experimental

Yield line

Figure 4. Evolution of numerical and experimental granular deposit (left), and velocity field (right) for dry granular
collapse with a = 0.50 (case D1).
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T=0.0

T=2.0

T=4.0

T=10.0

Experimental

Yield line

Figure 5. Evolution of numerical and experimental granular deposit (left), and velocity field (right) for dry granular
collapse with a = 1.46 (case D2).

To quantify the validations, the numerical and experimental (digitized from imagery
data) surface profiles of the granular assembly at different times are compared for two
aspect ratios in Figure 6. The figure shows a good agreement between simulations and
experiments. The granular evolution is also quantified and validated using the dimen-
sionless runout distances (for different aspect ratios) in Figure 7). We have normalized
the results using l0 (as it has been common in past literature, e.g., in [5,6]), and using h0 as
it might be a more important factor impact the runout. One can distinguish acceleration,
steady flow, and deceleration regions in the runout curve as it has also been documented in
the literature [1,5,6]. The lower aspect ratio results in a much shorter, and faster-evolving
running distance. The numerical and experimental results are in good agreement showing
the accuracy of the DEM model of this study. With the normalization of the results using
h0, the runout distance for the the lower and higher aspect ratios, approach each other.
That shows the initial column height might be better normalization factor here. Note that,
in the cases we investigate, the total volume is content so change in aspect ratio translates
to the change in the height as well.
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Figure 6. Comparison of numerical and experimental surface profiles of two dry granular collapses,
(a) a = 0.5 (Case D1); (b) a = 1.46 (Case D2).
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Figure 7. Experimental and numerical runout distance of the dry granular collapse for two aspect
ratios of a = 0.5 (Case D1) and a = 1.46 (Case D2). (a) runout distance normalized with l0; (b) runout
distance normalized with h0.
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4.2. Dropping Particle in Water

Now that the DEM model is tested and validated, we test and verify the CFD-DEM
coupling for a simple widely-used three-phase (air-water-granular) case before applying it
to the more complex submerged granular collapse. In this test case, One particle with a
radius of 0.1 mm and an initial velocity of zero falls through a free surface (from the height
of 1 mm above) and settles inside the fluid (water). The computational domain has a length
of 4 mm, a width of 4 mm, and a height of 8 mm. The particle density and air density are
2500 kg/m3 and 1 kg/m3, respectively. The box has partially filled the water with a height
of 4 mm and a density of 1000 kg/m3. The dynamic viscosity of air and water is considered
10−5 Pa.s and 10−3 Pa.s, respectively.

A uniform CFD mesh with a cell size equal to 2.5 times the particle’s size is chosen. The
simulation results are compared with the analytical solution, based on Stokes’s law, taken
from [35]. Figure 8 shows a comparison of the particle velocity and the vertical position
predicted by the developed CFD-DEM solver and the analytical solution. Although the
particle motion in the simulation is slightly delayed compared to the analytical solution
(which might be due to the drag model), in general, the simulation results have a reasonable
agreement with those from the analytical solution.

0

0.04

0.08

0.12

0.16

0 0.01 0.02 0.03

V
el

o
ci

ty
(m

/s
)

Time (s)

0.0035

0.004

0.0045

0.005

0 0.01 0.02 0.03

V
er

ti
ca

l 
p

o
si

ti
o

n
 (

m
)

Time (s)

Analytical

CFDEM

Solver

air

water

Figure 8. Comparison of the numerical (CFD-DEM) and analytical prediction of particle velocity
(left) and position (right) for a single particle settling in water.

4.3. Submerged Granular Collapse

Now that the DEM model and its coupling with the CFD model is tested, we apply
and evaluate the model of this study for the collapse of submerged granular columns with
aspect ratios of a = 0.5 and a = 1.46 (i.e., S1 and S2 cases in Table 1). A uniform mesh with
a cell size of 0.0025 m (giving a mesh size to particle size ratio of 3.125) is chosen. The gate
is defined in the DEM side only in the simulation. The DEM parameters are the same as
the dry cases (D1 and D2).

Figures 9 and 10 show the time evolution of numerical and experimental granular
configurations, as well as simulated velocity fields two aspect ratios of a = 0.5 and a = 1.46,
respectively. As the CFD side of the model does not consider the gate motion, the initial
particle suspension and water surfaces disturbance in the experiments can not be observed
in the numerical results. A granular failure and movement mechanisms, similar to that
of dry cases are observed. Nevertheless, due to the presence of the ambient fluid, the
process is much slower, the velocity is smaller, and the front is thicker. Also, the strong
counter-clockwise vortex, which is initiated from the top right corner of the granular
column and propagates downstream, creates a waveform on the granular surface that is
not observed in dry cases. Like the dry case, the column aspect ratio seems to have a key
role in the morphology of granular assembly. While for the smaller aspect ratio of a = 0.5 a
trapezoidal final deposit (with a flat top) is observed, for the larger aspect ratio of a = 1.46,
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the final deposit has a triangular shape with a concave top (similar to the dry case). Upon
the collapse of granular material the nearby ambient fluid is dragged down and a wave
is generated on water surface and propagates downstream and returns after hitting the
downstream wall. The higher column aspect ratio cause a higher amplitude wave. In
addition to the initial collapse, the wave seems to be affected by the granular movement
and the vortex generated by the granular front.

As the column of particles deforms, it drags the surrounding fluid downward and
generates forward propagating (seaward) waves and backward propagating (landward)
waves when fully submerged.

T=0.0

T=2.0

T=4.0

T=10.0

T=6.0

Experimental

Figure 9. Evolution of numerical and experimental granular deposit (left), and velocity field (right) for submerged granular
collapse with a = 0.50 (case S1).
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T=0.0

T=2.0

T=4.0

T=10.0

T=6.0

Figure 10. Evolution of numerical and experimental granular deposit (left), and velocity field (right) for submerged
granular collapse with a = 1.46 (case S2).

To quantify the validations, the numerical and experimental surface profiles are
compared in Figure 11, for the two aspect ratios, showing relatively good agreement. The
discrepancies can be due to the initial gate movement effect on the fluid phase (causing
flow disturbance and consequently particle suspension), which is not seen in the numerical
model. The evolution of the granular motion is also quantified and validated by plotting
the dimensionless runout distances in Figure 12). Similar to the dry cases, three distinctive
regimes of acceleration, steady flow, and deceleration are observed, however, the time
scale is much larger (close to twice). The numerical and experimental values are in good
agreement. With the normalization of the results using h0, the runout distance for the tall
and wide aspect ratios, get very close.
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Figure 11. Comparison of numerical and experimental surface profiles of two submerged granular
collapses. (a) a = 0.5 (Case S1); (b) a = 1.46 (Case S2).
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aspect ratios of a = 0.5 (Case S1) and a = 1.46 (Case S2). (a) runout distance normalized with l0; (b)
runout distance normalized with h0.
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4.4. Volume Fraction Variations

One of the most important factors in the behavior of the material in granular collapses
is the particle volume fraction. While the role of initial volume fraction has been well
studied in the past [9,11,36], the temporal and spatial variations of volume fraction during
the collapse is not well understood, especially in the presence of ambient fluids. The exper-
imental works have challenge estimating the local evolution of volume fraction [7] and the
continuum-based numerical models, e.g., [1,11–13], have problems with the accuracy of
estimations due to uncertainty with the rheological models. The CFD-DEM model of this
study provides a unique opportunity to address this knowledge gap. The average volume
fraction of the granular assembly can be estimated by calculating the total volume below
the granular surface. The local volume fraction for the submerged cases is directly given
by the 3-phase VOF method.

Figure 13 provides the evolution of the average volume fraction, normalized using
the initial volume fraction, for the dry and submerged cases. Generally, upon release of
granular material, a decrease in volume fraction (dilatancy and expansion) is observed.
This decrease continues until a minimum value, then is followed by a gradual increase
(except for the case S1) or re-compaction. The volume fraction approaches (but never
reaches) the initial value. Such behavior correspond to the regime of granular movement
(see Figures 7 and 12). Rapid decrease, slow decrease, and gradual increase in volume
fraction correspond to the acceleration (and rapid movement), steady flow, and deceleration
(and slow movement) of granular material, respectively.
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Figure 13. Time variation of normalized average volume fraction for the dry and submerged cases.
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For the dry cases, a higher aspect ratio (i.e., case D2) results in a higher variation
volume fraction (up to 4%). This is due to stronger acceleration and deceleration, resulting
in more expansion and re-compaction of material. For the submerged cases, the behavior is
more complex due to the presence of ambient fluid and the material suspension. A similar
expansion and re-compaction trend is observed, however, the processes are much longer.
The higher aspect ratio (i.e., case S2) results in a higher expansion rate, but eventually, its
volume fraction reaches that of the lower aspect ratio.

The local variations of normalized volume fraction for the submerged cases are shown
in Figure 14. The values are based on cell volume fraction given by the 3-phase VOF
calculations and are only available for the submerged simulations. The dramatic decrease
of volume fraction near the granular surface is due to the presence of the water-granular
interface, and is not related to granular expansion. As expected, the immobile granular
region (trapezoidal in lower aspect ratio and triangular in higher aspect ratio) keeps its
initial volume fraction, and the mobile region experiences dilatancy and expansion. The
lowest volume fraction (of around 94% of initial volume fraction) is observed in early
stages (e.g., T = 2) along the yield curve, where the shear is maximum. Later, the material
movement slows down, the volume fraction in the yielded region gradually increases and
approaches the initial value. Both cases (S1 and S2) show a similar variation, except that
the re-compaction takes longer in case of S2 (with the higher aspect ratio).
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Figure 14. Normalized volume fraction field for the submerged cases S1 (top) and S2 (bottom).

5. Conclusions

An unresolved CFD-DEM model, with a 3-phase VOF technique, based on the open-
sources platforms Open-Foam, LIGGGHTS, and CFDEMproject, was developed and imple-
mented to study the dense granular collapses in both dry and submerged conditions. The
numerical modeling was associate with experimentation, providing data for validation
and further analysis. Collapse mechanism and post-collapse morphological parameters,
such as granular surface profile and runout distance, were analyzed. Validations showed
good compatibility of numerical and experimental results.

The effect of the initial granular column aspect ratio on collapse mechanism and the
morphological evolution was significant in both dry and submerged cases. The higher
aspect produced a faster running granular front. The two aspect ratios produced different
final shapes of granular assembly (trapezoidal for a = 0.50 versus triangular for a = 1.46);
however, the difference in final front position was insignificant for the submerged condition.

Investigation of spatiotemporal variation of solid volume fraction showed an expan-
sion and re-compaction trend in the yielded (mobile) region of the granular mass. This
trend took longer for the submerged cases. The final volume fraction approached the initial
value; however, in non of the cases, the granular mass could not regain its initial volume
fraction. The higher aspect ratio resulted in a larger evolution of volume fraction (more
expansion and re-compaction) in both submerged and dry conditions.
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The current study had some limitations that can be address in the future studies. This
study did not consider the role of initial compaction (volume fraction) and particle size
variations. It was also limited two column aspect ratios. In the model we ignored some the
forces of fluid whose effects should be investigated in the future studies.
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