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Abstract: Watershed-scale hydrological models have become important tools to understand, assess,
and predict the impacts of natural and anthropogenic-driven activities on water resources. However,
model predictions are associated with uncertainties stemming from sources such as model input
data. As an important input to most watershed models, land use/cover (LULC) data can affect
hydrological predictions and influence the interpretation of modeling results. In addition, it has been
shown that the use of soft data will further ensure the quality of modeling results to be closer to
watershed behavior. In this study, the ecologically relevant flows (ERFs) are the primary soft data to
be considered as a part of the modeling processes. This study aims to evaluate the impacts of LULC
input data on the hydrological responses of the rapidly urbanizing Upper Cahaba River watershed
(UCRW) located in Alabama, USA. Two sources of LULC data, i.e., National Land Cover Database
(NLCD) and Digitized Landsat 5 Thematic Mapper (TM) images, were used as input in the Soil and
Water Assessment Tool (SWAT) model for the years 1992 and 2011 using meteorological data from
1988 to 2013. The model was calibrated at the watershed outlet against daily streamflow from 1988 to
1993 using the 1992 LULC data and validated for the 2008–2013 period using the 2011 LULC datasets.
The results show that the models achieved similar performances with both LULC datasets during
the calibration and validation periods according to commonly used statistical rating metrics such as
Nash Sutcliffe efficiency coefficient (NSE), coefficient of determination (R2), and model percent bias
(PBIAS). However, LULC input information had substantial impacts on simulated ERFs such as mean
monthly streamflow, maximum and minimum flows of different durations, and low flow regimes.
This study demonstrates that watershed models based on different sources of LULC and applied
under different LULC temporal conditions can achieve equally good performances in predicting
streamflow. However, substantial differences might exist in predicted hydrological regimes and ERF
metrics depending on the sources of LULC data and the LULC year considered. Our results reveal
that LULC data can significantly impact the simulated flow regimes of the UCRW with underlaying
influences on the predicted biotic and abiotic structures of aquatic and riparian habitats.

Keywords: land use/cover change; SWAT; NLCD; uncertainty; flow regimes; soft data; land
use/cover input data; equifinality

1. Introduction

Hydrologic models have been widely used to assess the interplays between land
use/cover (LULC) changes and hydrological processes and play a pivotal role in regulatory,
planning, research, and decision-making efforts [1,2]. However, the simulated hydrologic
fluxes and processes contain uncertainties from various sources since hydrologic models are
essentially a simplified representation of natural systems [3]. Model predictive uncertainties
can be attributed to forcing data (e.g., time-series of precipitation), input parameters
(e.g., parameterization of soil physical properties), and an oversimplified model structure
and representation of hydrologic processes (e.g., streamflow) [4–6].
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Studies such as [4,7,8] examined the parameter uncertainty stemming from different
LULC conditions and indicated substantial model output uncertainties. When developing a
mathematical model of a physical system, such as a river basin, there may be multiple model
structures and many different parameter combinations satisfying the description of the
system equally well [9]. This has been referred to as the equifinality concept. Equifinality
originates from inadequate model constraints that when combined with overparameterized
models, results in a scenario where the number of unknown parameters surpasses the
number of observations of the system [3]. In other words, it means that different sets of
model parameters may yield similar outcomes for an observed signal, such as streamflow
at the watershed outlet, while producing entirely different spatial responses of other
hydrological processes (e.g., evapotranspiration). This becomes an issue since the larger
the number of parameter combinations producing equally good model performance in
predicting a given process (e.g., discharge), the less confidence the modeler will have in
electing a single parameter set, especially if they yield completely different watershed
responses [10].

A challenging trend that could impact model parameterization and increase model
uncertainty and equifinality nowadays is the abundance of datasets of varying spatial
and temporal resolutions, many of which have not been sufficiently tested for specific
regions [11]. Frequently, modelers accept the available input data as free of errors and
ignore the uncertainty stemming from input data [12]. Since inadequate and low-quality
input data (e.g., overly coarse resolution of precipitation data) may produce unrealistic
parameter values and lead to inaccurate model outputs, it is vital to evaluate model
performances using different datasets [11]. A key input dataset required by most watershed
models is the land use/cover of the watershed. The LULC map is a categorical geospatial
data layer that provides the types (categories) and coverage (number of pixels per category)
of land uses in the watershed [5]. Watershed modeling needs accurate LULC datasets to
parameterize the physical system realistically. Therefore, LULC datasets are crucial inputs
for assigning parameters related to the watershed hydrology since several hydrological
processes (e.g., surface runoff and lateral flow) in a watershed highly depend on the type
and extent of LULC [5].

Multiple studies have shown relatively low impacts of LULC input data on simulated
streamflow when the model assessment is solely based on widely used model performance
metrics, such as Nash Sutcliffe Efficiency (NSE), coefficient of determination (R2), and
model percent bias (PBIAS), and evaluation criteria such as the ones proposed by [13–18].
However, significant influences have been found on water quality predictions and other
components of the watershed water budget. [19] demonstrated that the LULC data reso-
lution greatly impacts sediment, nitrate (NO3

−), and total phosphorus (T.P.). In a similar
study, [20] showed that different LULC datasets substantially impacted simulated monthly
ammonium (NH4

+) and T.P. loads. [11] found that runoff seems to be less sensitive to differ-
ent LULC sources, whereas LULC data have significant impacts on different components
of the water balance, such as soil water content and ET.

The main focus in most of the past studies was on the effects of LULC datasets on
basic hydrologic characteristics such as mean annual/monthly flows and model perfor-
mance based on widely used metrics (e.g., NSE). To the best of the author’s knowledge,
no study has investigated the influence of different LULC data sources on ecologically
relevant flows (ERFs) parameters and their consequences for river biodiversity and aquatic
habitats. The very same concept can also be referred as “Soft Data” or “Interior Watershed
Processes”, which are the essential nontemporal data used in modeling processes such
as the denitrification rate, or ERFs in this study [6]. Many times, complex watershed
dynamics might not be properly reflected by only considering temporal data or hard
data (e.g., daily flow, monthly sediment load, etc.) in calibration/validation routines [21].
Therefore, the proposed work will strengthen the scientific credibility of the corresponding
modeling results. In cases where temporal data are not available, soft data can also be used
as the primary measurement data for model calibration/validation. River biodiversity
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and ecosystem are strongly associated with the flow regime, which regulates aquatic and
riparian environments [22]. The flow regime plays a core role in the biotic composition,
structure, and dynamics of river ecosystems [23]. For instance, the natural biodiversity and
stability of aquatic ecosystems highly depend on the magnitude, frequency, timing, dura-
tion, and alteration of in-stream fluxes [24]. Overall, streamflow is one of the most critical
abiotic drivers of the occurrence and distribution of freshwater biota [25]. Many riverine
species, such as fish, benthic macroinvertebrates, and phytoplankton, have developed
specific adaptions to flow conditions and thus are impacted by streamflow alterations [26].
Thus, even small or moderate changes in discharge may have consequences to aquatic
environments. Since watershed models have been increasingly used to investigate the
impacts of anthropogenic changes on water resources and considering that LULC data
are a key input to most models, it is important to investigate how LULC information can
impact the ecosystem. However, the assessment of the importance and impacts of LULC
data on ERF, such as high flows, lows flows, and frequency and duration of extreme flows,
is sorely lacking in watershed modeling studies.

In this study, we consider input data uncertainty stemming from different LULC data
sources in the Soil and Water Assessment Tool (SWAT) [27] model. The objective is to
assess the impacts of LULC data and associated uncertainty on ERF metrics. Our purpose
is not to identify the best LULC dataset. What particularly interests us is to investigate an
unexplored scientific question: How do hydrological models that were set up based on
different sources of LULC data respond in terms of ERF conditions? Specifically, we aim to
address the following related questions: (i) If LULC data from different sources are used as
model input data, is it possible to achieve equally good model performances in streamflow
prediction through automated model calibration? (ii) If yes, would those models predict
similar streamflow under future LULC? (iii) What is the impact of different LULC data
sources on ERF metrics? To answer these questions, we employed the SWAT model in
an urbanizing watershed with high biodiversity, the Upper Cahaba River Watershed in
Alabama, USA. SWAT-generated time series of daily discharge were used as input to the
Indicators of Hydrologic Alterations Software (IHA) [23,28] to assess the impacts of LULC
data on ERF metrics.

2. Materials and Methods
2.1. Study Area

This study focuses on the Upper Cahaba River watershed (UCRW) (1416 km2), which
is part of the Cahaba River watershed, located in central Alabama, USA (Figure 1). The
Cahaba River is one of the main tributaries of the Alabama River, which drains into the
Mobile Bay, the fourth largest estuary in the U.S in terms of freshwater inflow [29]. The
Cahaba River extends for 307 km from its source, near Trussville in St. Clair County, south
to the Alabama River, and its drainage area lies entirely within Alabama. According to
the Nature Conservancy, the Cahaba River and its major tributaries support 69 rare and
imperiled species, making it one of the most diverse aquatic ecosystems in the United
States [30]. The upper side of the Cahaba River watershed drains a large part of the city
of Birmingham, AL. As a result of the expansion of the Birmingham metropolitan area,
the percentage of urban areas within the UCRW increased from 9.3% (1992 NLCD) to
35.7% (2011 NLCD) (Table 1). The climate (Table 2) is mainly humid, with a mean annual
rainfall of 1429 mm. Mean rainfall is typically higher during the spring and winter and
slightly lower during the summer and fall. The mean monthly minimum and maximum
temperatures in the UCRW range from approximately 10.4 ◦C to 23.4 ◦C, respectively
(NOAA, 1 January 1950–31 December 2014).
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Figure 1. Location of the Upper Cahaba River watershed.

Table 1. Land use/cover classes and changes in the Upper Cahaba River watershed.

Categories 1992 2011

LULC classes NLCD (%) DIGITIZED (%) NLCD (%) DIGITIZED (%)
Water 1.1 0.9 1.4 0.9
Urban 9.3 10.0 35.7 48.0
Forest 78.4 71.3 50.3 45.4

Agriculture 9.0 14.4 10.3 4.5
Wetland 1.3 3.0 1.9 0.7

Table 2. Characteristics of the Upper Cahaba River watershed.

Physical Characteristic

Maximum Elevation (meters) 459
Minimum Elevation (meters) 24

Area (km2) 1416
Mean Annual Precipitation (1950–2014) (mm) 1429

Mean Annual Average Temperature (1950–2014) (◦C) 16.9
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Due to rapid urbanization rates observed in the last few decades, the UCRW has
witnessed fluctuations in flow regime with underlying effects on the aquatic and riparian
biota [31–33]. This reality, combined with the watershed’s remarkable biodiversity, makes
the UCRW an ideal test case to study the impacts of LULC data source on simulated
ERF metrics.

2.2. Watershed Model

The SWAT model is a semi-physically based, continuous-time, hydrological, and agri-
cultural management practice simulation model that assesses impacts of land management
practices on water quantity and quality in complex watersheds [27]. SWAT runs at daily or
sub-daily time step depending on the infiltration method used and can perform continuous
simulations over very long periods [34,35]. It is suitable to evaluate the long-term influence
of land management practices on water, sediment, and agricultural chemical yields in
heterogeneous watersheds with varying land use, soil, and management conditions [27,36].
SWAT is among the most widely used watershed models worldwide [37] and has been
applied in addressing a variety of flow and water quality problems [37].

To characterize spatial heterogeneity, SWAT requires watersheds divided into sub-
watersheds. Based on unique combinations of land use, soils, and slope characteristics,
each subwatershed is split into multiple hydrological response units (HRUs). Beyond
affecting the watershed configuration, LULC information influences many processes simu-
lated in SWAT (e.g., canopy interception and evapotranspiration in the Penman–Monteith
formulation, runoff generation and infiltration, overland flow routing, management opera-
tions) [30]. The surface runoff in each subwatershed was estimated based on the SCS-CN
curve number method (the standard method utilized in SWAT for surface runoff gen-
eration) using the plant evapotranspiration method to calculate daily CN values. The
estimated runoff volume was routed from the subwatersheds to the main channel using
the Muskingum routing method [38]. The SCS-CN method is formulated as follows:

Qsur f =

(
Rday − Ia

)2(
Rday − Ia + S

) (1)

where Qsur f is the daily surface runoff (mm), Rday is the daily rainfall (mm), Ia is the initial
abstractions term (mm) (commonly calculated as 0.2S), and S is the potential maximum
retention of water by soils. The retention parameter is defined as:

S =
25400
CN

− 254 (2)

where CN is the curve number for the day. The SCS curve number is a function of the soil’s
permeability, land use, and antecedent soil moisture conditions. Typical curve number
values for various land covers and soil types were compiled by the SCS Engineering
Division and can be easily found in most hydrology books.

SWAT includes three built-in methods for estimating potential evapotranspiration
(PET) (i.e., Hargreaves, Priestley–Taylor, and Penman–Monteith) and allows the user to
provide PET values calculated using different methods. In the current study, we use
the Penman–Monteith method to estimate daily PET. For detailed information about the
Penman–Monteith method and SWAT hydrological computations, readers are referred to
SWAT’s theoretical manual [32].

2.3. Model Setup and Input Data

The geographic information system interface ArcSWAT 2012.10.18 was used to parame-
trize the SWAT model for the UCRW. The watershed was delineated from a 10-m-resolution
DEM (https://gdg.sc.egov.usda.gov, accessed on 17 June 2015). The outlet was selected
27 km downstream of the United States Geological Survey (USGS) site 02423500 gage to

https://gdg.sc.egov.usda.gov
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capture the Northwest branch joining the Cahaba River near the outlet (Figure 1) and
examine the portion of the watershed draining the Birmingham metropolitan area.

The daily precipitation and maximum/minimum air temperature data were obtained
from the spatial climate gridded dataset (4 km cell resolution) of PRISM Climate Group
(http://prism.oregonstate.edu, accessed on 20 August 2015). The remaining weather
forcing data were obtained from the National Centers for Environmental Prediction (NCEP)
Climate Forecast System Reanalysis (CFSR) database (http://rda.ucar.edu, accessed on 21
August 2015).

The impacts of the LULC change on hydrology and ERF were studied through two
different LULC data sources (Figure 2). The National Land Cover Database (NLCD) is a
publicly available dataset at 30 m resolution (available at: http://www.mrlc.gov/, accessed
on 12 June 2015). We used the NLCD maps for the years 1992 and 2011. The second dataset
was digitized from Landsat 5 TM scenes for the years 1992 and 2011. Since the NLCD
LULC classes differed from those of the digitized maps, a reclassification process was
applied to the Anderson Level II NLCD LULC maps. In order to be compatible with the
digitized LULC classification, the original NLCD LULC classes were aggregated into the
broader categories (Anderson Level I) according to the following criteria: Water = Water;
Urban = Develop, Open Space + Developed Low Density + Developed Medium Density +
Developed High Density; Forest = Deciduous Forest + Evergreen Forest + Mixed Forest;
Agriculture = Pasture/Hay + Cultivated Crops; Wetland = Woody Wetlands + Emergent
Herbaceous Wetlands.
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The watershed soil map and soil properties needed to parameterize SWAT’s soil
database were obtained from the SSURGO database (https://gdg.sc.egov.usda.gov, ac-
cessed on 17 July 2015). The average soil texture in the UCRW is 67.2% sand, 17.5% clay,
and 15.3% silt.

The daily measured discharge data for the period 1983–2013 were obtained from
the USGS National Water Information System website (http://waterdata.usgs.gov/nwis,

http://prism.oregonstate.edu
http://rda.ucar.edu
http://www.mrlc.gov/
https://gdg.sc.egov.usda.gov
http://waterdata.usgs.gov/nwis
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accessed on 21 August 2015) for gauging station 02423500 (Figure 1). The daily discharge
time series was used for model calibration (1988–1993) and validation (2008–2013). The
1992 and 2011 LULC maps were used during calibration and validation, respectively. The
input data utilized to set up the UCRW model and the sources are summarized in Table 3.

Table 3. Input data used in the SWAT model and data sources.

Input Data Data Source References

LULC map NLCD and Digitized Landsat 5 National Land Cover Database (NLCD):
http://www.mrlc.gov/, accessed on 12 June 2015

Landsat TM images USGS http://earthexplorer.usgs.gov/, accessed on 12 June 2015

Soil map (SSURGO) USDA USDA The Geospatial Data Gateway:
https://gdg.sc.egov.usda.gov/, accessed on 17 July 2015

DEM USDA (10 m) USDA The Geospatial Data Gateway:
https://gdg.sc.egov.usda.gov/, accessed on 17 July 2015

Measured daily streamflow USGS USGS National Water Information System:
http://waterdata.usgs.gov/, accessed on 21 August 2015

Daily climate data (precipitation,
minimum and maximum

temperature, solar radiation, wind
speed, relative humidity)

PRISM and CFRS

PRISM Climate Group: http://prism.oregonstate.edu/,
accessed on 20 August 2015 NCEP Climate Forecast

System Reanalysis (CFRS): http://rda.ucar.edu/, accessed
on 21 August 2015

Based on the described data, the watershed was discretized into 45 sub-basins, with
557 and 540 HRUs for the 1992 and 2011 NLCD LULC datasets, respectively. Similarly,
713 and 614 HRUs were created for the 1992 and 2011 digitized LULC, respectively. In the
current study, we use the multiple HRUs option in ArcSWAT and discretize the sub-basins
into HRUs using an 8–8–10% threshold of land use, soil, and slope, respectively. In other
words, land uses and soil types that covered less than 8% of the subbasin area were
eliminated. The same applied to slopes covering less than 10% of the subbasin. After the
elimination process, the remaining areas were reapportioned so that 100% of subbasin area
was considered [39].

2.4. LULC Data Generation from Satellite Images

We utilized the Landsat 5 Thematic Mapper (TM) data (30 m spatial resolution) for
1992 and 2011 to derive alternative land use maps based on a supervised classification
methodology in ERDAS IMAGINE 2015 software. The dates of both images were selected
to be as close as possible and encompass the same vegetation season.

Five land use classes were generated: (1) Water, (2) Urban, (3) Forest, (4) Agriculture,
(5) Wetland. This step was performed by launching the signature editor and then drawing
polygons over the relevant features within the specified study area. The new classes
were created from the drawn polygons with “signature editor”. Pixels were collected
for urban areas from many different parts of the satellite image to enhance the spatial
heterogeneity of the final product and avoid polygons clustered around a specific region.
After a substantially large number of pixels spatialized across the watershed area were
sampled, the new classes were created within the signature editor. Next, meaningful names
and colors were assigned to each land use category. To overcome the limitation of choosing
vegetative areas in some regions, the Normalized Difference Vegetation Index (NDVI) was
also used to yield the image with pixel values ranging from −1 to +1. With the NDVI, the
vegetative areas were analyzed successfully. For example, where Red reflectance exceeded
Near-Infrared reflectance (NIR), negative values occurred on the map. Therefore, NDVI
values ranging from −1 to 0 essentially indicated no vegetation cover. The False Color
Composite of the Landsat TM scenes (1992 and 2011) was used for the accuracy assessment
of both land use datasets.

http://www.mrlc.gov/
http://earthexplorer.usgs.gov/
https://gdg.sc.egov.usda.gov/
https://gdg.sc.egov.usda.gov/
http://waterdata.usgs.gov/
http://prism.oregonstate.edu/
http://rda.ucar.edu/
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2.5. Model Calibration, Validation, and Performance Assessment

Many hydrological models contain parameters that cannot be determined directly
from field measurements, remote sensing, or environmental databases. SWAT incorporates
a vast number of parameters, and therefore, identifying that the most sensitive ones can
increase the calibration efficiency. In this study, global sensitivity analysis and calibration
were independently carried out for the models developed with 1992-NLCD and 1992-
Digitized LULC maps, using the SWAT Calibration and Uncertainty Program (SWAT-
CUP) [40] through the Sequential Uncertainty Fitting (SUFI-2) algorithm and involved a
total of 16 SWAT parameters (Table 4). In SUFI-2, parameter sensitivity is computed by
quantifying the average change in the defined objective function resulting from changes in
each parameter [40]. The p-value tests the null hypothesis that the coefficient of a parameter
is equal to zero (i.e., the parameter is not sensitive). Low p-values (typically <0.05) indicate
sensitive parameters.

Table 4. Calibrated model parameters and fitted values for each LULC dataset.

Variation * Parameter Parameter Definition
Absolute
Ranges

Default
SWAT Values

Fitted Value

NLCD Digitized

(r) CN2 Initial SCS CN II Value 35–98 Varies ** −0.22 −0.19
(v) CANMX Maximum canopy storage 0–100 0 64.42 53.18
(v) GW_REVAP Groundwater “revap” coefficient 0.02–2 0.02 0.033 0.052
(r) SOL_K Saturated hydraulic conductivity (mm/h) 0–2000 100.8 −0.29 −0.44
(v) GW_DELAY Groundwater delay (days) 0–500 31 26.83 12.56
(r) RCHRG_DP Deep aquifer percolation fraction 0–1 0.05 0.28 0.24

(v) GWQMN Threshold depth of water in the shallow
aquifer (mm) 0–5000 1000 387.25 374.61

(r) SOL_BD Moist bulk density (g/cm3) 0.9–2.5 1.45 0.14 0.08
(v) GWHT Initial groundwater height (m) 0–25 1 3.11 3.68
(v) ALPHA_BNK Baseflow alpha factor for bank storage 0–1 0 0.50 0.56
(v) SURLAG Surface runoff lag time 0.05–24 4 15.34 15.43
(v) ESCO Soil evaporation compensation factor 0–1 0.95 0.30 0.21

(v) REVAPMN Threshold depth of water in the shallow
aquifer for “revap” (mm) 0–500 1 299.10 219.46

(r) SOL_AWC Available water capacity of the soil layer 0–1 0.15 0.16 0.31
(v) EPCO Plant uptake compensation factor 0–1 1 0.58 0.52
(v) ALPHA_BF Baseflow alpha factor (days) 0–1 0.048 0.37 0.44

* (r) means an existing parameter value is multiplied by (1+ a given value), and (v) means the existing parameter value is to be replaced by
given value. ** varies by soil and LULC type.

The calibrated model parameters were selected based on previous modeling ef-
forts [30], sensitivity analysis results, the physical characteristics of the study area (e.g., for-
est coverage, extent of impervious areas), and their role in the computation of hydrologic
processes in SWAT [36].

To calibrate and validate the 1992-NLCD and 1992-Digitized LULC based SWAT mod-
els, daily measured discharge records from the USGS 02423500 gage station for 1983–2013
were split into calibration (1988–1993) and validation (2008–2013) periods with three years
of warmup in each period. The calibration and validation periods were selected to be close
to the periods represented by the LULC datasets utilized. During the model calibration
stage, SWAT was set up using 1992-NLCD and 1992-Digitized LULC data. Similarly, 2011
NLCD and 2011 Digitized LULC datasets were utilized during the validation period. The
best parameter values found through the calibration process were transferred to the models
employed during the validation period. The same soil data were used during model
calibration and validation.

For assessing model performances, the coefficient of determination (R2), Nash–Sutcliffe
Efficiency (NSE), and percent bias (PBIAS) were used. These are commonly used rating
metrics to evaluate the performance of hydrologic models [14,41,42].
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2.6. Ecologically Relevant Flow Estimation

To investigate the degree of hydrologic alteration attributable to LULC input infor-
mation in hydrologic models, we utilized the Indicators of Hydrologic Alterations (IHA)
tool [28]. The IHA was developed by the Nature Conservancy (TNC) based on [23] for
calculating the characteristics of natural and altered hydrologic regimes. IHA is an easy-to-
use tool that translates long-term records of daily discharge data into 67 statistical metrics
representing ecologically relevant flow conditions. These flow metrics are subdivided into
two groups: the IHA parameters (33 parameters) and the Environmental Flow Component
(EFC) parameters (34 parameters). In the current study, 38 (26 IHA and 12 EFC) out of
these 67 parameters, which are sensitive to specific ecosystem influences, were selected
to characterize the ecologically relevant flow regime changes in the UCRW attributable to
different LULC datasets. The parameters were selected based on their ecological relevance
as well as their use in published ecological studies. The 38 key indexes can be divided
into five groups: (1) magnitude of monthly discharge—12 parameters, (2) magnitude and
duration of peak discharge—10 parameters, (3) timing of annual extreme discharge—two
parameters, (4) rate and frequency of discharge changes—two parameters, and (5) EFC
monthly low flows—12 parameters. The description of the selected IHA parameters along
with their ecosystem influences is given in Table 5.

Table 5. Summary of hydrological parameters used in the IHA to characterize the flow regime and their ecosystem influences.

IHA Parameter Group Hydrologic Parameters Ecosystem Influences

1. Magnitude of monthly
water conditions
(12 parameters)

Mean value for each calendar month

Habitat availability for aquatic organisms
Soil moisture availability for plants

Availability of water for terrestrial animals
Availability of food/cover for furbearing mammals
Reliability of water supplies for terrestrial animals

Access by predators to nesting sites
Influences on water temperature, oxygen levels,

photosynthesis in the water column

2. Magnitude and duration of
annual extreme

water conditions
(10 parameters)

Annual minima, 1-day mean Annual
minima, 3-day means Annual minima,
7-day means Annual minima, 30-day
means Annual minima, 90-day means
Annual maxima, 1-day mean Annual

maxima, 3-day means Annual maxima,
7-day means Annual maxima, 30-day
means Annual maxima, 90-day means

Annual maxima

Balance of competitive, ruderal, and
stress-tolerant organisms

Creation of sites for plant colonization
Structuring of aquatic ecosystems by abiotic vs.

biotic factors
Structuring of river channel morphology and

physical habitat conditions
Soil moisture stress in plants

Dehydration in animalsAnaerobic stress in plants
Volume of nutrient exchanges between rivers

and floodplains
Duration of stressful conditions such as low

oxygen and concentrated chemicals in
aquatic environments

Distribution of plant communities in lakes,
ponds, floodplains

Duration of high flows for waste disposal, aeration
of spawning beds in channel sediments

3. Timing of annual extreme
water conditions

(2 parameters)

Julian date of each annual
1-day maximum

Julian date of each annual
1-day minimum

Compatibility with life cycles of organisms.
Predictability/avoidability of stress for organisms
Access to special habitats during reproduction or

to avoid predation
Spawning cues for migratory fish
Evolution of life history strategies,

behavioral mechanisms
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Table 5. Cont.

IHA Parameter Group Hydrologic Parameters Ecosystem Influences

4. Rate of water
condition changes

(2 parameters)

Rising rates: Mean or median of all
positive differences between consecutive

daily values
Falling rates: Mean or median of all

negative differences between consecutive
daily values

Drought stress on plants (falling levels)
Entrapment of organisms on islands, floodplains

(rising levels)
Desiccation stress on low-mobility stream-edge

(varial zone) organisms

5. Environmental Flow
component (EFCs)

Parameters—Monthly low flows
(12 parameters)

Mean values of low flows during each
calendar month

Provide adequate habitat for aquatic organisms
Maintain suitable water temperatures, dissolved

oxygen, and water chemistry
Maintain water table levels in floodplains, soil

moisture for plants
Provide drinking water for terrestrial animals

2.6.1. SWAT-IHA Coupling

The SWAT-IHA coupling consisted of feeding IHA with SWAT-generated daily stream
flows simulated based on different LULC datasets, namely: 1992-NLCD, 1992-Digitized,
2011-NLCD, and 2011-Digitized. The SWAT models were run with climate data for the
1988–2013 period. The 38 ecologically relevant flow metric outputs were compared in
relation to the temporal characteristic of the LULC data (i.e., 1992 vs. 2011) and the source
of the LULC data (i.e., NLCD vs. Digitized).

2.6.2. Hydrologic Alteration Assessment

A total of four IHA runs were carried out, each relying on SWAT-simulated daily
stream flows using one of the aforementioned LULC datasets. The climate data were the
same in each simulation period (1988–2013). The following assessments were carried out:

1. Uncertainty in predicted decrease/increase in simulated ERF metrics due to LULC change:
The percent difference between a given ERF metric simulated with 1992-NLCD and
2011-NLCD was calculated using Equation (3). The same step was repeated next with
1992-Digitized and 2011-Digitized. Subsequently, the uncertainty in the predicted
change in a given ERF was assessed by comparing the percent differences associated
with the NLCD and Digitized LULC datasets;

2. Persistence in ERF prediction uncertainty stemming from LULC: the percent difference
between a given ERF metric simulated with 1992-NLCD and 1992-Digitized was
calculated using Equation (4). The same step was repeated next with 2011-NLCD and
2011-Digitized. The comparison of percent differences between the 1992 and 2011
LULC conditions reveals whether uncertainty grows, shrinks, or stays persistent.

The percent differences were calculated using the range of variability factor (dQV) [43–45],
which is given by

dQV
LULC= X2011−X1992

X1992
× 100(%)

(3)

dQV
YEAR= XDiG−XNLCD

XNLCD
× 100(%)

(4)

where X corresponds to a given ERF metric. Equation (2) is used twice, one with NLCD
and one with Digitized. Similarly, Equation (4) is applied for 1992 LULC and 2011 LULC.
Note that for IHA parameter group 3, i.e., timing of annual extremes, the denominator
terms were dropped in Equations (3) and (4).

3. Results
3.1. LULC Change in the Upper Cahaba River Watershed

Figure 2 shows the spatial distribution of LULC classes across the UCRW for each
LULC dataset. Table 1 summarizes the LULC distributions as well as the change in LULC
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from 1992 to 2011. It is observed that the LULC distribution in the two datasets was mostly
represented by three major LULC classes, namely urban, forest, and agriculture. The UCRW
was mainly covered by forest in 1992 and 2011, regardless of the LULC dataset. A notable
difference can be seen regarding the extent of urban areas. For instance, the digitized
Landsat images imply that urban coverage in the watershed increased from 10% in 1992
to 48% in 2011. On the other hand, according to the NLCD, those numbers were 9.3% to
35.7%, respectively (Table 1). While there were no significant differences in the percentages
of urban areas in 1992, there was a noticeable discrepancy between NLCD and Digitized
maps in 2011 (Table 1). This can also be seen in Figure 2, where the spatial distribution of
urban areas varies substantially when the two LULC maps for 2011 are compared. More
specifically, the 2011-NLCD map displays a more homogeneous distribution of urban areas
in the central portion of the watershed, whereas the 2011-Digitized map shows some forest
patches interspersed with urban areas (Figure 2). Overall, our LULC analyses indicate that
the most significant differences between the two LULC datasets were observed in forested
and agricultural areas in 1992 and in urban and agricultural areas in 2011. For instance, the
NLCD classification showed 7.1% more forested areas and 5.4% less agricultural coverage
in 1992 compared to the Digitized LULC data, while indicating 12.3% less urban areas
in 2011.

3.2. Model Performance and Parameter Sensitivity under Different Sources of LULC Data

The sensitivity analysis pointed out the following six parameters as the most sensitive
for streamflow during the calibration period (1988–1993) under both NLCD and Digitized
LULC datasets: CANMX, SOL_K, CN2, GW_DELAY, RCHRG_DP, SOL_BD. Table 4 shows
the best value (fitted value) of each parameter after the model calibration was carried
out using 1992-NLCD and 1992-Digitized LULC data. The parameter sensitivity rank is
displayed in Table 6, in which the lower the p-value, the more sensitive the parameter.
Overall, parameter fitted values were similar for the NLCD and Digitized LULC datasets.
Considerable differences in calibrated parameter values were found for the saturated hy-
draulic conductivity (SOL_K), groundwater delay (GW_DELAY), and the threshold depth
of water in the shallow aquifer for revap to occur (REVAPMN) (Table 4). The top five most
sensitive parameters slightly changed according to the LULC dataset utilized. The initial
curve number (CN2) was found to be the most sensitive parameter in simulating daily
streamflow using the NLCD and Digitized LULC datasets in the UCRW. The maximum
canopy storage (CANMX) was ranked 2nd with the NLCD dataset and 4th under the Digi-
tized LULC data. Substantial differences in the parameter sensitivity rank stemming from
the source of LULC data were found for the groundwater revap coefficient (GW_REVAP)
and threshold depth of water in the shallow aquifer (GWQMN) (Table 6). In both cases, the
parameters were highly sensitive under NLCD and not sensitive (p-value > 0.05) under the
Digitized LULC data.

3.2.1. SWAT Performance during the Calibration Period (1988–1993)

In general, there was no significant difference in simulated daily and monthly stream
flows under NLCD and Digitized LULC datasets in the calibration period (Figure 3A and
Table 7). Simulated monthly stream flows closely matched the observed values regardless
of the input LULC data. The models performed particularly well during months with
high flows, and NSE and R2 values higher than 0.85 were achieved, which characterizes
the models’ performance in simulating monthly flows as “very good” [14]. NSE and R2

values were no smaller than 0.70 at the daily time step with both LULC datasets, which
can be classified as a “good” model performance [14]. Although the NSE and R2 values
were good, both models slightly underestimated stream flows, particularly in 1989. The
overall underestimation of streamflow is supported by the PBIAS values shown in Table 7.
Although the model performance is categorized as “good” in terms of PBIAS [14] using
both types of LULC data, the NLCD-based model dataset had a smaller bias.
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Table 6. Sensitivity ranks and p-values of two different LULC datasets.

Ranks Parameters—NLCD
LULC p-Values Parameter

Ranges
Parameters—Digitized

LULC p-Values Parameter
Ranges

1 CN2 (r) 0 * [−0.26,−0.19] CN2 (r) 0 * [−0.23,−0.16]
2 CANMX (v) 0 * [36.3,68.9] SOL_K (r) 0 * [−0.62,−0.27]
3 GW_REVAP (v) 0 * [0.01,0.07] GW_DELAY (v) 0 * [−18.32,20.06]
4 SOL_K (r) 0 * [−0.44,−0.15] CANMX (v) 0 * [44.67,64.3]
5 GW_DELAY (v) 0 * [18.41,35.25] SOL_BD (r) 0 * [0.01,0.17]
6 RCHRG_DP (v) 0 * [0.22,0.35] RCHRG_DP (v) 0 * [0.17,0.31]
7 GWQMN (v) 0.01 [281,494] GWHT (v) 0.15 [1.04,6.33]
8 SOL_BD (r) 0.02 [0.07,0.22] ALPHA_BNK (v) 0.18 [0.49,0.64]
9 GWHT (v) 0.08 [0.17,6.06] REVAPMN (v) 0.18 [188,251]
10 ALPHA_BNK (v) 0.09 [0.43,0.58] SOL_AWC (r) 0.21 [0.25,0.39]
11 SURLAG (v) 0.09 [12.7,18.0] GW_REVAP (v) 0.22 [0.02,0.09]
12 ESCO (v) 0.14 [0.23,0.38] EPCO (v) 0.22 [0.46,0.59]
13 REVAPMN (v) 0.29 [259,339] ALPHA_BF (v) 0.38 [0.37,0.52]
14 SOL_AWC (r) 0.53 [0.1_0.2] ESCO (v) 0.42 [0.13_0.27]
15 EPCO (v) 0.55 [0.49_0.67] SURLAG (v) 0.73 [12.22_18.66]
16 ALPHA_BF (v) 0.59 [0.31_0.44] GWQMN (v) 0.78 [302_447]

* = p-values ≤ 0.01 are rounded to 0 in SWAT-CUP.
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Table 7. Calibration and validation results.

Daily Calibration and Validation
Results—LULC Dataset

Evaluation Statistics

R2 NSE PBIAS (%)

Calibration (1988–1993)—NLCD LULC 0.72 0.71 6.5
Calibration (1988–1993)—Digitized LULC 0.71 0.70 9.6

Validation (2008–2013)—NLCD LULC 0.68 0.65 9.3
Validation (2008–2013)—Digitized LULC 0.70 0.67 8.2
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The daily flow duration curves generated by the NLCD and Digitized LULC based models
look very similar (Figure 3). Both models showed good skills in matching the observed daily
streamflow at the UCRW, especially the high flows (probability of exceedance ≤ 20%). On the
other hand, the models performed relatively poorly in reproducing low flows (probability
of exceedance ≥ 80%), showing a substantial underestimation of low flows, likely due to
not including point sources in the model (point discharge data were not available).

3.2.2. SWAT Performance during the Validation Period (2008–2013)

The robustness of the calibrated models in predicting streamflow was tested under
different LULC conditions than those used in the calibration period. Figure 3B compares
the simulated monthly flows (time series) and daily streamflows (FDC) with observed
data. Visually, the models based on 2011-NLCD and 2011-Digitized LULC yielded similar
results in replicating monthly observations, with moderate underestimation, especially in
months with high flows. According to the performance metrics employed, both models
achieved almost identical performances in simulating monthly streamflows. Considering
the statistical rating criteria developed by [14], the 2011-NLCD and 2011-Digitized models
are classified as “good” predictors of monthly streamflow at the UCRW. Based on the model
performance summarized in Table 7, the model based on the Digitized LULC data showed
slightly better skills in predicting daily streamflow during the 2008–2013 period. Overall,
both models presented good performances during validation. The performances of the
2011-NLCD and 2011-Digitized models in predicting daily streamflow can be classified as
“satisfactory” based on the NSE and R2 values achieved [14]. In terms of PBIAS, both models
underestimated observed streamflow during validation, with slightly less underestimation
under the Digitized dataset (Table 7).

The results for daily flow duration curves were very similar to the ones obtained in
the calibration period, with almost no differences in NLCD and Digitized LULC based
FDCs, and both models showed good skills in producing the observed daily streamflow,
especially the high flows (probability of exceedance ≤ 20%). Both models did a relatively
poor job predicting low flows (probability of exceedance ≥ 80%).

3.3. Influence of LULC Data on Simulated Annual and Seasonal Streamflow

The simulated mean annual stream flows throughout the entire simulation period
(1988–2013) were 7.60 and 7.89 m3/s with 1992-NLCD and 1992-Digitized LULC maps,
respectively. In contrast, with 2011-NLCD and 2011-Digitized LULC, they were 8.05 and
8.31 m3/s, respectively. Overall, the simulated annual streamflow was 3.6 and 3.1% higher
with the 1992 and 2011 Digitized LULC datasets, respectively, compared to NLCD-based
streamflow estimates.

Figure 4 shows the mean seasonal stream flows simulated with the different LULC
datasets. It can be seen that all LULC datasets resulted in similar model predictions of
mean seasonal stream flows, although more pronounced variations were found in the fall.
With the NLCD dataset, a significant increasing trend (11%) in average spring streamflow
and a decreasing trend (6%) in average fall streamflow were estimated when models
driven by 1992 LULC and 2011 LULC were compared. Similarly, an increasing trend was
noticed during the spring (7%) and winter (9%), whereas a decreasing trend was observed
during the fall (5%) using the Digitized LULC datasets. Except for the summer season, the
Digitized LULC datasets consistently estimated higher stream flows at the UCRW.

3.4. Influence of LULC Data on Simulated Ecologically Relevant Flow Metrics

In the following sections, we separately discuss the impacts of LULC data for each
IHA group of parameters.

Monthly flows: Figure 5 shows the percent difference in the magnitude of monthly
flows generated by different LULC sources (Equation (1)) (Figure 5A) and LULC datasets
representing different years (Equation (2)) (Figure 5B). It can be seen that the percent
differences were higher with the Digitized LULC inputs (especially during September–
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October) compared to the NLCD-based models (Figure 5A). When comparing the percent
difference in monthly flows produced by the 1992 and 2011 LULC years, results showed
percent differences ranging between −25% and 30% using the 1992 LULC, while the range
with the 2011 datasets was −5% to 20%.
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Extreme flow conditions: Figure 6 illustrates the differences in the magnitude and
duration of annual extreme (min–max) flows. The 1- to 90-day minimum flows exhibited
less deviation with the Digitized LULC datasets, which was particularly evident for 30-
and 90-day flows (Figure 6A). On the other hand, maximum flows of different durations
displayed substantially lower percent differences with the NLCD datasets. Negative per-
cent differences in minimum flows tended to occur with 1992 and 2011, with slightly lower
differences found under the 2011 LULC. Conversely, positive percent differences in maxi-
mum flows prevailed with both 1992 and 2011, with the former producing considerably
smaller differences than the latter (Figure 6B).
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Timing of extreme flows: The differences in the predicted Julian dates of minimum
and maximum flows resulting from the NLCD and Digitized LULC datasets showed an
opposite trend (Figure 7A). The simulated date of 1-day minimum flow varied less with the
NLCD dataset than with the Digitized data. On the other hand, the 1-day maximum flow
differed by approximately three days using the Digitized datasets, whereas approximately
20 days of difference were found with the NLCD datasets. The 1992 LULC datasets led to
lower differences than the 2011 LULC data in the simulated date of minimum flow. On the
contrary, the 2011 datasets caused smaller changes in the predicted date of maximum flow
than the 1992 LULC conditions (Figure 7B).
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Rate of extreme flows: The NLCD datasets led to markedly lower percent differences
in the simulated rise and fall rates (21 and 5% differences, respectively) compared to the
Digitized LULC datasets (40 and 23% differences) (Figure 8A). The 1992 datasets led to
smaller percent differences in the predicted rise and fall rates, with a deviation of 7 and
13%, respectively, as opposed to the 24 and 33% differences achieved using the 2011 LULC
datasets (Figure 8B).

Monthly low flows: The percent changes in the magnitude of monthly low flows
originating from different LULC sources and years are shown in Figure 9. In analyzing the
differences in low flows stemming from different LULC sources, results indicate that the
NLCD datasets produced smaller changes (except for May and August) (Figure 9A). When
differences in simulated low flows under the 1992 LULC data were compared with those
produced by 2011, results consistently showed smaller percent differences with the 1992
LULC data, except during May (Figure 9B), indicating a growth in uncertainty from 1992
to 2011.
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4. Discussion
4.1. Influence of LULC Data on Simulated Annual and Seasonal Streamflows

According to the equifinality principle, different combinations of model parame-
ter values may result in equally good model performances in replicating a given signal
(e.g., streamflow measure at the watershed’s outlet) [9]. Model input data (e.g., LULC
distribution) related to physical characteristics and spatial patterns in the watershed may
influence parameter values and translate into model output uncertainties. For instance,
the SWAT model handles the landscape heterogeneity by dividing the watershed into
subwatersheds, which are further discretized into unique LULC, soil, and slope combina-
tions. Thus, different LULC data translate into different watershed setups and potentially
different SWAT outputs, even though other input data (e.g., climate data, soil properties,
slope) are the same. While models set up based on different input data may achieve similar
statistical performance and generate indistinguishable streamflow estimates, this does not
guarantee similar model skills in predicting other hydrologic or water quality components
(e.g., nitrate loads, evapotranspiration) [2,46,47].

In the model calibration phase of the current study, we compared SWAT’s capabilities
in simulating daily streamflow during the period 1988–1993 using the NLCD LULC dataset
and a Digitized dataset. Although the visual comparison of monthly hydrographs and
FDCs did not show significant impacts of LULC data on streamflow predictions, the
evaluation statistics indicated that the NLCD-based models yielded a slightly superior
model performance at monthly and daily time steps during the calibration period (3.1%
smaller bias). The apparent small influence of LULC input data on the model’s performance
is most likely related to the automated model calibration process, which resulted in two
different sets of parameter values yielding similar model performances, a characteristic of
equifinality. This is corroborated by the fact that different LULC data sources led to changes
in the parameter sensitivity rank and in the calibrated values. These results answer our
first research question and support the hypothesis that models relying on different input
data and varying parameter values can reach similar performances and results. It also
indicates the existence of an undefined degree of equifinality associated with our models.

To answer our second research question, we tested the calibrated models in a future
period where LULC changed, namely, the validation period from 2008 to 2013. This
scenario presented a departure from the physical conditions of the watershed (i.e., LULC
distribution and climate) for the calibration period and tested the reliability of the model
in predicting streamflow under these new conditions. The similar performances obtained
under the NLCD and Digitized LULC datasets confirm the equifinality of the models and
suggest a low degree of variability in predicted monthly and daily streamflows regardless
of the LULC dataset used.

Studies such as [15,17,18,48] have shown a relatively small influence of LULC data
on model performance in simulating streamflow. Our findings are in line with these since
models set up with different sources of LULC yielded similar streamflow performances
under varying LULC conditions in our study. However, as discussed in the following
sections, a great deal of uncertainty was found while simulating ERF parameters under
different LULC sources and years.

4.2. Changes in the Temporal Evolution of Streamflow

We found minor differences in seasonal and annual stream flows, although the Digi-
tized datasets tended to produce higher annual and seasonal streamflow rates. Annually,
these differences were approximately 4%, while changes as high as 18% were found during
the fall. Our findings show good agreement with those of [16], who showed less than
10% difference in annual streamflow using different sources of LULC data. The overall
higher annual and seasonal streamflow generated by the Digitized LULC map compared
to the NLCD product can be interpreted based on the differences in LULC detected by
each dataset. Although both datasets detected similar urban fractions, the Digitized map
showed substantially smaller forested areas and broader agricultural coverage. Forests are
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usually associated with lower water yield and runoff [49] because of the high evapotran-
spiration rates [50] and enhanced soil infiltration and percolation [51], while crop fields are
sources of surface runoff because of soil compaction [52] and lower infiltration rates.

The LULC source exerted larger uncertainties when percent changes in the magnitude
of monthly streamflow were assessed. The larger percent differences found under the
Digitized datasets indicate larger LULC change from 1992 to 2011 associated with this
dataset than with NLCD. Regarding the persistence in LULC uncertainties, our findings
consistently show smaller uncertainties in the 2011 datasets for simulating monthly flows.
We found higher discrepancies in monthly stream flows during the summer months, which
may be related to the value of parameters such as CANMX and GW_REVAP. The former
regulates the maximum canopy storage and influences evaporation rates in SWAT, while
the latter determines the amount of water moving from the shallow aquifer to the overlying
unsaturated zone. The amount of water trapped by the canopy becomes available for
evaporation, which is typically higher during the summer due to increased temperatures
and solar radiation rates. Similarly, the evaporation of water from the saturated zone to the
unsaturated zone predominates during dry periods.

In other words, LULC datasets were found to influence the value of calibrated pa-
rameters and consequently affected the variability of simulated monthly streamflow in the
UCRW. These findings are relevant since monthly flows can influence the habitat availabil-
ity for aquatic organisms and properties of the water, such as temperature and dissolved
oxygen levels.

4.3. Changes in Extreme Flows

Substantial differences in the magnitude of simulated maximum flows of daily, weekly,
monthly, and seasonal durations were found depending on the LULC source and/or
year utilized. The significantly higher percent differences found under the Digitized
models indicated larger changes in LULC from 1992 to 2011 with this dataset. Considering
the temporal condition of the LULC data, the 2011 datasets produced smaller percent
changes in simulating minimum flows and consequently smaller uncertainties for modeling
minimum flows of various durations. In contrast, smaller uncertainties in simulated
maximum flows were found using the 1992 LULC datasets. The difference in forest
coverage and urbanization rates in 1992 and 2011 may help interpret the differences in
maximum and minimum flows simulated using the 1992 and 2011 LULC datasets. For
instance, we found higher magnitudes of maximum streamflow and larger uncertainties
under the 2011 LULC datasets. This is most probably related to the LULC conditions in the
watershed during these periods, which consisted of fewer forests and more urban areas in
2011. The systematic underestimation/overestimation of minimum/maximum flows of
various durations under different LUCL data source and temporal conditions should not
come as surprise since the suite of flow metrics are computed from the same model output.
In other words, if 1-day minimum flow is underestimated, for instance, it is very likely that
minimum flows averaged over 7-day, 30-day, and 90-days of duration are underestimated
as well. The same applies to maximum flows.

Extreme water conditions such as maximum flows of various durations may have
important ecological implications since they influence the channel morphology, aquatic
ecosystems, and physical habitat conditions. These ERF metrics can also impact riverine
species because they influence drought stress on plants and entrapment of organisms on
islands and floodplains due to rising water levels. Thus, extreme flow conditions must be
investigated with caution, and uncertainties related to LULC input data should be considered
when communicating the modeling results to stakeholders and/or decision-makers.

4.4. Changes in Low Flows

Low flows are extremely important for the biotic composition of aquatic and riparian
ecosystems and deserve more attention in watershed modeling studies. For instance, low
flows can influence the habitat of aquatic organisms, maintain suitable water temperatures
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and oxygen levels, provide drinking water for terrestrial animals, and affect the repro-
duction of fish and amphibians [23,24]. Low flows can impact the life cycle of fisheries,
especially during the summer months, when the water temperature is higher [53]. Further,
low flows significantly affect invertebrate communities, which are adapted to specific flow
velocities and are thus extremely sensitive to fluctuations in low flows [54]. Additionally,
the magnitude of low flows affects other facets of water resource management, such as
infrastructure design and environmental regulation [55]. Our results suggest that different
sources of LULC data can significantly affect the magnitude of simulated monthly low
flows at the UCRW, which can be relevant given the importance of low flows for aquatic
and riverine ecosystems. Overall, the NLCD-based models had smaller uncertainties in
the magnitude of simulated monthly low flows. In other words, model runs using the
1992-NLCD and 2011-NLCD LULC datasets over the 1988–2013 period resulted in smaller
percent changes in low flows compared to the 1992-Digitized and 2011-Digitized model
results. This is most likely related to larger LULC change from 1992 to 2011 detected by the
Digitized datasets, especially the increase in urbanized areas (Table 1). Considering the
mathematical formulation of Equation (3), the negative percent differences found for both
datasets (Figure 9) suggest a decreasing trend in monthly low flows at the UCRW. This
finding is corroborated by studies such as [56], which have identified a decreasing trend
in the magnitude of low flows across the Southeastern U.S. Further, the higher percent
changes found for the 2011 LULC data imply more modeling uncertainties in predicting
low flows with these datasets than with the 1992 LULC maps. This may be due to the
urbanization from 1992 to 2011, which increased the impervious cover.

5. Conclusions

The results presented here indicate that different sources and years of LULC input
data can yield similar performances in watershed models based on statistical rating met-
rics such as NSE, R2, and PBIAS, yet marked differences were found in analyzing other
simulated flow metrics. This suggests that traditionally used model evaluation criteria
(hard data approach) may not be appropriate when the goal of the model application goes
beyond streamflow prediction at the watershed outlet. We assessed the uncertainty in
simulated ecological flow parameters (soft data approach) attributable to different sources
of LULC information. Results consistently showed smaller uncertainties in predicting
ERF parameters when using the NLCD datasets. The Digitized data only yielded smaller
uncertainties in predicting minimum flows of various durations and the Julian date of
1-day maximum flow. Therefore, it can be concluded that incorporation of soft data during
modeling processes has a positive impact over the quality of simulation results.

We also assessed whether uncertainties stemming from LULC sources persisted from
1992 to 2011. Our findings suggest that uncertainties from LULC vary according to the
ERF metric analyzed. For example, the 1992 LULC datasets produced smaller uncertainties
in simulated low flows and maximum flows of various durations. Additionally, the 1992
LULC data led to smaller uncertainties in simulating the date of minimum flows of 1-day
duration, as well as the rise and fall rates. On the other hand, smaller uncertainties in the
magnitude of simulated monthly flows and the date of maximum flow were found under
the 2011 LULC conditions.

The UCRW is known for its aquatic biodiversity, aesthetic beauty, and unique land-
scape features. However, this watershed has undergone rapid urbanization since the 1990s,
which has affected the watershed flow regimes. Such alterations in the flow regime can
significantly impact the aquatic and riparian biota and threaten the watershed’s biodi-
versity. For instance, the Cahaba lilies (Hymenocallis coronaria) have been wiped out from
many areas within the watershed due to flow fluctuations. Thus, the consequences of
LULC changes on water resources and their ramifications for riverine ecosystems should
be investigated carefully. As a standard input to most watershed-scale models, LULC
distribution must be accurately captured in watershed modeling efforts to achieve reli-
able model predictions capable of supporting decision-making. The results of our study
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can be beneficial for local stakeholders and decision-makers in developing science-based
management and development plans for sustainable water use and LULC changes in the
UCRW. The methodology presented in the current study is relatively simple and can be
easily replicated in other watershed systems or further scrutinized in the UCRW.

Author Contributions: Conceptualization, H.H. and L.K.; methodology, H.H., L.K. and F.D.; val-
idation, H.H.; formal analysis, H.H. and L.K.; investigation, H.H. and L.K.; resources, L.K.; data
curation, H.H. and F.D.; writing—original draft preparation, H.H., F.D. and H.Y.; writing—review
and editing, L.K. and H.Y.; supervision, L.K.; project administration, L.K.; funding acquisition, L.K.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially funded by the Center for Environmental Studies at the Urban
Rural Interface, Turkish General Directorate of Combating Desertification and Erosion, and NOAA-
RESTORE program (award# NA19NOS4510194).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available on
request from the corresponding author. The data are not publicly available due to privacy or
ethical restrictions.

Acknowledgments: The authors would like to acknowledge the funding agencies and the School of
Forestry & Wildlife Sciences at Auburn University for supporting this research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Triana, J.S.A.; Chu, M.L.; Guzman, J.A.; Moriasi, D.N.; Steiner, J.L. Beyond model metrics: The perils of calibrating hydrologic

models. J. Hydrol. 2019, 578, 124032. [CrossRef]
2. Yen, H.; Bailey, R.T.; Arabi, M.; Ahmadi, M.; White, M.J.; Arnold, J.G. The Role of Interior Watershed Processes in Improving

Parameter Estimation and Performance of Watershed Models. J. Environ. Qual. 2014, 43, 1601. [CrossRef] [PubMed]
3. Feng, D.; Beighley, E. Identifying uncertainties in hydrologic fluxes and seasonality from hydrologic model components for

climate change impact assessments. Hydrol. Earth Syst. Sci. 2020, 24, 2253–2267. [CrossRef]
4. Breuer, L.; Huisman, J.A.; Frede, H.-G. Monte Carlo assessment of uncertainty in the simulated hydrological response to land use

change. Environ. Model. Assess. 2006, 11, 209–218. [CrossRef]
5. Pai, N.; Saraswat, D. Impact of Land Use and Land Cover Categorical Uncertainty on SWAT Hydrologic Modeling. Trans. ASABE

2013, 56, 1387–1397. [CrossRef]
6. Yen, H.; Wang, X.; Fontane, D.G.; Harmel, R.D.; Arabi, M. A framework for propagation of uncertainty contributed by parameter-

ization, input data, model structure, and calibration/validation data in watershed modeling. Environ. Model. Softw. 2014, 54,
211–221. [CrossRef]

7. Eckhardt, K.; Breuer, L.; Frede, H.-G. Parameter uncertainty and the significance of simulated land use change effects. J. Hydrol.
2003, 273, 164–176. [CrossRef]

8. Niraula, R.; Meixner, T.; Norman, L.M. Determining the importance of model calibration for forecasting absolute/relative changes
in streamflow from LULC and climate changes. J. Hydrol. 2015, 522, 439–451. [CrossRef]

9. Beven, K.; Freer, J. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental
systems using the GLUE methodology. J. Hydrol. 2001, 249, 11–29. [CrossRef]

10. Her, Y.; Chaubey, I. Impact of the numbers of observations and calibration parameters on equifinality, model performance, and
output and parameter uncertainty. Hydrol. Process. 2015, 29, 4220–4237. [CrossRef]

11. Kamali, B.; Abbaspour, K.C.; Yang, H. Assessing the Uncertainty of Multiple Input Datasets in the Prediction of Water Resource
Components. Water 2017, 9, 709. [CrossRef]

12. Beven, K. Towards integrated environmental models of everywhere: Uncertainty, data and modelling as a learning process.
Hydrol. Earth Syst. Sci. 2007, 11, 460–467. [CrossRef]

13. Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic
Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [CrossRef]

14. Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation
criteria. Am. Soc. Agric. Biol. Eng. 2015, 58, 1763–1785.

15. El-Sadek, A.; Irvem, A. Evaluating the impact of land use uncertainty on the simulated streamflow and sediment yield of the
Seyhan River basin using the SWAT model. Turk. J. Agric. For. 2014, 38, 515–530. [CrossRef]

http://doi.org/10.1016/j.jhydrol.2019.124032
http://doi.org/10.2134/jeq2013.03.0110
http://www.ncbi.nlm.nih.gov/pubmed/25603246
http://doi.org/10.5194/hess-24-2253-2020
http://doi.org/10.1007/s10666-006-9051-9
http://doi.org/10.13031/trans.56.10062
http://doi.org/10.1016/j.envsoft.2014.01.004
http://doi.org/10.1016/S0022-1694(02)00395-5
http://doi.org/10.1016/j.jhydrol.2015.01.007
http://doi.org/10.1016/S0022-1694(01)00421-8
http://doi.org/10.1002/hyp.10487
http://doi.org/10.3390/w9090709
http://doi.org/10.5194/hess-11-460-2007
http://doi.org/10.13031/2013.23153
http://doi.org/10.3906/tar-1309-89


Water 2021, 13, 2947 22 of 23

16. Chen, P.; Luzio, M.D.; Arnold, J.G. Impact of Two Land-Cover Data Sets on Stream Flow and Total Nitrogen Simulations using a
Spatially Distributed Hydrologic Model. In Proceedings of the Global Priorities in Land Remote Sensing, Sioux Falls, SD, USA,
23–27 October 2005. Available online: https://www.semanticscholar.org/paper/IMPACT-OF-TWO-LAND-COVER-DATA-
SETS-ON-STREAM-FLOW-A-Chen-Arnold/4261153b5661fb33212b54bfa721e57e79273408 (accessed on 15 October 2021).

17. Wang, Q.; Liu, R.; Men, C.; Guo, L.; Miao, Y. Effects of dynamic land use inputs on improvement of SWAT model performance
and uncertainty analysis of outputs. J. Hydrol. 2018, 563, 874–886. [CrossRef]

18. Yen, H.; Sharifi, A.; Kalin, L.; Mirhosseini, G.; Arnold, J.G. Assessment of model predictions and parameter transferability by
alternative land use data on watershed modeling. J. Hydrol. 2015, 527, 458–470. [CrossRef]

19. Cotter, A.S.; Chaubey, I.; Costello, T.A.; Soerens, T.S.; Nelson, M.A. Water quality model output uncertainty as affected by spatial
resolution of input data. JAWRA J. Am. Water Resour. Assoc. 2003, 39, 977–986. [CrossRef]

20. Huang, J.; Zhou, P.; Zhou, Z.; Huang, Y. Assessing the Influence of Land Use and Land Cover Datasets with Different Points in
Time and Levels of Detail on Watershed Modeling in the North River Watershed, China. Int. J. Environ. Res. Public Health 2013, 10,
144–157. [CrossRef]

21. Yen, H.; White, M.J.; Arnold, J.G.; Keitzer, S.C.; Johnson, M.-V.V.; Atwood, J.D.; Daggupati, P.; Herbert, M.E.; Sowa, S.P.; Ludsin,
S.A.; et al. Western Lake Erie Basin: Soft-data-constrained, NHDPlus resolution watershed modeling and exploration of applicable
conservation scenarios. Sci. Total Environ. 2016, 569–570, 1265–1281. [CrossRef]

22. Pérez-Sánchez, J.; Senent-Aparicio, J.; Santa-María, C.M.M.; López-Ballesteros, A. Assessment of Ecological and Hydro-
Geomorphological Alterations under Climate Change Using SWAT and IAHRIS in the Eo River in Northern Spain. Water
2020, 12, 1745. [CrossRef]

23. Richter, B.D.; Baumgartner, J.V.; Powell, J.; Braun, D.P. A Method for Assessing Hydrologic Alteration within Ecosystems. Conserv.
Biol. 1996, 10, 1163–1174. [CrossRef]

24. Poff, N.L.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C. The Natural Flow
Regime. Biosciemce 1997, 47, 769–784. [CrossRef]
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