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Abstract: Watershed-scale hydrological models have become important tools to understand, assess, 

and predict the impacts of natural and anthropogenic-driven activities on water resources. How-

ever, model predictions are associated with uncertainties stemming from sources such as model 

input data. As an important input to most watershed models, land use/cover (LULC) data can affect 

hydrological predictions and influence the interpretation of modeling results. In addition, it has 

been shown that the use of soft data will further ensure the quality of modeling results to be closer 

to watershed behavior. In this study, the ecologically relevant flows (ERFs) are the primary soft data 

to be considered as a part of the modeling processes. This study aims to evaluate the impacts of 

LULC input data on the hydrological responses of the rapidly urbanizing Upper Cahaba River wa-

tershed (UCRW) located in Alabama, USA. Two sources of LULC data, i.e., National Land Cover 

Database (NLCD) and Digitized Landsat 5 Thematic Mapper (TM) images, were used as input in 

the Soil and Water Assessment Tool (SWAT) model for the years 1992 and 2011 using meteorological 

data from 1988 to 2013. The model was calibrated at the watershed outlet against daily streamflow 

from 1988 to 1993 using the 1992 LULC data and validated for the 2008–2013 period using the 2011 

LULC datasets. The results show that the models achieved similar performances with both LULC 

datasets during the calibration and validation periods according to commonly used statistical rating 

metrics such as Nash Sutcliffe efficiency coefficient (NSE), coefficient of determination (R2), and 

model percent bias (PBIAS). However, LULC input information had substantial impacts on simu-

lated ERFs such as mean monthly streamflow, maximum and minimum flows of different dura-

tions, and low flow regimes. This study demonstrates that watershed models based on different 

sources of LULC and applied under different LULC temporal conditions can achieve equally good 

performances in predicting streamflow. However, substantial differences might exist in predicted 

hydrological regimes and ERF metrics depending on the sources of LULC data and the LULC year 

considered. Our results reveal that LULC data can significantly impact the simulated flow regimes 

of the UCRW with underlaying influences on the predicted biotic and abiotic structures of aquatic 

and riparian habitats. 

Keywords: land use/cover change; SWAT; NLCD; uncertainty; flow regimes; soft data; land 

use/cover input data; equifinality 

 

1. Introduction 

Hydrologic models have been widely used to assess the interplays between land 

use/cover (LULC) changes and hydrological processes and play a pivotal role in regula-

tory, planning, research, and decision-making efforts [1,2]. However, the simulated hy-

drologic fluxes and processes contain uncertainties from various sources since hydrologic 

models are essentially a simplified representation of natural systems [3]. Model predictive 

uncertainties can be attributed to forcing data (e.g., time-series of precipitation), input 
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parameters (e.g., parameterization of soil physical properties), and an oversimplified 

model structure and representation of hydrologic processes (e.g., streamflow) [4–6]. 

Studies such as [4,7,8] examined the parameter uncertainty stemming from different 

LULC conditions and indicated substantial model output uncertainties. When developing 

a mathematical model of a physical system, such as a river basin, there may be multiple 

model structures and many different parameter combinations satisfying the description 

of the system equally well [9]. This has been referred to as the equifinality concept. Equifi-

nality originates from inadequate model constraints that when combined with overpa-

rameterized models, results in a scenario where the number of unknown parameters sur-

passes the number of observations of the system [3]. In other words, it means that different 

sets of model parameters may yield similar outcomes for an observed signal, such as 

streamflow at the watershed outlet, while producing entirely different spatial responses 

of other hydrological processes (e.g., evapotranspiration). This becomes an issue since the 

larger the number of parameter combinations producing equally good model perfor-

mance in predicting a given process (e.g., discharge), the less confidence the modeler will 

have in electing a single parameter set, especially if they yield completely different water-

shed responses [10]. 

A challenging trend that could impact model parameterization and increase model 

uncertainty and equifinality nowadays is the abundance of datasets of varying spatial and 

temporal resolutions, many of which have not been sufficiently tested for specific regions 

[11]. Frequently, modelers accept the available input data as free of errors and ignore the 

uncertainty stemming from input data [12]. Since inadequate and low-quality input data 

(e.g., overly coarse resolution of precipitation data) may produce unrealistic parameter 

values and lead to inaccurate model outputs, it is vital to evaluate model performances 

using different datasets [11]. A key input dataset required by most watershed models is 

the land use/cover of the watershed. The LULC map is a categorical geospatial data layer 

that provides the types (categories) and coverage (number of pixels per category) of land 

uses in the watershed [5]. Watershed modeling needs accurate LULC datasets to parame-

terize the physical system realistically. Therefore, LULC datasets are crucial inputs for 

assigning parameters related to the watershed hydrology since several hydrological pro-

cesses (e.g., surface runoff and lateral flow) in a watershed highly depend on the type and 

extent of LULC [5].  

Multiple studies have shown relatively low impacts of LULC input data on simulated 

streamflow when the model assessment is solely based on widely used model perfor-

mance metrics, such as Nash Sutcliffe Efficiency (NSE), coefficient of determination (R2), 

and model percent bias (PBIAS), and evaluation criteria such as the ones proposed by [13–

18]. However, significant influences have been found on water quality predictions and 

other components of the watershed water budget. [19] demonstrated that the LULC data 

resolution greatly impacts sediment, nitrate (NO3−), and total phosphorus (T.P.). In a sim-

ilar study, [20] showed that different LULC datasets substantially impacted simulated 

monthly ammonium (NH4+) and T.P. loads. [11] found that runoff seems to be less sensi-

tive to different LULC sources, whereas LULC data have significant impacts on different 

components of the water balance, such as soil water content and ET. 

The main focus in most of the past studies was on the effects of LULC datasets on 

basic hydrologic characteristics such as mean annual/monthly flows and model perfor-

mance based on widely used metrics (e.g., NSE). To the best of the author’s knowledge, 

no study has investigated the influence of different LULC data sources on ecologically 

relevant flows (ERFs) parameters and their consequences for river biodiversity and 

aquatic habitats. The very same concept can also be referred as “Soft Data” or “Interior 

Watershed Processes”, which are the essential nontemporal data used in modeling pro-

cesses such as the denitrification rate, or ERFs in this study [6]. Many times, complex wa-

tershed dynamics might not be properly reflected by only considering temporal data or 

hard data (e.g., daily flow, monthly sediment load, etc.) in calibration/validation routines 

[21]. Therefore, the proposed work will strengthen the scientific credibility of the 
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corresponding modeling results. In cases where temporal data are not available, soft data 

can also be used as the primary measurement data for model calibration/validation. River 

biodiversity and ecosystem are strongly associated with the flow regime, which regulates 

aquatic and riparian environments [22]. The flow regime plays a core role in the biotic 

composition, structure, and dynamics of river ecosystems [23]. For instance, the natural 

biodiversity and stability of aquatic ecosystems highly depend on the magnitude, fre-

quency, timing, duration, and alteration of in-stream fluxes [24]. Overall, streamflow is 

one of the most critical abiotic drivers of the occurrence and distribution of freshwater 

biota [25]. Many riverine species, such as fish, benthic macroinvertebrates, and phyto-

plankton, have developed specific adaptions to flow conditions and thus are impacted by 

streamflow alterations [26]. Thus, even small or moderate changes in discharge may have 

consequences to aquatic environments. Since watershed models have been increasingly 

used to investigate the impacts of anthropogenic changes on water resources and consid-

ering that LULC data are a key input to most models, it is important to investigate how 

LULC information can impact the ecosystem. However, the assessment of the importance 

and impacts of LULC data on ERF, such as high flows, lows flows, and frequency and 

duration of extreme flows, is sorely lacking in watershed modeling studies.  

In this study, we consider input data uncertainty stemming from different LULC data 

sources in the Soil and Water Assessment Tool (SWAT) [27] model. The objective is to 

assess the impacts of LULC data and associated uncertainty on ERF metrics. Our purpose 

is not to identify the best LULC dataset. What particularly interests us is to investigate an 

unexplored scientific question: How do hydrological models that were set up based on 

different sources of LULC data respond in terms of ERF conditions? Specifically, we aim 

to address the following related questions: (i) If LULC data from different sources are used 

as model input data, is it possible to achieve equally good model performances in stream-

flow prediction through automated model calibration? (ii) If yes, would those models pre-

dict similar streamflow under future LULC? (iii) What is the impact of different LULC 

data sources on ERF metrics? To answer these questions, we employed the SWAT model 

in an urbanizing watershed with high biodiversity, the Upper Cahaba River Watershed 

in Alabama, USA. SWAT-generated time series of daily discharge were used as input to 

the Indicators of Hydrologic Alterations Software (IHA) [23,28] to assess the impacts of 

LULC data on ERF metrics. 

2. Materials and Methods 

2.1. Study Area 

This study focuses on the Upper Cahaba River watershed (UCRW) (1416 km2), which 

is part of the Cahaba River watershed, located in central Alabama, USA (Figure 1). The 

Cahaba River is one of the main tributaries of the Alabama River, which drains into the 

Mobile Bay, the fourth largest estuary in the U.S in terms of freshwater inflow [29]. The 

Cahaba River extends for 307 km from its source, near Trussville in St. Clair County, south 

to the Alabama River, and its drainage area lies entirely within Alabama. According to 

the Nature Conservancy, the Cahaba River and its major tributaries support 69 rare and 

imperiled species, making it one of the most diverse aquatic ecosystems in the United 

States [30]. The upper side of the Cahaba River watershed drains a large part of the city of 

Birmingham, AL. As a result of the expansion of the Birmingham metropolitan area, the 

percentage of urban areas within the UCRW increased from 9.3% (1992 NLCD) to 35.7% 

(2011 NLCD) (Table 1). The climate (Table 2) is mainly humid, with a mean annual rainfall 

of 1429 mm. Mean rainfall is typically higher during the spring and winter and slightly 

lower during the summer and fall. The mean monthly minimum and maximum temper-

atures in the UCRW range from approximately 10.4 °C to 23.4 °C, respectively (NOAA, 1 

January 1950–31 December 2014). 

Due to rapid urbanization rates observed in the last few decades, the UCRW has wit-

nessed fluctuations in flow regime with underlying effects on the aquatic and riparian 
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biota [31–33]. This reality, combined with the watershed’s remarkable biodiversity, makes 

the UCRW an ideal test case to study the impacts of LULC data source on simulated ERF 

metrics.  

 

Figure 1. Location of the Upper Cahaba River watershed. 

Table 1. Land use/cover classes and changes in the Upper Cahaba River watershed. 

Categories 1992 2011 

LULC classes NLCD (%) DIGITIZED (%) NLCD (%) DIGITIZED (%) 

Water 1.1 0.9 1.4 0.9 

Urban 9.3 10.0 35.7 48.0 

Forest 78.4 71.3 50.3 45.4 

Agriculture 9.0 14.4 10.3 4.5 

Wetland 1.3 3.0 1.9 0.7 
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Table 2. Characteristics of the Upper Cahaba River watershed. 

Physical Characteristic 

Maximum Elevation (meters) 459 

Minimum Elevation (meters) 24 

Area (km2) 1416 

Mean Annual Precipitation (1950–2014) (mm) 1429 

Mean Annual Average Temperature (1950–2014) (°C) 16.9 

2.2. Watershed Model 

The SWAT model is a semi-physically based, continuous-time, hydrological, and ag-

ricultural management practice simulation model that assesses impacts of land manage-

ment practices on water quantity and quality in complex watersheds [27]. SWAT runs at 

daily or sub-daily time step depending on the infiltration method used and can perform 

continuous simulations over very long periods [34,35]. It is suitable to evaluate the long-

term influence of land management practices on water, sediment, and agricultural chem-

ical yields in heterogeneous watersheds with varying land use, soil, and management con-

ditions [27,36]. SWAT is among the most widely used watershed models worldwide [37] 

and has been applied in addressing a variety of flow and water quality problems [37]. 

To characterize spatial heterogeneity, SWAT requires watersheds divided into sub-

watersheds. Based on unique combinations of land use, soils, and slope characteristics, 

each subwatershed is split into multiple hydrological response units (HRUs). Beyond af-

fecting the watershed configuration, LULC information influences many processes simu-

lated in SWAT (e.g., canopy interception and evapotranspiration in the Penman–Monteith 

formulation, runoff generation and infiltration, overland flow routing, management op-

erations) [30]. The surface runoff in each subwatershed was estimated based on the SCS-

CN curve number method (the standard method utilized in SWAT for surface runoff gen-

eration) using the plant evapotranspiration method to calculate daily CN values. The es-

timated runoff volume was routed from the subwatersheds to the main channel using the 

Muskingum routing method [38]. The SCS-CN method is formulated as follows: 

𝑄𝑠𝑢𝑟𝑓 =  
(𝑅𝑑𝑎𝑦 − 𝐼𝑎)

2

(𝑅𝑑𝑎𝑦 − 𝐼𝑎 + 𝑆)
 (1) 

where 𝑄𝑠𝑢𝑟𝑓 is the daily surface runoff (mm), 𝑅𝑑𝑎𝑦 is the daily rainfall (mm), 𝐼𝑎 is the 

initial abstractions term (mm) (commonly calculated as 0.2S), and S is the potential maxi-

mum retention of water by soils. The retention parameter is defined as: 

𝑆 =
25400

𝐶𝑁
− 254 (2) 

where CN is the curve number for the day. The SCS curve number is a function of the 

soil’s permeability, land use, and antecedent soil moisture conditions. Typical curve num-

ber values for various land covers and soil types were compiled by the SCS Engineering 

Division and can be easily found in most hydrology books.  

SWAT includes three built-in methods for estimating potential evapotranspiration 

(PET) (i.e., Hargreaves, Priestley–Taylor, and Penman–Monteith) and allows the user to 

provide PET values calculated using different methods. In the current study, we use the 

Penman–Monteith method to estimate daily PET. For detailed information about the Pen-

man–Monteith method and SWAT hydrological computations, readers are referred to 

SWAT’s theoretical manual [32]. 
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2.3. Model Setup and Input Data 

The geographic information system interface ArcSWAT 2012.10.18 was used to par-

ametrize the SWAT model for the UCRW. The watershed was delineated from a 10-m-

resolution DEM (https://gdg.sc.egov.usda.gov accessed on 17 June 2015) . The outlet was 

selected 27 km downstream of the United States Geological Survey (USGS) site 02423500 

gage to capture the Northwest branch joining the Cahaba River near the outlet (Figure 1) 

and examine the portion of the watershed draining the Birmingham metropolitan area. 

The daily precipitation and maximum/minimum air temperature data were obtained 

from the spatial climate gridded dataset (4 km cell resolution) of PRISM Climate Group 

(http://prism.oregonstate.edu accessed on 20 August2015). The remaining weather forc-

ing data were obtained from the National Centers for Environmental Prediction (NCEP) 

Climate Forecast System Reanalysis (CFSR) database (http://rda.ucar.edu accessed on 21 

August 2015).  

The impacts of the LULC change on hydrology and ERF were studied through two 

different LULC data sources (Figure 2). The National Land Cover Database (NLCD) is a 

publicly available dataset at 30 m resolution (available at http://www.mrlc.gov/ accessed 

on 12 June 2015). We used the NLCD maps for the years 1992 and 2011. The second dataset 

was digitized from Landsat 5 TM scenes for the years 1992 and 2011. Since the NLCD 

LULC classes differed from those of the digitized maps, a reclassification process was ap-

plied to the Anderson Level II NLCD LULC maps. In order to be compatible with the 

digitized LULC classification, the original NLCD LULC classes were aggregated into the 

broader categories (Anderson Level I) according to the following criteria: Water = Water; 

Urban = Develop, Open Space + Developed Low Density + Developed Medium Density + 

Developed High Density; Forest = Deciduous Forest + Evergreen Forest + Mixed Forest; 

Agriculture = Pasture/Hay + Cultivated Crops; Wetland = Woody Wetlands + Emergent 

Herbaceous Wetlands. 

 

Figure 2. LULC datasets used in this study. (TM: Thematic Mapper; NLCD: National Land Cover Database). 
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The watershed soil map and soil properties needed to parameterize SWAT’s soil da-

tabase were obtained from the SSURGO database (https://gdg.sc.egov.usda.gov accessed 

on 17 July 2015). The average soil texture in the UCRW is 67.2% sand, 17.5% clay, and 

15.3% silt. 

The daily measured discharge data for the period 1983–2013 were obtained from the 

USGS National Water Information System website (http://waterdata.usgs.gov/nwis ac-

cessed on 21 August 2015) for gauging station 02423500 (Figure 1). The daily discharge 

time series was used for model calibration (1988–1993) and validation (2008–2013). The 

1992 and 2011 LULC maps were used during calibration and validation, respectively. The 

input data utilized to set up the UCRW model and the sources are summarized in Table 

3. 

Based on the described data, the watershed was discretized into 45 sub-basins, with 

557 and 540 HRUs for the 1992 and 2011 NLCD LULC datasets, respectively. Similarly, 

713 and 614 HRUs were created for the 1992 and 2011 digitized LULC, respectively. In the 

current study, we use the multiple HRUs option in ArcSWAT and discretize the sub-ba-

sins into HRUs using an 8–8–10% threshold of land use, soil, and slope, respectively. In 

other words, land uses and soil types that covered less than 8% of the subbasin area were 

eliminated. The same applied to slopes covering less than 10% of the subbasin. After the 

elimination process, the remaining areas were reapportioned so that 100% of subbasin 

area was considered [39]. 

Table 3. Input data used in the SWAT model and data sources. 

Input Data Data Source References 

LULC map NLCD and Digitized Landsat 5  
National Land Cover Database (NLCD): 

http://www.mrlc.gov/ accessed on 12 June 2015  

Landsat TM images  USGS 
http://earthexplorer.usgs.gov/ accessed on 12 June 

2015   

Soil map (SSURGO) USDA 

USDA The Geospatial Data Gateway: 

https://gdg.sc.egov.usda.gov/ accessed on 17 July 

2015 

DEM USDA (10 m) 

USDA The Geospatial Data Gateway: 

https://gdg.sc.egov.usda.gov/ accessed on 17 July 

2015 

Measured daily streamflow USGS 

USGS National Water Information System: 

http://waterdata.usgs.gov/ accessed on 21 August 

2015 

Daily climate data (precipita-

tion, minimum and maximum 

temperature, solar radiation, 

wind speed, relative humidity) 

PRISM and CFRS 

PRISM Climate Group: http://prism.oregon-

state.edu/ accessed on 20 August 2015 NCEP Cli-

mate Forecast System Reanalysis (CFRS): 

http://rda.ucar.edu/ accessed on 21 August 2015 

2.4. LULC Data Generation from Satellite Images 

We utilized the Landsat 5 Thematic Mapper (TM) data (30 m spatial resolution) for 

1992 and 2011 to derive alternative land use maps based on a supervised classification 

methodology in ERDAS IMAGINE 2015 software. The dates of both images were selected 

to be as close as possible and encompass the same vegetation season. 

Five land use classes were generated: (1) Water, (2) Urban, (3) Forest, (4) Agriculture, 

(5) Wetland. This step was performed by launching the signature editor and then drawing 

polygons over the relevant features within the specified study area. The new classes were 

created from the drawn polygons with “signature editor”. Pixels were collected for urban 

areas from many different parts of the satellite image to enhance the spatial heterogeneity 

of the final product and avoid polygons clustered around a specific region. After a 
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substantially large number of pixels spatialized across the watershed area were sampled, 

the new classes were created within the signature editor. Next, meaningful names and 

colors were assigned to each land use category. To overcome the limitation of choosing 

vegetative areas in some regions, the Normalized Difference Vegetation Index (NDVI) 

was also used to yield the image with pixel values ranging from −1 to +1. With the NDVI, 

the vegetative areas were analyzed successfully. For example, where Red reflectance ex-

ceeded Near-Infrared reflectance (NIR), negative values occurred on the map. Therefore, 

NDVI values ranging from −1 to 0 essentially indicated no vegetation cover. The False 

Color Composite of the Landsat TM scenes (1992 and 2011) was used for the accuracy 

assessment of both land use datasets. 

2.5. Model Calibration, Validation, and Performance Assessment 

Many hydrological models contain parameters that cannot be determined directly 

from field measurements, remote sensing, or environmental databases. SWAT incorpo-

rates a vast number of parameters, and therefore, identifying that the most sensitive ones 

can increase the calibration efficiency. In this study, global sensitivity analysis and cali-

bration were independently carried out for the models developed with 1992-NLCD and 

1992-Digitized LULC maps, using the SWAT Calibration and Uncertainty Program 

(SWAT-CUP) [40] through the Sequential Uncertainty Fitting (SUFI-2) algorithm and in-

volved a total of 16 SWAT parameters (Table 4). In SUFI-2, parameter sensitivity is com-

puted by quantifying the average change in the defined objective function resulting from 

changes in each parameter [40]. The p-value tests the null hypothesis that the coefficient 

of a parameter is equal to zero (i.e., the parameter is not sensitive). Low p-values (typically 

<0.05) indicate sensitive parameters. 

Table 4. Calibrated model parameters and fitted values for each LULC dataset. 

Variation * Parameter Parameter Definition 
Absolute 

Ranges 

Default SWAT 

Values 

Fitted Value 

NLCD Digitized 

(r) CN2 Initial SCS CN II Value 35–98 Varies ** −0.22 −0.19 

(v) CANMX Maximum canopy storage 0–100 0 64.42 53.18 

(v) 
GW_REVA

P 
Groundwater “revap” coefficient 0.02–2 0.02 0.033 0.052 

(r) SOL_K Saturated hydraulic conductivity (mm/h) 0–2000 100.8 −0.29 −0.44 

(v) 
GW_DE-

LAY 
Groundwater delay (days) 0–500 31 26.83 12.56 

(r) 
RCHRG_D

P 
Deep aquifer percolation fraction 0–1 0.05 0.28 0.24 

(v) GWQMN 
Threshold depth of water in the shallow 

aquifer (mm) 
0–5000 1000 387.25 374.61 

(r) SOL_BD Moist bulk density (g/cm3) 0.9–2.5 1.45 0.14 0.08 

(v) GWHT Initial groundwater height (m) 0–25 1 3.11 3.68 

(v) 
AL-

PHA_BNK 
Baseflow alpha factor for bank storage 0–1 0 0.50 0.56 

(v) SURLAG Surface runoff lag time 0.05–24 4 15.34 15.43 

(v) ESCO Soil evaporation compensation factor 0–1 0.95 0.30 0.21 

(v) 
REVAPM

N 

Threshold depth of water in the shallow 

aquifer for “revap” (mm) 
0–500 1 299.10 219.46 

(r) SOL_AWC Available water capacity of the soil layer 0–1 0.15 0.16 0.31 

(v) EPCO Plant uptake compensation factor 0–1 1 0.58 0.52 

(v) 
AL-

PHA_BF 
Baseflow alpha factor (days) 0–1 0.048 0.37 0.44 



Water 2021, 13, 2947 9 of 25 
 

 

* (r) means an existing parameter value is multiplied by (1+ a given value), and (v) means the existing parameter value is 

to be replaced by given value. ** varies by soil and LULC type. 

The calibrated model parameters were selected based on previous modeling efforts 

[30], sensitivity analysis results, the physical characteristics of the study area (e.g., forest 

coverage, extent of impervious areas), and their role in the computation of hydrologic 

processes in SWAT [36]. 

To calibrate and validate the 1992-NLCD and 1992-Digitized LULC based SWAT 

models, daily measured discharge records from the USGS 02423500 gage station for 1983–

2013 were split into calibration (1988–1993) and validation (2008–2013) periods with three 

years of warmup in each period. The calibration and validation periods were selected to 

be close to the periods represented by the LULC datasets utilized. During the model cali-

bration stage, SWAT was set up using 1992-NLCD and 1992-Digitized LULC data. Simi-

larly, 2011 NLCD and 2011 Digitized LULC datasets were utilized during the validation 

period. The best parameter values found through the calibration process were transferred 

to the models employed during the validation period. The same soil data were used dur-

ing model calibration and validation.  

For assessing model performances, the coefficient of determination (R2), Nash–Sut-

cliffe Efficiency (NSE), and percent bias (PBIAS) were used. These are commonly used 

rating metrics to evaluate the performance of hydrologic models [14,41,42].  

2.6. Ecologically Relevant Flow Estimation  

To investigate the degree of hydrologic alteration attributable to LULC input infor-

mation in hydrologic models, we utilized the Indicators of Hydrologic Alterations (IHA) 

tool [28]. The IHA was developed by the Nature Conservancy (TNC) based on [23] for 

calculating the characteristics of natural and altered hydrologic regimes. IHA is an easy-

to-use tool that translates long-term records of daily discharge data into 67 statistical met-

rics representing ecologically relevant flow conditions. These flow metrics are subdivided 

into two groups: the IHA parameters (33 parameters) and the Environmental Flow Com-

ponent (EFC) parameters (34 parameters). In the current study, 38 (26 IHA and 12 EFC) 

out of these 67 parameters, which are sensitive to specific ecosystem influences, were se-

lected to characterize the ecologically relevant flow regime changes in the UCRW attribut-

able to different LULC datasets. The parameters were selected based on their ecological 

relevance as well as their use in published ecological studies. The 38 key indexes can be 

divided into five groups: (1) magnitude of monthly discharge—12 parameters, (2) magni-

tude and duration of peak discharge—10 parameters, (3) timing of annual extreme dis-

charge—two parameters, (4) rate and frequency of discharge changes—two parameters, 

and (5) EFC monthly low flows—12 parameters. The description of the selected IHA pa-

rameters along with their ecosystem influences is given in Table 5. 

Table 5. Summary of hydrological parameters used in the IHA to characterize the flow regime and their ecosystem influ-

ences. 

IHA Parameter Group Hydrologic Parameters Ecosystem Influences 

1. Magnitude of monthly 

water conditions 

(12 parameters) 

Mean value for each calendar month 

Habitat availability for aquatic organisms 

Soil moisture availability for plants 

Availability of water for terrestrial animals 

Availability of food/cover for furbearing mam-

mals 

Reliability of water supplies for terrestrial ani-

mals 

Access by predators to nesting sites 

Influences on water temperature, oxygen lev-

els, photosynthesis in the water column 
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2. Magnitude and dura-

tion of annual extreme 

water conditions 

(10 parameters) 

Annual minima, 1-day mean Annual min-

ima, 3-day means Annual minima, 7-day 

means Annual minima, 30-day means An-

nual minima, 90-day means Annual max-

ima, 1-day mean Annual maxima, 3-day 

means Annual maxima, 7-day means An-

nual maxima, 30-day means Annual max-

ima, 90-day means Annual maxima 

Balance of competitive, ruderal, and stress-tol-

erant organisms 

Creation of sites for plant colonization 

Structuring of aquatic ecosystems by abiotic vs. 

biotic factors 

Structuring of river channel morphology and 

physical habitat conditions 

Soil moisture stress in plants 

Dehydration in animals 

Anaerobic stress in plants 

Volume of nutrient exchanges between rivers 

and floodplains 

Duration of stressful conditions such as low ox-

ygen and concentrated chemicals in aquatic en-

vironments 

Distribution of plant communities in lakes, 

ponds, floodplains 

Duration of high flows for waste disposal, aer-

ation of spawning beds in channel sediments 

3. Timing of annual ex-

treme water conditions 

(2 parameters) 

Julian date of each annual 1-day maximum 

Julian date of each annual 1-day minimum 

Compatibility with life cycles of organisms. 

Predictability/avoidability of stress for organ-

isms 

Access to special habitats during reproduction 

or to avoid predation 

Spawning cues for migratory fish 

Evolution of life history strategies, behavioral 

mechanisms 

4. Rate of water condition 

changes 

(2 parameters) 

Rising rates: Mean or median of all positive 

differences between consecutive daily val-

ues 

Falling rates: Mean or median of all nega-

tive differences between consecutive daily 

values 

Drought stress on plants (falling levels) 

Entrapment of organisms on islands, flood-

plains (rising levels) 

Desiccation stress on low-mobility stream-edge 

(varial zone) organisms 

5. Environmental Flow 

component (EFCs) Param-

eters—Monthly low flows 

(12 parameters) 

Mean values of low flows during each cal-

endar month 

Provide adequate habitat for aquatic organisms 

Maintain suitable water temperatures, dis-

solved oxygen, and water chemistry 

Maintain water table levels in floodplains, soil 

moisture for plants 

Provide drinking water for terrestrial animals 

2.6.1. SWAT-IHA Coupling 

The SWAT-IHA coupling consisted of feeding IHA with SWAT-generated daily 

stream flows simulated based on different LULC datasets, namely: 1992-NLCD, 1992-Dig-

itized, 2011-NLCD, and 2011-Digitized. The SWAT models were run with climate data for 

the 1988–2013 period. The 38 ecologically relevant flow metric outputs were compared in 

relation to the temporal characteristic of the LULC data (i.e., 1992 vs. 2011) and the source 

of the LULC data (i.e., NLCD vs. Digitized).  

2.6.2. Hydrologic Alteration Assessment 
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A total of four IHA runs were carried out, each relying on SWAT-simulated daily 

stream flows using one of the aforementioned LULC datasets. The climate data were the 

same in each simulation period (1988–2013). The following assessments were carried out: 

1. Uncertainty in predicted decrease/increase in simulated ERF metrics due to LULC change: 

The percent difference between a given ERF metric simulated with 1992-NLCD and 

2011-NLCD was calculated using Equation (3). The same step was repeated next with 

1992-Digitized and 2011-Digitized. Subsequently, the uncertainty in the predicted 

change in a given ERF was assessed by comparing the percent differences associated 

with the NLCD and Digitized LULC datasets; 

2. Persistence in ERF prediction uncertainty stemming from LULC: the percent difference 

between a given ERF metric simulated with 1992-NLCD and 1992-Digitized was cal-

culated using Equation (4). The same step was repeated next with 2011-NLCD and 

2011-Digitized. The comparison of percent differences between the 1992 and 2011 

LULC conditions reveals whether uncertainty grows, shrinks, or stays persistent. 

The percent differences were calculated using the range of variability factor (dQV) 

[43–45], which is given by 

𝑑𝑄𝑉
 𝐿𝑈𝐿𝐶=

𝑋2011−𝑋1992
𝑋1992

𝑥 100(%)
 (3) 

𝑑𝑄𝑉
𝑌𝐸𝐴𝑅=

𝑋𝐷𝑖𝐺−𝑋𝑁𝐿𝐶𝐷
𝑋𝑁𝐿𝐶𝐷

𝑥 100(%)
 (4) 

where 𝑋 corresponds to a given ERF metric. Equation (2) is used twice, one with NLCD 

and one with Digitized. Similarly, Equation (4) is applied for 1992 LULC and 2011 LULC. 

Note that for IHA parameter group 3, i.e., timing of annual extremes, the denominator 

terms were dropped in Equations (3) and (4). 

3. Results 

3.1. LULC Change in the Upper Cahaba River Watershed 

Figure 2 shows the spatial distribution of LULC classes across the UCRW for each 

LULC dataset. Table 1 summarizes the LULC distributions as well as the change in LULC 

from 1992 to 2011. It is observed that the LULC distribution in the two datasets was mostly 

represented by three major LULC classes, namely urban, forest, and agriculture. The 

UCRW was mainly covered by forest in 1992 and 2011, regardless of the LULC dataset. A 

notable difference can be seen regarding the extent of urban areas. For instance, the digit-

ized Landsat images imply that urban coverage in the watershed increased from 10% in 

1992 to 48% in 2011. On the other hand, according to the NLCD, those numbers were 9.3% 

to 35.7%, respectively (Table 1). While there were no significant differences in the percent-

ages of urban areas in 1992, there was a noticeable discrepancy between NLCD and Dig-

itized maps in 2011 (Table 1). This can also be seen in Figure 2, where the spatial distribu-

tion of urban areas varies substantially when the two LULC maps for 2011 are compared. 

More specifically, the 2011-NLCD map displays a more homogeneous distribution of ur-

ban areas in the central portion of the watershed, whereas the 2011-Digitized map shows 

some forest patches interspersed with urban areas (Figure 2). Overall, our LULC analyses 

indicate that the most significant differences between the two LULC datasets were ob-

served in forested and agricultural areas in 1992 and in urban and agricultural areas in 

2011. For instance, the NLCD classification showed 7.1% more forested areas and 5.4% 

less agricultural coverage in 1992 compared to the Digitized LULC data, while indicating 

12.3% less urban areas in 2011. 

3.2. Model Performance and Parameter Sensitivity under Different sources of LULC Data 

The sensitivity analysis pointed out the following six parameters as the most sensi-

tive for streamflow during the calibration period (1988–1993) under both NLCD and Dig-

itized LULC datasets: CANMX, SOL_K, CN2, GW_DELAY, RCHRG_DP, SOL_BD. Table 
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4 shows the best value (fitted value) of each parameter after the model calibration was 

carried out using 1992-NLCD and 1992-Digitized LULC data. The parameter sensitivity 

rank is displayed in Table 6, in which the lower the p-value, the more sensitive the param-

eter. Overall, parameter fitted values were similar for the NLCD and Digitized LULC da-

tasets. Considerable differences in calibrated parameter values were found for the satu-

rated hydraulic conductivity (SOL_K), groundwater delay (GW_DELAY), and the thresh-

old depth of water in the shallow aquifer for revap to occur (REVAPMN) (Table 4). The 

top five most sensitive parameters slightly changed according to the LULC dataset uti-

lized. The initial curve number (CN2) was found to be the most sensitive parameter in 

simulating daily streamflow using the NLCD and Digitized LULC datasets in the UCRW. 

The maximum canopy storage (CANMX) was ranked 2nd with the NLCD dataset and 4th 

under the Digitized LULC data. Substantial differences in the parameter sensitivity rank 

stemming from the source of LULC data were found for the groundwater revap coefficient 

(GW_REVAP) and threshold depth of water in the shallow aquifer (GWQMN) (Table 6). 

In both cases, the parameters were highly sensitive under NLCD and not sensitive (p-

value > 0.05) under the Digitized LULC data. 

Table 6. Sensitivity ranks and p-values of two different LULC datasets. 

Ranks 
Parameters—NLCD 

LULC 
p-Values Parameter Ranges 

Parameters—Digit-

ized LULC 
p-Values Parameter Ranges 

1 CN2 (r) 0* [−0.26,−0.19] CN2 (r) 0* [−0.23,−0.16] 

2 CANMX (v) 0* [36.3,68.9] SOL_K (r) 0* [−0.62,−0.27] 

3 GW_REVAP (v) 0* [0.01,0.07] GW_DELAY (v) 0* [−18.32,20.06] 

4 SOL_K (r) 0* [−0.44,−0.15] CANMX (v) 0* [44.67,64.3] 

5 GW_DELAY (v) 0* [18.41,35.25] SOL_BD (r) 0* [0.01,0.17] 

6 RCHRG_DP (v) 0* [0.22,0.35] RCHRG_DP (v) 0* [0.17,0.31] 

7 GWQMN (v) 0.01 [281,494] GWHT (v) 0.15 [1.04,6.33] 

8 SOL_BD (r) 0.02 [0.07,0.22] ALPHA_BNK (v) 0.18 [0.49,0.64] 

9 GWHT (v) 0.08 [0.17,6.06] REVAPMN (v) 0.18 [188,251] 

10 ALPHA_BNK (v) 0.09 [0.43,0.58] SOL_AWC (r) 0.21 [0.25,0.39] 

11 SURLAG (v) 0.09 [12.7,18.0] GW_REVAP (v) 0.22 [0.02,0.09] 

12 ESCO (v) 0.14 [0.23,0.38] EPCO (v) 0.22 [0.46,0.59] 

13 REVAPMN (v) 0.29 [259,339] ALPHA_BF (v) 0.38 [0.37,0.52] 

14 SOL_AWC (r) 0.53 [0.1_0.2] ESCO (v) 0.42 [0.13_0.27] 

15 EPCO (v) 0.55 [0.49_0.67] SURLAG (v) 0.73 [12.22_18.66] 

16 ALPHA_BF (v) 0.59 [0.31_0.44] GWQMN (v) 0.78 [302_447] 

* = p-values ≤ 0.01 are rounded to 0 in SWAT-CUP. 

3.2.1. SWAT Performance during the Calibration Period (1988–1993) 

In general, there was no significant difference in simulated daily and monthly stream 

flows under NLCD and Digitized LULC datasets in the calibration period (Figure 3A and 

Table 7). Simulated monthly stream flows closely matched the observed values regardless 

of the input LULC data. The models performed particularly well during months with high 

flows, and NSE and R2 values higher than 0.85 were achieved, which characterizes the 

models’ performance in simulating monthly flows as “very good” [14]. NSE and R2 values 

were no smaller than 0.70 at the daily time step with both LULC datasets, which can be 

classified as a “good” model performance [14]. Although the NSE and R2 values were 

good, both models slightly underestimated stream flows, particularly in 1989. The overall 

underestimation of streamflow is supported by the PBIAS values shown in Table 7. Alt-

hough the model performance is categorized as “good” in terms of PBIAS [14] using both 

types of LULC data, the NLCD-based model dataset had a smaller bias. 

Table 7. Calibration and validation results. 
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Daily Calibration and Validation Results—LULC Dataset 
Evaluation Statistics 

R
2 NSE PBIAS (%) 

Calibration (1988–1993)—NLCD LULC 0.72 0.71 6.5 

Calibration (1988–1993)—Digitized LULC 0.71 0.70 9.6 

Validation (2008–2013)—NLCD LULC 0.68 0.65 9.3 

Validation (2008–2013)—Digitized LULC 0.70 0.67 8.2 

The daily flow duration curves generated by the NLCD and Digitized LULC based 

models look very similar (Figure 3). Both models showed good skills in matching the ob-

served daily streamflow at the UCRW, especially the high flows (probability of exceed-

ance ≤ 20%). On the other hand, the models performed relatively poorly in reproducing 

low flows (probability of exceedance ≥ 80%), showing a substantial underestimation of 

low flows, likely due to not including point sources in the model (point discharge data 

were not available).  

 

Figure 3. Observed and simulated mean monthly streamflows and daily flow duration curves during the (A) calibration 

and (B) validation periods. 

3.2.2. SWAT Performance during the Validation Period (2008–2013). 

The robustness of the calibrated models in predicting streamflow was tested under 

different LULC conditions than those used in the calibration period. Figure 3B compares 

the simulated monthly flows (time series) and daily streamflows (FDC) with observed 

data. Visually, the models based on 2011-NLCD and 2011-Digitized LULC yielded similar 

results in replicating monthly observations, with moderate underestimation, especially in 

months with high flows. According to the performance metrics employed, both models 

achieved almost identical performances in simulating monthly streamflows. Considering 

the statistical rating criteria developed by [14], the 2011-NLCD and 2011-Digitized models 

are classified as “good” predictors of monthly streamflow at the UCRW. Based on the 

model performance summarized in Table 7, the model based on the Digitized LULC data 

showed slightly better skills in predicting daily streamflow during the 2008–2013 period. 

Overall, both models presented good performances during validation. The performances 
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of the 2011-NLCD and 2011-Digitized models in predicting daily streamflow can be clas-

sified as “satisfactory” based on the NSE and R2 values achieved [14]. In terms of PBIAS, 

both models underestimated observed streamflow during validation, with slightly less 

underestimation under the Digitized dataset (Table 7). 

The results for daily flow duration curves were very similar to the ones obtained in 

the calibration period, with almost no differences in NLCD and Digitized LULC based 

FDCs, and both models showed good skills in producing the observed daily streamflow, 

especially the high flows (probability of exceedance ≤ 20%). Both models did a relatively 

poor job predicting low flows (probability of exceedance ≥ 80%). 

3.3. Influence of LULC Data on Simulated Annual and Seasonal Streamflow 

The simulated mean annual stream flows throughout the entire simulation period 

(1988–2013) were 7.60 and 7.89 m3/s with 1992-NLCD and 1992-Digitized LULC maps, 

respectively. In contrast, with 2011-NLCD and 2011-Digitized LULC, they were 8.05 and 

8.31 m3/s, respectively. Overall, the simulated annual streamflow was 3.6 and 3.1% higher 

with the 1992 and 2011 Digitized LULC datasets, respectively, compared to NLCD-based 

streamflow estimates.  

Figure 4 shows the mean seasonal stream flows simulated with the different LULC 

datasets. It can be seen that all LULC datasets resulted in similar model predictions of 

mean seasonal stream flows, although more pronounced variations were found in the fall. 

With the NLCD dataset, a significant increasing trend (11%) in average spring streamflow 

and a decreasing trend (6%) in average fall streamflow were estimated when models 

driven by 1992 LULC and 2011 LULC were compared. Similarly, an increasing trend was 

noticed during the spring (7%) and winter (9%), whereas a decreasing trend was observed 

during the fall (5%) using the Digitized LULC datasets. Except for the summer season, the 

Digitized LULC datasets consistently estimated higher stream flows at the UCRW. 

 

Figure 4. Comparison of seasonal streamflow. 

3.4. Influence of LULC Data on Simulated Ecologically Relevant Flow Metrics 

In the following sections, we separately discuss the impacts of LULC data for each 

IHA group of parameters.  

Monthly flows: Figure 5 shows the percent difference in the magnitude of monthly 

flows generated by different LULC sources (Equation (1)) (Figure 5A) and LULC datasets 
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representing different years (Equation (2)) (Figure 5B). It can be seen that the percent dif-

ferences were higher with the Digitized LULC inputs (especially during September–Oc-

tober) compared to the NLCD-based models (Figure 5A). When comparing the percent 

difference in monthly flows produced by the 1992 and 2011 LULC years, results showed 

percent differences ranging between −25% and 30% using the 1992 LULC, while the range 

with the 2011 datasets was −5% to 20%.  

 

Figure 5. Changes in monthly streamflow. Percent differences in the magnitude of monthly streamflow due to the source 

of LULC data (A) and due to the temporal condition of LULC distribution in the watershed using 1992 and 2011 LULC 

data (B). 

Extreme flow conditions: Figure 6 illustrates the differences in the magnitude and 

duration of annual extreme (min–max) flows. The 1- to 90-day minimum flows exhibited 

less deviation with the Digitized LULC datasets, which was particularly evident for 30- 

and 90-day flows (Figure 6A). On the other hand, maximum flows of different durations 
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displayed substantially lower percent differences with the NLCD datasets. Negative per-

cent differences in minimum flows tended to occur with 1992 and 2011, with slightly lower 

differences found under the 2011 LULC. Conversely, positive percent differences in max-

imum flows prevailed with both 1992 and 2011, with the former producing considerably 

smaller differences than the latter (Figure 6B).  

 

Figure 6. Changes in annual extreme water conditions. Percent differences in the magnitude of extreme water conditions 

due to the source of LULC data (A) and due to the temporal condition of LULC distribution in the watershed using 1992 

and 2011 LULC data (B). 

Timing of extreme flows: The differences in the predicted Julian dates of minimum 

and maximum flows resulting from the NLCD and Digitized LULC datasets showed an 

opposite trend (Figure 7A). The simulated date of 1-day minimum flow varied less with 

the NLCD dataset than with the Digitized data. On the other hand, the 1-day maximum 

flow differed by approximately three days using the Digitized datasets, whereas approx-

imately 20 days of difference were found with the NLCD datasets. The 1992 LULC 
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datasets led to lower differences than the 2011 LULC data in the simulated date of mini-

mum flow. On the contrary, the 2011 datasets caused smaller changes in the predicted 

date of maximum flow than the 1992 LULC conditions (Figure 7B).  

 

Figure 7. Changes in the timing of annual extreme flows due to the source of LULC data (A) and due to the temporal 

condition of LULC distribution in the watershed using 1992 and 2011 LULC data (B). 

Rate of extreme flows: The NLCD datasets led to markedly lower percent differences 

in the simulated rise and fall rates (21 and 5% differences, respectively) compared to the 

Digitized LULC datasets (40 and 23% differences) (Figure 8A). The 1992 datasets led to 

smaller percent differences in the predicted rise and fall rates, with a deviation of 7 and 

13%, respectively, as opposed to the 24 and 33% differences achieved using the 2011 LULC 

datasets (Figure 8B).  
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Figure 8. Changes in the rate and frequency of streamflow. Percent differences in the rise and fall rates due to the source 

of LULC data (A) and due to the temporal condition of LULC distribution in the watershed using 1992 and 2011 LULC 

data (B). 

Monthly low flows: The percent changes in the magnitude of monthly low flows 

originating from different LULC sources and years are shown in Figure 9. In analyzing 

the differences in low flows stemming from different LULC sources, results indicate that 

the NLCD datasets produced smaller changes (except for May and August) (Figure 9A). 

When differences in simulated low flows under the 1992 LULC data were compared with 

those produced by 2011, results consistently showed smaller percent differences with the 

1992 LULC data, except during May (Figure 9B), indicating a growth in uncertainty from 

1992 to 2011. 
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Figure 9. Changes in monthly low flows. Percent differences in the magnitude of monthly low flows due to the source of 

LULC data (A) and due to the temporal condition of LULC distribution in the watershed using 1992 and 2011 LULC data 

(B). 

4. Discussion 

4.1. Influence of LULC Data on Simulated Annual and Seasonal Streamflows 

According to the equifinality principle, different combinations of model parameter 

values may result in equally good model performances in replicating a given signal (e.g., 

streamflow measure at the watershed’s outlet) [9]. Model input data (e.g., LULC distribu-

tion) related to physical characteristics and spatial patterns in the watershed may influ-

ence parameter values and translate into model output uncertainties. For instance, the 

SWAT model handles the landscape heterogeneity by dividing the watershed into sub-

watersheds, which are further discretized into unique LULC, soil, and slope combina-

tions. Thus, different LULC data translate into different watershed setups and potentially 

different SWAT outputs, even though other input data (e.g., climate data, soil properties, 
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slope) are the same. While models set up based on different input data may achieve sim-

ilar statistical performance and generate indistinguishable streamflow estimates, this does 

not guarantee similar model skills in predicting other hydrologic or water quality compo-

nents (e.g., nitrate loads, evapotranspiration) [2,46,47].  

In the model calibration phase of the current study, we compared SWAT’s capabili-

ties in simulating daily streamflow during the period 1988–1993 using the NLCD LULC 

dataset and a Digitized dataset. Although the visual comparison of monthly hydrographs 

and FDCs did not show significant impacts of LULC data on streamflow predictions, the 

evaluation statistics indicated that the NLCD-based models yielded a slightly superior 

model performance at monthly and daily time steps during the calibration period (3.1% 

smaller bias). The apparent small influence of LULC input data on the model’s perfor-

mance is most likely related to the automated model calibration process, which resulted 

in two different sets of parameter values yielding similar model performances, a charac-

teristic of equifinality. This is corroborated by the fact that different LULC data sources 

led to changes in the parameter sensitivity rank and in the calibrated values. These results 

answer our first research question and support the hypothesis that models relying on dif-

ferent input data and varying parameter values can reach similar performances and re-

sults. It also indicates the existence of an undefined degree of equifinality associated with 

our models.  

To answer our second research question, we tested the calibrated models in a future 

period where LULC changed, namely, the validation period from 2008 to 2013. This sce-

nario presented a departure from the physical conditions of the watershed (i.e., LULC 

distribution and climate) for the calibration period and tested the reliability of the model 

in predicting streamflow under these new conditions. The similar performances obtained 

under the NLCD and Digitized LULC datasets confirm the equifinality of the models and 

suggest a low degree of variability in predicted monthly and daily streamflows regardless 

of the LULC dataset used.  

Studies such as [15,17,18,48] have shown a relatively small influence of LULC data 

on model performance in simulating streamflow. Our findings are in line with these since 

models set up with different sources of LULC yielded similar streamflow performances 

under varying LULC conditions in our study. However, as discussed in the following sec-

tions, a great deal of uncertainty was found while simulating ERF parameters under dif-

ferent LULC sources and years. 

4.2. Changes in the Temporal Evolution of Streamflow 

We found minor differences in seasonal and annual stream flows, although the Dig-

itized datasets tended to produce higher annual and seasonal streamflow rates. Annually, 

these differences were approximately 4%, while changes as high as 18% were found dur-

ing the fall. Our findings show good agreement with those of [16], who showed less than 

10% difference in annual streamflow using different sources of LULC data. The overall 

higher annual and seasonal streamflow generated by the Digitized LULC map compared 

to the NLCD product can be interpreted based on the differences in LULC detected by 

each dataset. Although both datasets detected similar urban fractions, the Digitized map 

showed substantially smaller forested areas and broader agricultural coverage. Forests 

are usually associated with lower water yield and runoff [49] because of the high evapo-

transpiration rates [50] and enhanced soil infiltration and percolation [51], while crop 

fields are sources of surface runoff because of soil compaction [52] and lower infiltration 

rates.  

The LULC source exerted larger uncertainties when percent changes in the magni-

tude of monthly streamflow were assessed. The larger percent differences found under 

the Digitized datasets indicate larger LULC change from 1992 to 2011 associated with this 

dataset than with NLCD. Regarding the persistence in LULC uncertainties, our findings 

consistently show smaller uncertainties in the 2011 datasets for simulating monthly flows. 

We found higher discrepancies in monthly stream flows during the summer months, 



Water 2021, 13, 2947 21 of 25 
 

 

which may be related to the value of parameters such as CANMX and GW_REVAP. The 

former regulates the maximum canopy storage and influences evaporation rates in SWAT, 

while the latter determines the amount of water moving from the shallow aquifer to the 

overlying unsaturated zone. The amount of water trapped by the canopy becomes avail-

able for evaporation, which is typically higher during the summer due to increased tem-

peratures and solar radiation rates. Similarly, the evaporation of water from the saturated 

zone to the unsaturated zone predominates during dry periods.  

In other words, LULC datasets were found to influence the value of calibrated pa-

rameters and consequently affected the variability of simulated monthly streamflow in 

the UCRW. These findings are relevant since monthly flows can influence the habitat 

availability for aquatic organisms and properties of the water, such as temperature and 

dissolved oxygen levels. 

4.3. Changes in Extreme Flows 

Substantial differences in the magnitude of simulated maximum flows of daily, 

weekly, monthly, and seasonal durations were found depending on the LULC source 

and/or year utilized. The significantly higher percent differences found under the Digit-

ized models indicated larger changes in LULC from 1992 to 2011 with this dataset. Con-

sidering the temporal condition of the LULC data, the 2011 datasets produced smaller 

percent changes in simulating minimum flows and consequently smaller uncertainties for 

modeling minimum flows of various durations. In contrast, smaller uncertainties in sim-

ulated maximum flows were found using the 1992 LULC datasets. The difference in forest 

coverage and urbanization rates in 1992 and 2011 may help interpret the differences in 

maximum and minimum flows simulated using the 1992 and 2011 LULC datasets. For 

instance, we found higher magnitudes of maximum streamflow and larger uncertainties 

under the 2011 LULC datasets. This is most probably related to the LULC conditions in 

the watershed during these periods, which consisted of fewer forests and more urban ar-

eas in 2011. The systematic underestimation/overestimation of minimum/maximum flows 

of various durations under different LUCL data source and temporal conditions should 

not come as surprise since the suite of flow metrics are computed from the same model 

output. In other words, if 1-day minimum flow is underestimated, for instance, it is very 

likely that minimum flows averaged over 7-day, 30-day, and 90-days of duration are un-

derestimated as well. The same applies to maximum flows.  

Extreme water conditions such as maximum flows of various durations may have 

important ecological implications since they influence the channel morphology, aquatic 

ecosystems, and physical habitat conditions. These ERF metrics can also impact riverine 

species because they influence drought stress on plants and entrapment of organisms on 

islands and floodplains due to rising water levels. Thus, extreme flow conditions must be 

investigated with caution, and uncertainties related to LULC input data should be con-

sidered when communicating the modeling results to stakeholders and/or decision-mak-

ers. 

4.4. Changes in Low Flows 

Low flows are extremely important for the biotic composition of aquatic and riparian 

ecosystems and deserve more attention in watershed modeling studies. For instance, low 

flows can influence the habitat of aquatic organisms, maintain suitable water tempera-

tures and oxygen levels, provide drinking water for terrestrial animals, and affect the re-

production of fish and amphibians [23,24]. Low flows can impact the life cycle of fisheries, 

especially during the summer months, when the water temperature is higher [53]. Further, 

low flows significantly affect invertebrate communities, which are adapted to specific 

flow velocities and are thus extremely sensitive to fluctuations in low flows [54]. Addi-

tionally, the magnitude of low flows affects other facets of water resource management, 

such as infrastructure design and environmental regulation [55]. Our results suggest that 

different sources of LULC data can significantly affect the magnitude of simulated 
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monthly low flows at the UCRW, which can be relevant given the importance of low flows 

for aquatic and riverine ecosystems. Overall, the NLCD-based models had smaller uncer-

tainties in the magnitude of simulated monthly low flows. In other words, model runs 

using the 1992-NLCD and 2011-NLCD LULC datasets over the 1988–2013 period resulted 

in smaller percent changes in low flows compared to the 1992-Digitized and 2011-Digit-

ized model results. This is most likely related to larger LULC change from 1992 to 2011 

detected by the Digitized datasets, especially the increase in urbanized areas (Table 1). 

Considering the mathematical formulation of Equation (3), the negative percent differ-

ences found for both datasets (Figure 9) suggest a decreasing trend in monthly low flows 

at the UCRW. This finding is corroborated by studies such as [56], which have identified 

a decreasing trend in the magnitude of low flows across the Southeastern U.S. Further, 

the higher percent changes found for the 2011 LULC data imply more modeling uncer-

tainties in predicting low flows with these datasets than with the 1992 LULC maps. This 

may be due to the urbanization from 1992 to 2011, which increased the impervious cover.  

5. Conclusions 

The results presented here indicate that different sources and years of LULC input 

data can yield similar performances in watershed models based on statistical rating met-

rics such as NSE, R2, and PBIAS, yet marked differences were found in analyzing other 

simulated flow metrics. This suggests that traditionally used model evaluation criteria 

(hard data approach) may not be appropriate when the goal of the model application goes 

beyond streamflow prediction at the watershed outlet. We assessed the uncertainty in 

simulated ecological flow parameters (soft data approach) attributable to different sources 

of LULC information. Results consistently showed smaller uncertainties in predicting ERF 

parameters when using the NLCD datasets. The Digitized data only yielded smaller un-

certainties in predicting minimum flows of various durations and the Julian date of 1-day 

maximum flow. Therefore, it can be concluded that incorporation of soft data during mod-

eling processes has a positive impact over the quality of simulation results.  

We also assessed whether uncertainties stemming from LULC sources persisted from 

1992 to 2011. Our findings suggest that uncertainties from LULC vary according to the 

ERF metric analyzed. For example, the 1992 LULC datasets produced smaller uncertain-

ties in simulated low flows and maximum flows of various durations. Additionally, the 

1992 LULC data led to smaller uncertainties in simulating the date of minimum flows of 

1-day duration, as well as the rise and fall rates. On the other hand, smaller uncertainties 

in the magnitude of simulated monthly flows and the date of maximum flow were found 

under the 2011 LULC conditions.  

The UCRW is known for its aquatic biodiversity, aesthetic beauty, and unique land-

scape features. However, this watershed has undergone rapid urbanization since the 

1990s, which has affected the watershed flow regimes. Such alterations in the flow regime 

can significantly impact the aquatic and riparian biota and threaten the watershed’s bio-

diversity. For instance, the Cahaba lilies (Hymenocallis coronaria) have been wiped out from 

many areas within the watershed due to flow fluctuations. Thus, the consequences of 

LULC changes on water resources and their ramifications for riverine ecosystems should 

be investigated carefully. As a standard input to most watershed-scale models, LULC dis-

tribution must be accurately captured in watershed modeling efforts to achieve reliable 

model predictions capable of supporting decision-making. The results of our study can be 

beneficial for local stakeholders and decision-makers in developing science-based man-

agement and development plans for sustainable water use and LULC changes in the 

UCRW. The methodology presented in the current study is relatively simple and can be 

easily replicated in other watershed systems or further scrutinized in the UCRW. 
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