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Abstract: This paper reports the results from mobile hydroacoustic surveys carried out between 
1994 and 2018, to assess the fish stocks in four impounded reaches, covering 19.8 km of the River 
Thames, England. The data are complemented with electric fishing boom boat results, collected at 
the same study reaches and time periods. Hydroacoustic surveys used inter-calibrated dual and 
split-beam scientific echosounders, with the transducers beaming horizontally across the river to 
provide fish abundance and distribution estimates. Electric fishing surveys provided catch per unit 
effort estimates and information on size structure and species composition. Catch data from the 
margins of the study reaches were dominated by roach (Rutilus rutilus), with bleak (Alburnus 
alburnus) dominant in mid-river. Hydroacoustic data demonstrated patchy spatial distribution, 
often associated with natural and anthropogenic habitat features. Cyclical peaks and troughs in 
both hydroacoustic and electric fishing abundance were found. There were periods of 
correspondence with electric fishing abundance estimates, but also periods of significant 
divergence. The concept of ‘Shifting Baseline Syndrome’ is discussed with reference to these data, 
illustrating the importance of viewing long term quantitative information when using meaningful 
reference points. The potential impact of river temperature and flow on the fish population data are 
discussed. 
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1. Introduction 
This study represents the longest single continuous and standardised application of 

horizontal hydroacoustic methodology for monitoring a lowland river’s fish populations. 
These hydroacoustic data are a comprehensive long-term baseline of fish abundance and 
distribution, based entirely on non-destructive sampling. This information is 
complemented with species composition derived data from a long-term time series of 
electric fishing surveys, collected with the same sampling frequency and collection dates. 
These longstanding data provides a unique opportunity to investigate temporal and 
spatial shifts in the fish population on a world-renowned river coarse fishery. 

The River Thames lies in a predominately lowland catchment with a floodplain area 
of 896 km2. Within the UK, freshwater angling is one of the most popular sports, with 
large lowland rivers an important resource [1,2]. The River Thames is a valuable socio-
economic angling venue with annual local licence sales of approximately 250,000 and £5 
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million revenue [3]. Over 15 million people live within the Thames catchment resulting in 
significant environmental pressure on the river, and potable water demand in the upper 
Thames is primarily managed by Thames Water Utilities Ltd. (TWUL). Population growth 
in the catchment and the associated pressure on water supply have, over the years, caused 
TWUL to investigate several strategic resource options. 

In 1976, Thames Water Authority proposed the construction of a new reservoir at 
Abingdon to meet an increased demand for drinking water. The reservoir will allow more 
water to be abstracted from the river at times when water is available. It can then be stored 
prior to treatment for potable water supply. There is also scope to permit water to be re-
introduced into the river at times of low flow. In response, government environmental 
regulators committed to environmental impact baseline assessments. This established the 
Thames Water Abingdon Reservoir Programme (TWARP), with hydroacoustics identified 
as a key survey method for fish population assessment. Since 1994, annual hydroacoustic 
surveys have been conducted on the river from Abingdon to Benson. Another proposal is 
the transfer and discharge of raw and treated water from other catchments into the River 
Thames. One of the proposed water transfer discharge points is within the area of study, 
located near to Culham. The transfer of water will augment flows in the River Thames in 
times of elevated pressure on water resources, such as prolonged dry weather events. To 
provide a baseline of fisheries data, a series of hydroacoustic and electric fishing surveys 
were commissioned by the local National Rivers Authority (NRA), latterly Environment 
Agency (EA), fisheries team. 

Large (>20 m wide; >2 m deep) rivers are difficult to survey with conventional 
methods, such as electric fishing and netting. These methods can be adapted, for example 
boom boat electric fishing, to effectively sample marginal habitat. However, a quantitative 
assessment of the pelagic mid-water channel remains a challenge. Alternative capture 
methods commonly used worldwide, such as gill netting, are not an option due to an 
Environment Agency presumption against the use of gillnets by staff, based on the 
destructive nature of the method. Hydroacoustics offers an accepted method [4,5] to 
quantitatively survey mid channel open water habitat, found extensively in the navigable 
channelised middle reaches of the river. Over the last three decades hydroacoustics has 
increasingly been implemented worldwide to survey both river [6–9] and lake [10–16] 
freshwater fish populations, due to its ability to efficiently and non-invasively sample 
large volumes of water and habitats not suited to traditional fish capture methods [17,18]. 

Mobile hydroacoustic sampling in large UK rivers using a horizontally orientated 
transducer has been used to quantify fish populations since the 1990s [19–21]. In the UK, 
a national fisheries mobile hydroacoustic survey programme on large rivers was 
implemented in 2002. Prior to this, a decade of research and development was conducted 
with initial studies focused on the River Thames [19,22]. 

While hydroacoustics generate mass data on fish density, there is an absence or limit 
on species identification. In lakes with restricted species diversity, some sampling 
strategies have been developed [23], with target strengths related to species-specific 
behaviour and spatial positioning [24] to increase knowledge on community composition. 
This approach for horizontal sounding in large lowland rivers with a multi-species 
community is not viable and complementary methods are required to acquire biometric 
information on the fish population [4]. Electric fishing is a commonly used tool in fisheries 
[25–27] and the preferred method for river fish surveys in the UK. To obtain a full picture 
of fish stock status the current study recognised the need to use complementary methods 
for validating the data and address method-specific information gaps. It is essential that 
data acquired from capture and non-capture methods within the same monitoring 
programme are integrated effectively [28,29]. Previous hydroacoustic studies have 
addressed data validation using electric fishing and other capture methods such as 
angling creel census [30]. On occasion, the removal of water from a survey location has 
provided an opportunity to check the accuracy of hydroacoustic abundance and biomass 
estimates [31]. 
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Potamodromous freshwater fish need to disperse or migrate throughout the year to 
gain access to reproduction, feeding and refuge habitats to complete their life cycle [32]. 
The Thames reflects many rivers around the world that are affected by human activities 
and habitat fragmentation, structural homogeneity, channel straightening and 
impounding [33,34]. Distribution of fish populations will respond to annual 
environmental variation, even in such relatively impoverished habitats. Only by 
capturing data over an extended time frame will an understanding of spatial change and 
location residency be understood. 

This paper reports the results from data collected from 1994 to 2018. Hydroacoustic 
data are supplemented with boom boat electric fishing surveys carried out during the 
same time period to provide information on species composition. Abiotic data on 
temperature and flow are used to provide environmental context. The data collected in 
this study are regarded to be of sufficient spatial and temporal extent to provide valuable 
broader information of response of fish populations in a lowland UK river, to flood events 
and other climate change impacts. 

2. Materials and Methods 
2.1. Study Area 

This study was conducted on a 19.8 km section of the non-tidal River Thames (Figure 
1) between Abingdon Lock (NGR: SU 50633 97109) and Benson Lock (NGR: SU 56866 
93629); the reaches selected for this study include that most influenced by water company 
proposals, namely, the Abingdon to Culham reach. 

 
Figure 1. Location of the study area on the River Thames, England, UK. 

The tidal limit at Teddington is 117 km downstream from Benson Lock. The area was 
divided into four reaches from Abingdon to Benson. Each reach was impounded by a 
navigation lock and weir at both its upstream and downstream limit. In downstream 
sequence, the reaches used in this study are: Reach 1: Abingdon—Culham (4.15 km) is the 
most upstream reach. Reach 2: Culham—Clifton (4.52 km); Reach 3: Clifton—Days (4.80 
km) and Reach 4: Days—Benson (6.37 km). 

The main river channel in this study is maintained for navigation purposes and has 
few natural hydro geomorphological features. Between Reading and Oxford, the EA, as 
part of its customer charter, maintains a minimum of 1.2 m depth over a navigation 
fairway. This is usually considered to be the middle third of the river or the approach to 
any of the lock sites, from an upstream of downstream direction. Bathymetry range for 
this section of the river is 2.11–7.34 m with an average depth of 3.37 ± 0.69 standard 



Water 2021, 13, 2932 4 of 23 
 

 

deviation. River depth surveys were conducted by EA Geomatics using a RESON 
(Teledyne RESON A/S; Fabriksvangen 13, Slangerup, Denmark) Seabat 7101 Multibeam 
sonar. Vessel position and attitude was captured with an Applanix (Applanix 
Corporation; Richmond Hill, ON, Canada) POSMV-320 (S/N 3878) system controlled 
using a network of local Ordnance Survey OSNET stations. Using Ordnance Survey map 
readings at 500 m intervals, the average width of the river, with 95% confidence limits, 
was calculated at 44 m ± 2.0 m. Channelised for flood mitigation and navigation purposes, 
flow is predominantly glide with some marginal slack water. This confined river channel 
is largely separated from its floodplain except during ‘out of bank’ flood events. Four 
weirs (Abingdon, Culham, Clifton and Days) are present within the study area where 
turbulent air-entrained flow and deep pools provide a significant attraction to fish, in 
particular, rheophilic cyprinids [35] and predators [36]. Low signal: noise conditions 
immediately downstream of these structures prevents the use of hydroacoustics. Whilst 
electric fishing was conducted in or near weir-pools, collected data have been excluded to 
avoid spatial analysis bias between the two methods. Across all habitats the fish 
population is dominated by roach (Rutilis rutilis), bleak (Alburnus alburnus), perch (Perca 
fluviatilis) and chub (Squalius cephalus) with bream (Abramis brama), dace (Leuciscus 
leuciscus), barbel (Barbus barbus), gudgeon (Gobio gobio) and pike (Esox Lucius), also 
important. 

2.2. Acoustic Sampling 
The study period covers data collection from 1994 to 2018. Surveys were boat-based 

and mobile with a GPS derived ground speed of 5–6 km h−1. The sound beam was oriented 
perpendicular to the boat’s longitudinal axis. Surveys conducted from 1994 to 2002 used 
a BioSonics (BioSonics, Inc.; 2356 W Commodore Way, Unit 110, Seattle, WA, USA) model 
102 dual-beam sonar operating at 420 kHz at 10 pings s−1, with a pulse duration of 0.4 ms 
and 40 Log R time-varied gain (TVG). A circular transducer with a 6° narrow and 15° wide 
beam was mounted on a Videmech (Videmech Ltd.; Yateley, Surrey, UK) pan and tilt head 
rigidly fixed 1 m in front of the boat and 0.8 m below water surface. From 2002 all data 
were collected using an HTI (Hydroacoustics Technology Inc.; 711 NE Northlake Way, 
Seattle, WA, USA) model 241 split beam system echosounder. This was operated at 200 
kHz and 10 pings s−1, with a pulse duration of 0.2 ms and 40 Log R TVG. An elliptical split-
beam transducer deployed with operating angles of 4° along its vertical axis and 10° in 
the horizontal axis was mounted in the same manner as the earlier BioSonics surveys. 
Inter-calibration of the two systems was conducted using field sample data from 2001 and 
2002 when both systems were simultaneously deployed with the transducers on a 
common fixed mounting. 

Biosonics echo signals were recorded onto a laptop and separately on DAT tape. 
Signals were monitored on the ESP oscilloscope screen in the PC and on a Phillips (Philips 
Electronics UK Limited; Farnborough, UK) PM97 ‘Scopemeter’ oscilloscope. HTI echo 
signal capture was as RAW and BOT data files directly onto a laptop using the 
manufacturer’s Digital Echo Processing software. 

Before each survey period, the Biosonics equipment was calibrated following a 
standardised method [20]. This involved the use of a 21.4 mm diameter tungsten carbide 
sphere standard target of known acoustic target strength. For the HTI echosounder, 
standard target tests were conducted prior to each survey [37,38] using a 36.0 mm 
tungsten carbide sphere suspended >5 m from the transducer by monofilament line and 
fine mesh netting. Data from >250 echoes from each quadrant and >250 echoes on the 
acoustic axis were recorded and mean compensated TS calculated. If the mean was within 
±3 dB of the theoretical TS of the calibration sphere (−39.5 dB), the equipment and 
associated calibration files were considered to be satisfactory and the survey proceeded. 

River morphology and transducer attachment to a Videmech remote control rotator 
provided a maximum sample range of approximately 30 m; however, mean sampled 
ranges were generally much shorter. All surveys were confined to the hours of darkness 
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(+1 h sunset; −1 h sunrise), a time when fish were active in the water column and so 
detectable by horizontal sonar. During this time, boat traffic interference and bankside 
disturbance from anglers is at its lowest level. When required, a small spotlight was 
directed towards the nearest bank in the opposite direction of the sonar beam to aid safe 
navigation. Light attraction dispersal effects were assumed to be negligible due to the 
relatively low water transparency prevalent in rivers of this type. 

Standard 10 min data files generated along each reach from 1994–2002 were analysed 
using the BioSonics Target Strength Post-Processing Program (ESPTS), containing the TS 
in decibels (dB) of the back scattering cross-section ± standard deviation for accepted fish 
targets (as single echo detections). For each surveyed reach, the run number and number 
of pings; the mean TS and standard deviation; the volume sampled and number of 
accepted fish targets were recorded. From these data, mean TS; standard deviation; total 
volume sampled; total number of fish detected; and fish density (fish 1000 m-3) were 
calculated for upstream runs and downstream runs. 

For HTI data collected from 2002–2018, standard 10 min data files were appended 
and processed using HTI Echoscape 3.00.10 software to generate single fish echo 
detections (dB) and sample volume (m3). These files were subsequently analysed using 
Mobile Utility Analysis, a Microsoft Access program developed by the EA to apportion 
data into 100 m river length bins. Ping sample volume, total sample volume, number of 
pings, number of accepted echoes and fish density (fish 1000 m−3) were calculated for each 
100 m of river length within the study reach. 

A −50 dB minimum acoustic threshold was applied to all data. A best fit linear 
regression (y (HTI) = 1.6396x (BioSonics) + 3.0592, R2 = 0.3864) obtained for Reach 3 and 
Reach 4 in 2001 was applied to standardise the abundance estimates from the two systems 
[39]. All BioSonics abundance results are thereafter reported as HTI ‘equivalents’. The 
relationship between acoustic size (dB) and real size (fork length in mm) was established 
using species (cyprinid and perch) and frequency appropriate (200 kHz) regressions [40]: 

Y = aX + c  (1) 

where Y is TS (dB), X is log10 length (mm) and a, c are regression constants. For fish 
insonified in side aspect: a = 29.1966; c = −98.329. For fish insonified in mean aspect: a = 
22.5811; c = −93.617. The calculated minimum ‘visible’ fish length were 40.7 mm and 85.4 
mm for side-aspect and mean-aspect orientation, respectively. 

2.3. Electric Fishing 
Electric fishing surveys deployed a boom-boat arrangement (Figure 2) with pulsed 

direct current and output settings at 230 V, 50 Hz and 10–11 A. Power to a model 
FC3000GPBS control box (Electracatch International; Wolverhampton, UK) was supplied 
by a 7 kW Honda EU70is petrol generator. Output (230 V, max current 20 A) was then fed 
out to a pair of anode arrays on booms which sit at river surface level. The two cathode 
cables were fixed, one to each side of the boat, to stainless steel plates situated beneath the 
netting punts. Surveys involved timed runs carried out in a downstream direction. 
Surveys were conducted in the river margins and at mid-river locations and started 
around dusk each night. The results are presented as catch per unit effort (number per 
minute) estimates. All captured fish were identified to species level and fork length 
measured to the nearest mm. Within each reach, and for each species, scale samples from 
a minimum of three individuals per 10 mm size band were taken for age and growth 
analysis. 

The mid-river boom-boating terminated in 2006, as these yielded fewer fish of fewer 
species and it was considered a relatively inefficient capture method. From 2006 onwards, 
margin electric fishing changed from a series of five-minute runs in each reach, to a 
recording of total fishing time. This is because increasing riparian tree cover often 
precluded continuous fishing for a five-minute period; the fishing interrupted as the boat 
was steered into mid-river to avoid protruding trees. 
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Figure 2. The design and arrangement of the boom boat used on the River Thames during the study 
period. 

2.4. Abiotic Data 
Habitat features, both natural and anthropogenic, with an obvious channel 

interrupting character were recorded using aerial survey and Ordnance Survey© map 
information. Channel habitat interrupting features (CHIF) are categorised as bridges, 
river tributary confluences, lotic off-river features (marinas and ORSUs), navigation lock 
channel confluences, weirs, sluices and islands. 

Daily river temperature (°C) and flow (m3 s−1) for the study period were acquired 
from long term environmental monitoring assets on the river. Temperature data were 
provided by the UK Centre for Ecology and Hydrology (CEH) from their Wallingford 
station (NGR: SU 60900 90200). Temperature was measured using an ATP multi-thermo 
digital thermometer (ATP Instrumentation Ltd; Ashby-de-la-Zouch, UK). Information on 
flow and river levels was from the EA hydrometric gauging station at Sutton Courtenay 
(NGR: SU 51710 94619). To establish river water clarity levels, present during 
hydroacoustic and electric fishing surveys, routine data on turbidity were acquired. Water 
turbidity data are routinely measured by the EA in Nephelometric Turbidity Units (NTU) 
at Cleeve Lock, the site approximately 10 km downstream from Benson Lock. In 2014 and 
2015, between June and August, average NTU was 6.4 and 10.3, respectively. These values 
approximate to Secchi Disk depth readings of 50–70 cm [41]. 

2.5. Data Analysis 
Temporal and spatial variation in fish abundance were assessed for both 

hydroacoustics and boom-boat electric fishing data. Hydroacoustic fish density (fish 1000 
m−3) was calculated at both combined section and individual reach levels. Electric fishing 
abundance data are presented using catch per unit effort (number per minute) calculated 
from timed runs. 

Combined average annual density for the four reaches was calculated and a best fit 
5th order polynomial regression applied: 

y = ax5 − bx4 + cx3 − dx2 + ex − f (2) 

where y is fish density and x, years. Comparison of statistical variation between reaches 
for annual combined upstream and downstream transect fish density (fish 1000 m−3) was 
calculated using ANOVA analysis. 

Regression analysis on the average estimated acoustic density (single targets >−50 
dB) for each reach was also conducted and a best-fit smoother line applied using a LOESS 
two-step quadratic analysis. 

For electric fishing, data were combined across all reaches for all years. Fifth order 
polynomial best-fit regression lines were applied to both margin and mid-river locations 
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to indicate CPUE trend across the survey periods. For roach and bleak, the two most 
abundant species, best fit cubic regression analysis was conducted: 

y = ax3 + bx2 − cx + d (3) 

where y is CPUE and x, years. These species are typically located in mid-water and are 
therefore more acoustically visible than benthic dwelling fish. 

All acoustic density estimate values used in the study are geo-referenced in the form 
of latitude and longitudinal coordinates. This information provides x, y and z coordinates 
for mapping analysis. ArcGIS 10.4.1 (Environmental Systems Research Institute; 
Redlands, CA, USA) was used to model the location and value of all fish density data used 
in this study. Spatial interpolation was applied using an inverse distance weighting (IDW) 
three-dimensional surface raster contour model to create a continuous (or prediction) 
raster grid using density, latitude and longitude values. The modelling assumes that 
spatially distributed objects are spatially correlated with points close together having 
similar characteristics when compared to distant neighbours [42]. Predicted values were 
then assigned to locations within the raster dataset based on the measured value (fish 
density) of each data point and its linear distance to a defined number of nearest 
neighbours. Analysis was based on an exponential reduction in influence with distance, 
this applied to the nearest ten neighbourhood points. Contour lines connecting locations 
of equal value in the resultant surface raster dataset were then applied with an isoline 
spacing of 100 fish 1000 m−3. 

Habitat preference was assessed by plotting GIS contour clusters where fish density 
exceeded 500 fish 1000 m−3. Previous analysis on hydroacoustic data for the River Thames 
[43] using the method of [44] established an elementary distance sampling unit (EDSU) of 
100 m. This distance is large enough to avoid an auto-correlative interpretation of the data 
whilst small enough to capture the main spatial structure of the fish population. High 
density clusters (HDC) within 100 m were treated as a single ‘preferred’ location. HDC-
HDC centroid distance was calculated by using a geodesic calculation for the distance 
between two points on the surface of a spheroid [45]. Where more than one HDC was 
present within 100 m the IDW derived cluster with the greatest fish density was used to 
establish a single point location. 

ANOVA and T-test analysis was used to establish the presence of any statistically 
significant difference for temperature and flow between years with peak hydroacoustic 
fish density estimates and long-term average (LTA) data. 

3. Results 
3.1. Temporal Variation in Fish Density along the Study Section 
3.1.1. Hydroacoustics: Cyclical Variation, +/− LTA, Density Comparison with other 
Rivers 

A total of 5310 acoustic data files were analysed for the study period (1994–2018). 
These files represent the raw survey field data collections prior to post processing and 
analysis. 

Average (± 95% confidence limits) echo-counted hydroacoustic density for the study 
period was calculated for each reach (Reach 1 = 93.07 ± 8.81; Reach 2 = 87.16 ± 7.57; Reach 
3 = 83.62 ± 5.96; Reach 4 = 50.49 ± 2.94 fish 1000 m−3). These values compare with the long-
term average for mobile horizontal hydroacoustic surveys on large lowland UK Rivers of 
53.63 ± 21.53 fish 1000 m−3 [46]. 

Trend analysis of the fish density data (Figure 3) was conducted by applying a 5th 
order polynomial best-fit trend line to fish density average (±95% confidence limits). The 
coefficient of variation for this trend line was calculated as 0.3642, indicating that the data 
describe approximately 36% of the variation noted. The trend in variation describes a 
cyclical pattern of change during the study period with a peak to trough periodicity of 
approximately 6–7 years. Peak abundance was from 2008 to 2010 with relatively high 
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abundance also occurring in 1995, 2003 and 2015. In contrast, lowest annual average 
density was recorded in 2001, 2002, 2013 and 2017. 

 
Figure 3. Variation in average hydroacoustic fish density (±95% confidence limits) and marginal electric fishing catch per 
unit effort (number min.-1) sampling for bleak and roach during the study period (1994–2018) for combined reach data 
with best fit 5th order polynomial trend lines and calculated coefficient of determination applied.  

3.1.2. Electric Fishing: Species and Abundance Shift/Variation 
Roach and bleak were the dominant species, numerically, in the study section for 

both margin and mid-river boom-boat electric fishing surveys. The average contribution 
across all years of each species to the proportion of the total captured fish (number min−1) 
varied with capture location. To avoid temporal bias in species abundance, all data were 
standardised to the same time period using the maximal data available for both margin 
and mid-river surveys. For surveys conducted in the river margins, bleak contribute 
17.17% and roach 60.87%, to the total catch. Bleak and roach abundance for surveys 
conducted in the mid-river were 60.67% and 29.4%, respectively. The only other species 
that contribute greater than 2% to the captured population were chub and perch. In the 
margin samples, chub and perch contributed 4.29% and 9.20%, respectively. Chub and 
perch contributed 2.34% and 2.63%, respectively, to samples collected from mid-river 
surveys. River margin electric fishing surveys revealed species average size (fork length, 
mm) based on measured individuals: bleak = 85.41 ± 2.89 (Range = 20–192; n = 2531); roach 
= 116.52 ± 3.99 (Range = 20–337; n = 8975); chub = 186.17 ± 18.86 (Range = 38–550; n = 633); 
perch = 145.14 ± 7.04 (Range = 41–445; n = 1356). For mid-river electric fishing surveys 
(1994–2005) species average size (fork length, mm) based on measured individuals was: 
bleak = 90.09 ± 2.46 (Range = 21–196; n = 7254); roach = 132.86 ± 6.05 (Range = 27–347; n = 
3515); chub = 249.68 ± 22.09 (Range = 22–534; n = 280); perch = 164.33 ± 12.66 (Range = 44–
371; n = 314). 

Combined section variation in all-species abundance (CPUE) showed temporal 
cyclical change (Figure 4). Separate plots for surveys conducted in the river margins 
(1994–2018) and mid-river (1994–2005) illustrate the variation in fish capture between 
electric fishing locations. No electric fishing surveys were carried out in 1995. Results for 
river margin surveys show a bimodal distribution with peak abundance in 1997 and 2016. 
From 2004 to 2010, abundance is at a minimum. Data from the relatively time-limited mid-
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river surveys show a unimodal distribution, in which abundance peaked in 2000 and 2001 
with 2002–2005 having the lowest recorded values. 

 
Figure 4. Combined all reach variation in average annual catch per unit effort (number min−1; upper 
95% confidence limit) for margin and mid-river boom-boat electric fishing surveys conducted from 
1994 to 2018 with best fit 5th order polynomial trend lines and calculated coefficients of 
determination applied. 

Electric fishing boom boat results for combined section and survey location (margin 
and mid-river) analysis for roach and bleak are similar to an all-species analysis reflecting 
the dominant abundance of bleak and roach throughout the survey area. Bleak show a 
gradual decline in abundance (CPUE) from 2004 to 2009. From 2010, relative abundance 
increases sharply, reaching peak levels for the last year of the study period in 2018. A 
similar pattern of abundance (CPUE) change is seen for roach although the decline from 
1994 reaches a minimum in 2007. After 2007, a continual increase in abundance is seen 
and, as with bleak, reaches a maximum for the study period in 2018. 

3.2. Comparison of Annual Average Abundance Estimates for Hydroacoustics (Fish 1000 m−3) 
and Electric Fishing (Number Min−1) 

Results from the two fish survey methods applied in this study show a clear 
difference in the time series (1994–2018) for measures of fish abundance (Figure 3). 
Hydroacoustic annual average abundance shows a decline in both the early years (1994–
2002) and later years (2011–2018) of the study period. During the defined later years 
period, a single year increase in acoustic abundance was noted in 2015. The intervening 
period records elevated abundance levels reaching a peak in 2008–2009. In contrast, 
electric fishing shows elevated abundance for both early (1996–1999) and later (2011–2016) 
years with a corresponding low abundance period (2003–2010). 

3.3. Longitudinal Variation in Hydroacoustics Fish Density along the Study Section 
An Anderson–Darling normality test of data by reach and its transformation for 

subsequent one-way ANOVA analysis of the annual fish density means was conducted 
For all reaches, the null hypothesis of normality is rejected for the raw data (p < 0.05) (Table 
1). For the raw data, a log10 (x + 1) transformation was applied to achieve normality. The 
resultant normalised reach data was then explored for a range of survey periods to test 
for homogeneity of means (Table 2). When applied to the entire survey data period (1994–
2018), a one-way Anova test indicated no significant difference between reach mean 
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values. With F < Fcrit, we can accept H0: R1 (log x̄ +1) = R2 (log x̄ +1) = R3 (log x̄ +1) = R4 
(log x̄ +1). Further analysis focused on the period of maximal acoustic fish density (Figure 
2). No statistical significance between reaches at p = 0.05 was found when the same 
analysis was confined to the survey period 2008–2010. However, when applied to data for 
2009–2010, F > Fcrit and p < 0.05 resulted in a rejection of the null hypothesis (H0). 
confirming that for this data selection, a significant difference exists between reach mean 
density. 

Table 1. Anderson–Darling normality test results for average fish density at all four study reaches. 

Test Reach 1 Reach 2 Reach 3 Reach 4 
A-D2 1.94 1.62 1.16 1.37 

p <0.05 <0.05 <0.05 <0.05 
A-D2 log10 (x + 1) 0.14 0.38 0.20 0.25 

P log10 (x + 1) 0.97 0.39 0.87 0.72 

Table 2. One-way ANOVA results comparing reaches from three survey periods for average fish 
density with an applied log10 (x + 1) transformation. 

Survey Years (All Reaches) df F Fcrit p-Value 
1994–2018 99 0.642 2.699 0.589 
2008–2010 11 3.232 4.066 0.820 
2009–2010 7 7.179 6.591 0.044 

3.4. Comparison of Estimated Fish Densities Between Reaches 
Having established a period of clear spatial variation within the river at a reach scale, 

temporal analysis of data was conducted to establish if between year variation was 
present. Temporal deviation is greatest for the 2009–2010 period with Reach 4 showing a 
lower response in increased fish density when compared to Reaches 1–3 (Figure 5). 

 
Figure 5. Annual average fish density with a LOESS fitted smoother line (0.5; 2 step; quadratic) for 
each reach. 
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3.5. The Effect of Habitat Variation on Fish Density along the Study Reach 
Hydroacoustic long term average density for the study area (1994–2018) was 75.58 ± 

22.65 fish 1000 m−3. 
Habitat preference was assessed by plotting GIS contour clusters where fish density 

exceeded 500 fish 1000 m−3. A total of 40 HDCs were identified based on IDW 3D cluster 
analysis where cluster centroid >500 fish 1000 m-3. Applying a minimum elementary 
distance sampling unit (EDSU) of 100 m to the data resulted in a reduced number of 30 
HDCs present in the study reach after applying this minimum spacing distance (Figure 
6). 

 
Figure 6. Centroid locations of contour cluster single target fish density (>500 fish 1000−3) greater 
than 100 m centroid-centroid spacing derived from GIS modelled inverse distance weighted three-
dimensional analysis and location of channel habitat interrupting features (CHIF) for Abingdon 
Lock to Benson Lock (1994–2018). 

Location analysis of HDCs finds that the spread of clusters within the study area 
reveals an uneven distribution with Reach 3 (n = 13) recording the highest number of 
clusters and Reach 4 (n = 3) the fewest (Table 3). 

Table 3. Location clusters from Abingdon Lock to Benson Lock with the highest mean (± 95% CL) 
acoustic fish density based on three-dimensional inverse distance weighted spatial analysis for the 
period 1994–2018. 

Reach  
Cluster Density > 500 

Fish 1000 m−3 
Cluster Density Maximum 

(Fish 1000 m−3) 
Cluster Density 
(Mean ± 95%CL) 

1 7 1044.52 719.16 ± 139.64 
2 7 974.04 680.39 ± 120.35 
3 13 888.07 656.61 ± 51.82 
4 3 579.18 543.95 ± 77.80 

In Reach 1, HDCs were located predominantly upstream and downstream of 
Abingdon Bridge (NGR: SU 49957 96855). Other clusters were found immediately 
downstream of the US Culham Cut feature (NGR: SU 49767 94853). All clusters in Reach 
2 were upstream of Appleford Railway Bridge (NGR: SU 52657 94166), primarily located 
upstream and downstream of DS Culham Cut (SU 50999 94889) confluence. The 
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remaining location with significant HDCs were in Reach 3 between Clifton Hampden 
Bridge (SU 54715 95381) and adjacent to Orchid Lakes, Burcot (NGR: SU 57113 95502). 

A total of 21 significant channel habitat interrupting features (CHIF) were identified 
within the entire study reach: Type I: Bridges (n = 5); Type II: River tributary confluences 
(n = 2); Type III: Lotic off-river features (n = 2); Type IV: Navigation lock and backwater 
channel confluences (n = 7); Type V: Weirs and sluices (n = 4), islands (n = 1). A total of 12 
HDCs (Reach 1 = 6; Reach 2 = 2; Reach 3 = 3; Reach 4 = 1) showed a close spatial association 
with a CHIF, being within 100 m of the identified habitat feature (Table 4). The remaining 
18 HDCs were more than 100 m distance from any CHIF. 

Table 4. Reach habitat analysis showing the number of high-density clusters (HDC) <100 m of a 
channel interrupting habitat feature (CHIF). 

Metric Reach 1  Reach 2  Reach 3  Reach 4  
HDC (Type I CHIF)  1 0  2  0  
HDC (Type II CHIF)  1  0  0  0  
HDC (Type III CHIF)  1  0  0  0  
HDC (Type IV CHIF)  3  2  1  1  
HDC (Type V CHIF)  0  0  0  0  

Total   6 2 3 1 

Fourteen of the CHIFs had no HDC within 100 m (Table 5). 

Table 5. CHIFs without an associated (<100 m) HDC. 

Metric Reach 1 Reach 2 Reach 3 Reach 4 
CHIF (Type I): absent HDC   0 2 0 1 
CHIF (Type II): absent HDC   1 0 0 1 
CHIF (Type III): absent HDC   0 0 0 1 
CHIF (Type IV): absent HDC   2 1 1 1 
CHIF (Type V): absent HDC   1 0 1 1 

Total 4 3 2 5 

3.6. The Impact of Temperature and Flow on Fish Abundance 
River flow, levels and temperature were examined for potential impact on recorded 

fish densities. High summer flows on the Thames are unusual; however, particularly high 
flow events occurred in 2007 and 2012 between June and August (Figure 7). Only the 2007 
event was of sufficient river water level height at 4.44 m above stage datum (ASD) to cause 
‘out of bank’ conditions. Following the 2007 peak, high mean hydroacoustic fish densities 
were recorded in 2008–2010. However, no such peak immediately followed the 2012 
summer event. 
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Figure 7. Graph showing the variation in annual hydroacoustic fish density (all reaches—fish 1000 
m−3) with mean daily flows (m3 s−1) for June, July and August from 1994 to 2018. 

One-way ANOVA analysis comparing temperatures in 2007 and 2008 with 2012 and 
2013 during the warmest months, when growth and recruitment are maximal (May–
September), revealed no significant difference (p > 0.05; df =18) between periods. ANOVA 
analysis comparing the main overwintering periods (November–March) for 2007/2008 
and 2012/2013 and the long term average (LTA) for the same months revealed a 
statistically significant difference (p < 0.05; df = 13) in water temperature (Figure 8) 
between the periods. The earlier period was found to be statistically similar to the LTA, 
with the later period significant colder than the LTA. Confirmation was provided by 
conducting a t-test comparing temperature for 2007–2008 with 2012–2013 only for this 
overwintering period which showed a statistically significant difference (p < 0.05; df = 5). 

 
Figure 8. Variation in temperature (maximum, minimum, median, mean, 1st and 3rd quartiles) 
between two overwintering (November–March) time periods after high summer flows and the long-
term average (LTA). 
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ANOVA analysis for flow to compare the same overwintering period revealed a 
statistically significant difference (p < 0.05; df =14) between monthly recorded LTA river 
flow and flows recorded in 2007–2008 and 2012–2013 (Figure 9). A t-test comparing 
monthly average flows for 2007–2008 with 2012–2013 for this overwintering period shows 
a statistically significant difference (p < 0.05; df = 7). 

 
Figure 9. Variation in flow (maximum, minimum, median, mean, 1st and 3rd quartiles) between 
two overwintering (November–March) time periods and the long-term average (LTA). 

One further difference between the two identified periods (2008–2010; 2012–2013) 
was floodplain inundation triggered by ‘out of bank’ river levels (river levels >3.51 m ASD 
at Sutton Courtenay, located in the middle of the study area, are regarded as ‘out of bank’ 
events). This occurred during the high summer flow event in 2007 and November and 
December 2012. To put this into context, during the entire study period, the river was out 
of bank on ten occasions. Of these, only once has this occurred outside of Nov–Mar and 
this was the July 2007 event when the highest recorded river level was 4.44 m ASD. 

4. Discussion 
4.1. Value of Long Term Regular Monitoring 

Shifting baseline syndrome [47,48] occurs when conditions of the natural 
environment gradually degrade over time, yet local residents, natural resource users and 
policy makers falsely perceive less change because they do not know, or fail to recall 
accurately, how the natural environment was in the past. This may result from a lack of 
data on the natural environment, this study showing the value of consistent long term 
data collection and the potential errors in the extrapolation of limited temporal data. 

Large rivers have a wide range of natural and anthropogenic environmental 
influences on the resident fish populations, which may result in spatial and temporal 
change in abundance. The density and distribution of lowland river fishes varies by 
season and time of day and is influenced by a range of abiotic, biotic and behavioral 
factors such as temperature, oxygen concentration, and vertical distribution of predators 
and prey [49]. For a monitoring programme to be effective, successful and sustainable 
over the longer term, it must not only be ecologically relevant and statisically credible, but 
also cost efficient [28]. The use of hydroacoustics in both this study, and elsewhere on 
large UK rivers, has shown the method to be both efficient and effective. The collection of 
quantitative data from up to 30 km of river in a single night, using a non-invasive 
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approach, is not possible with other fisheries survey methods. However, whilst 
hydroacoustic sampling is a powerful tool that delivers cost effective quantitative 
information on fish populations over many kilometres of river, it is not a universal 
panacea for large river monitoring, its main drawback being the absence of species 
information. To achieve this level of detail on large rivers and lakes, a multi-method 
approach is needed to both encompass the complex species–habitat interactions and 
spatially diverse fish populations. In this study, the use of boom boat electric fishing 
provided a suitable complementary method, providing valuable information on species 
composition, morphometric distribution and ageing analysis. 

The TWARP hydroacoustics monitoring programme [50] that forms the basis of the 
current study conformed to both CEN and UK standards of mobile hydrocoustics 
monitoring [4,50]. With all surveys completed in July, this provided temporal consistency 
throughout the entire study period. In isolation, a single survey provides a simple 
snapshot of the current situation with no historic temporal or spatial context. To achieve 
a representative understanding of population variation, this study has shown a 
requirement for long term data on both the biota of interest and environmental change, 
and that, ideally, such data is continuous rather than sporadic to account for inter-annual 
variation and step change in magnitude. 

Hydroacoustic data presented in the current study show both a cyclical pattern and 
inter-annual step change in fish abundance, as measured by single target density. The 
cyclical pattern described reveals a 6–7 year periodicity between maximum and minimum 
estimates. A closer analysis shows that apex points vary both in magnitude and their 
relationship with previous and subsequent years. Step changes, adjacent years with wide 
disparity in abundance estimate, were found on five occasions. Each occasion had an 
increase or decrease at least double the adjacent year. The greatest step change was seen 
between 2007 and 2008 with the latter having an abundance over five times the preceding 
year. Where sufficient data exist, periodicity is commonplace in biological studies, yet 
monitoring programmes designed to establish a baseline often fail to meet this basic data 
resolution requirement. This study demonstrates that the interval during which data are 
collected will have a significant effect on the understanding of the current state of the 
population or environment in a historical context. Interpretation that a population is 
increasing, decreasing or stable, are all possible scenarios for monitoring programmes of 
less duration than the established periodicity. Management decisions that directly 
influence significant financial expenditure are too often based on this limited, and likely 
erroneous, information. 

Hydroacoustic monitoring studies, both short and long term, for both lakes [51] and 
rivers often show an absence of a standardised methodology across all surveys either from 
different uncalibrated equipment deployed or variation in survey design between years 
and location. In contrast, the current study is a rare example of the long-term deployment 
of horizontal hydroacoustics using a standard approach to data collection, for all surveys. 
Where equipment changes occurred, intercalibration was conducted to preserve data 
continuity. Quality assurance of data is an essential component to ensure the reliability 
and quality of survey results particularly where repeatability is required [52]. A 
standardised approach to hydroacoustic data collection is a desirable component towards 
confidence in data comparison derived from a regular monitoring programme [4,53]. 

Other long term regular monitoring of large river multi-species populations in the 
UK is normally conducted using either electric fishing, netting or angler-catch methods: 
for instance, the Suffolk Stour [54], which has one of the most comprehensive fish 
monitoring programmes using electric fishing, with good numbers of sites monitored at 
regular, frequent intervals over a 40-year period. Data from this programme have also 
identified clear cycles in abundance of various fish species as well as longer term trends 
in abundance for others. 
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4.2. Fish Abundance and Size Structure of the Population 
Locating fish to establish their spatial abundance is dependent on two factors: the 

presence of individuals and the efficacy of detection by the chosen method, whether 
invasive such as electric fishing or non-invasive with hydroacoustics. This study confirms 
that mobile hydroacoustics is a cost-effective method for river reach level data collection 
although in common with all sampling methods, an understanding of limitations and 
challenges is essential to ensure robust, comparable data acquisition. A wide variety of 
behavioural patterns, with the potential to influence observed acoustic measurements of 
fish abundance, occur. Within lowland river systems, longitudinal, lateral and vertical 
movements are common for many of the species considered, on both seasonal and diel 
scales, and are affected by a wide variety of factors [49]. The life strategy of most fish has 
a requirement to change location which can be considered a behavioral response to 
internal and external stimuli acting on an individual. These have the potential to influence 
observed acoustic measurements of fish abundance. 

Temperature is the major factor limiting distribution and behaviour [55] for 
poikilothermic animals, such as fish. It also plays a critical part in growth, which has direct 
consequences on the overwintering survival chances of fish; particularly, young of year 
fish in rivers [56]. Often the most numerous cohort in the fish population in the subsequent 
year, these fish, where detected, contribute a significant proportion of the total estimated 
fish density. In this study, it is of particular importance for the hydroacoustic data as the 
dominant pelagic species, bleak and roach, attain an acoustically ‘visible’ size in their 
second year. Flow also has an important role in fish ecology, both direct and indirect. 
Flowing water brings food, but it also imposes an energetic cost principally from 
hydrodynamic impacts. Such impacts are ameliorated by the presence of channel habitat 
that interrupts laminar flow. In regulated lowland rivers such as the Thames, features are 
often man-made and of limited availability. For many reaches, including those within the 
study area, the situation is further complicated, particularly where meanders or weir 
impoundment occurs, as here, the flow dynamics can be minimal and the habitat more 
akin to a lentic environment. Light is used by fish as a stimulus for timing diurnal and 
seasonal rhythms. Hydroacoustic surveys on the Rivers Trent and Thames [21,22] 
observed a significant difference in the spatial distribution of fish between day and night. 
This variation has also been established in lake environments [57,58]. Applying this 
evidence, our study followed the best practice approach, conducting all surveys between 
one hour after dusk and one hour before dawn. 

From the available hydroacoustic data, the fish population in this study shows a 
pattern of spatial heterogeneity often found in other large lowland rivers [59]. Whilst 
concentrations of fish were present and often associated with in channel habitat features, 
this association was not universal. Only 40% of the locations with historic high fish density 
(HDCs) were closely (<100 m) associated with an identified habitat feature (CHIF). The 
association between high fish density and habitat features was weakest in Reach 4. Here, 
only 20% of the channel interrupting habitat features were associated with high fish 
density clusters. However, this reach had the lowest fish abundance in the study area, and 
therefore the weak association noted may simply reflect the lack of fish present to occupy 
the available habitat. The hydroacoustic surveys used in this study were all conducted in 
July. At this time of the year water temperature is relatively high, flows are at or near their 
lowest, and water turbidity is typically 6–10 NTU, providing a relatively clear water 
column for a large lowland river. The requirement for active fish in a relatively benign 
environment to seek shelter is lower than other times of year when reduced physiological 
activity and strong currents will necessitate the need to seek shelter. As well as 
longitudinal spacing along a river, the vertical distribution of fish within the water column 
is critical to establishing a representative knowledge of the population. For 
hydroacoustics, it is important that surveys are conducted where the target species are 
‘visible’ and not close to riverbed and bank boundaries. Both cyprinids and percids, 
particularly during juvenile life stages, are associated with mid-water pelagic existence, 
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especially during the hours of darkness. It is therefore a reasonable assumption that the 
two most abundant species considered in this study, bleak and roach, are the main 
contributors to estimating acoustic abundance. Movement away from riverbed and bank 
boundaries may equally be reflected in distancing from identified habitat features. 
Environmental conditions during the surveys, combined with the behaviour of those 
cohorts that contribute a greater proportion of the total estimated abundance, is likely to 
cause an underestimate of the association between fish and habitat. 

Fish aspect is an important factor in determining the proportion of the population 
acoustically ‘visible’ within the study reach. Previous studies on rivers show that most 
fish swim along the longitudinal axis of the river upstream or downstream [60,61]. Using 
a regression model [40] for converting acoustic size to fish (combined cyprinid and perch) 
length, a −50 dB minimum threshold setting will detect fish insonified in side-aspect 
orientation to the acoustic axis at 40.7 mm. Using the approach of [62], application of the 
von Bertalanffy growth model estimates of fish length at the end of their first year were 
calculated for the most common species found in the study reach. Scale age data for the 
Thames indicate that resident fish exhibit relatively slow growth rates, relative to a 
reference dataset collected from 130 UK river fisheries. From this information, the ‘slow’ 
growth curve parameters presented in [62], were selected which indicate bleak at the end 
of their first year are expected to attain a fork length of 32.1 mm. For roach, chub and perch 
attainment lengths are 32.0 mm, 39.4 mm and 48.7 mm, respectively. It is therefore 
assumed that the young of year for these species do not contribute in any significance to 
acoustic abundance estimates, particularly as the hydroacoustic surveys were normally 
carried out in July, only part way through the growing season. Capture data from this 
study show that only 1.32% of bleak and 0.75% of roach were shorter than the acoustic 
minimum threshold value. However, boom boat electric fishing in a large river 
environment does not sample very small fish efficiently and will greatly underestimate 
the absolute and relative abundance of young of year cyprinids. Capture by electric 
fishing of 0+ fish will be biased towards the larger members of the cohort and so it is not 
possible to estimate the true size-structure of that cohort 

A recent study [63] describes the effect of target strength oscillations, generated by 
surface or bottom-induced sound multi-pathing, as a potential source for serious errors in 
estimates of fish abundance and biomass in horizontal acoustic surveys of extremely 
shallow inland waters (depth 1.7–2 m). Errors can be reduced by avoiding phase 
boundaries, restricting the maximum usable range (MUR) to ~10 m from the transducer 
face, and using narrow beams with low side-lobes. The dual-beam deployed from 1994–
2002 had circular beam opening angles of 6°/15° (narrow/wide beams), and analysis 
ranges were up to 24 m. The split-beam equipment used from 2002 included low side-lobe 
4° × 10° elliptical transducers and is better designed for use in shallow waters. Average 
MUR ranged from 8.8 to 10.9 m (from 2015 survey) over the four reaches and the section 
of the River Thames covered in this study is predominately greater than 2.5 m deep, 
thereby reducing the likelihood of TS oscillations and gross errors in fish abundance 
estimates. 

4.3. Divergence of Results from Marginal Electric Fishing and Mid-River Hydroacoustics 
Within the study period, patterns of overall fish abundance derived from boom boat 

electric fishing surveys of margin waters, differed from those from the mid-river 
hydroacoustic surveys, contrasting with other periods, where broad agreement occurred. 

We consider that the variation in spatial distribution between margin and mid-river 
of roach and bleak as shown from electric fishing captures is a plausible reason for the 
difference we see in patterns of overall fish abundance derived from the hydroacoustics 
(that primarily samples mid-river, mid-water) and from the margin boom boat surveys. 
In most years, the mid-river fish community is dominated by bleak, and therefore, a 
likelihood that estimates of overall fish abundance from hydroacoustics will diverge from 
those estimated from margin electric fishing. Boom boat operators have observed large 



Water 2021, 13, 2932 18 of 23 
 

 

numbers of bleak, avoiding the channel-side limit of the electric field and veering into the 
middle of the river [64]. This would suggest that overall bleak abundance in the Thames 
is significantly underestimated in the margin electric fishing CPUE results. In contrast, 
bleak were the dominant species mid-river in precisely the location targeted by acoustic 
survey, further compounding the differences in the two abundance estimates. 

Length-frequency data from margin fished boom boat data, weighted according to 
total fishing time, indicate annual patterns of abundance for bleak and roach are very 
similar, notwithstanding that in most years, roach catches are higher than those for bleak. 
This disparity in capture numbers is expected, the electric fishing data clearly showing a 
higher proportion of roach captures in the river margins. The years 1994, 1995 and 2016 
were good recruitment years for both species. Difference in cohort strength were also 
noted with roach showing strong recruitment in 2004 and 2005. For bleak, the 
identification of prominent year classes based on length-frequency from electric fishing 
catches is a challenge in the Thames as the species is prolific in most years, unlike some 
species that only recruit strongly every so many years. Whilst we were able to determine 
from the data that 2013 and 2017 were good recruitment years, cohort strength is less 
variable than for longer lived species, including roach. For bleak, we contend that 
influences on survey data from sampling environmental conditions such as wind speed, 
rainfall, moon phase, illumination, are at least as important in acoustic abundance 
estimation. Boat avoidance factors and minimal variation in acoustic beam orientation are 
also sources of influence on data collection. Thirdly, instantaneous spatial distribution 
both vertically in the water column and longitudinally along the river of a highly mobile 
and shoaling species are also important considerations. Caution with data interpretation 
is required due to variation in spatial preference between the two species. Whilst roach 
dominate margin locations from where recruitment assessment data is derived, bleak 
show a distinct spatial bias towards mid-river. The impact of sub-optimal sampling 
habitat for bleak is considered a potential source of error particularly for representative 
cohort apportionment. 

Scale age data from the study indicate that for the early cohorts, roach and bleak are 
similar in length. Electric fishing catches are dominated by fish of between 70 and 120 mm 
length, with growth analysis indicating bleak ages to be 2+, 3+ and 4+. Roach catches are 
largely dominated by 3+ and 4+ fish. A comparison of the length-frequency growth 
information with scale age data suggests that these species are not sampled 
representatively by boom boat electric fishing until three or four years old. In contrast, the 
hydroacoustic surveys will detect small cyprinids c. 40 mm, i.e., 1+ fish. The 1+ roach and 
bleak will therefore present in the hydroacoustic surveys perhaps two or three years 
before the same cohort is caught efficiently by the boom boat. Within a balanced fishery, 
these early cohorts will represent a high proportion of the total fish population and their 
presence or absence likely to have a significant impact on abundance estimates. We 
hypothesise that the lag in the peaks of abundance noted in this study between the results 
from the two survey methods is due primarily to size-selectivity rather than species 
selectivity. 

4.4. What Might Have Driven the Apparent Increase in Total Fish Abundance in the Late 
2000s? 

Large rivers across Europe, such as the Thames, have been modified for a range of 
reasons including flood mitigation and navigation. Hydrological connection, where 
present, is typically in the form of artificial canals or man-made lakes constructed for 
navigation, drainage or fisheries. Such interventions commonly result in a channelised 
river largely separate from its natural floodplain [65]. A study [66] on the impact of human 
pressures on fish assemblages found that even eurytopic species, such as roach and bleak, 
considered relatively robust to anthropomorphic environmental pressure, are impacted 
negatively in that situation. Increased velocity in river margins with impoverished habitat 
limits recruitment opportunities, and at times of flood, particularly in the colder months, 
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there is an increased likelihood of downstream drift and washout, especially for juvenile 
life stages. In rivers such as the Thames where these conditions exist, habitat features that 
provide structure to mitigate flow velocity extremes are important for fish recruitment. 

Occasionally, most often during winter, ‘out of bank’ flood events result in a 
temporary reconnection between the main channel and its floodplain. By comparison, 
summer ‘out of bank’ conditions are relatively rare events. During the twenty-five years 
of this study, ten ‘out of bank’ events were recorded, of which only a single event occurred 
during the summer months. River channel connection with its floodplain persisted for just 
ten days during this unique event. Relating flow and temperature events to hydroacoustic 
fish densities; the summer 2007 inundation was followed by average winter flows and 
temperatures, with very high fish densities in subsequent years. In contrast, the 2012 event 
remained in bank and was followed by cold winter floods, with fish densities in 
subsequent years showing no obvious increase. 

In relatively unmodified floodplain rivers, in temperate regions, high spring and 
summer flows that result in prolonged floodplain inundation are considered beneficial 
for fish recruitment. Floodplain water bodies provide warm, shallow, low velocity 
habitats, ideal for spawning of phytophilic and eurytopic species and for early larval and 
fry growth of all species [67–69], and often rich in food items emanating from nutrients in 
floodplain soils. 

In heavily modified rivers where the floodplains are largely disconnected from the 
main channel, such summer flood events can, perversely, have negative impacts on fish 
communities. Where rivers are straightened and embanked, water velocities at high flows 
will rise often far beyond the swimming capabilities of juvenile fish before the banks 
overtop and floodplains are inundated. When fish can access the flooded land, they may 
die due to asphyxia from terrestrial vegetation that dies and rots when submerged for 
more than a few days; in addition, any surviving fish may not be able to move back into 
the main channel when waters recede, due to flood banks and associated control 
structures [70]. However, where floodplain inundation occurs in a way such that fish are 
able to access the floodplain on a rising river, and where natural, unimpeded drainage 
back to the main channel is possible as the flood recedes, in such instances, summer floods 
can be beneficial and fish species may take opportunistic advantage to boost recruitment. 
It is hypothesized that this may have happened on the middle Thames in 2007 and 
resulted in a general increase in the abundance of roach and bleak, in particular, in the 
years following the summer 2007 floods. This is in contrast to other rivers, where fish 
populations declined significantly in the wake of that event and remained generally lower 
than previously, such as the Nidd in Yorkshire, and the Upper Thames where there was 
a decrease in overall fish abundance in mid-late 2000s followed by a recovery [71]. 

This study shows a clear increase in annual hydroacoustic fish abundance in the three 
years after the 2007 ‘out of bank’ summer event. This response is most obvious in those 
reaches (1–3) where floodplain access is greatest. Flood risk modelling [72] indicates that 
the river between Reach 1 and Reach 3 has substantially greater spatial opportunity for 
floodplain connection as measured by floodplain hectare per river kilometer during high 
(1:20 and 1:100) flow events compared to Reach 4 (43–65% of the others). Natural topology 
in Reach 4 also results in greater constraint of the river channel when compared with the 
upstream reaches. The difference in floodplain access correlates with the inter-reach 
variation, in response to the 2007 summer ‘out of bank’ event. Data for Reach 4 clearly 
show a suppressed response in subsequent years (2008–2010) when compared with the 
fish density increase seen in the three upstream reaches. However, age and length data, 
from electric fishing surveys, do not support the assertion that 2007 was particularly good 
for recruitment, rather that there were strong year classes originating in the early 2000s. 
In addition to this summer flood event, the other environmental factor considered is 
overwintering survival. Both preceding and subsequent winters were of average 
temperature and flow when compared to the entire study period; conditions therefore 
would not likely convey any obvious advantage or disadvantage when compared to other 
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years in the study period. We tentatively hypothesise that the summer 2007 floodplain 
inundation may have benefited cohorts of roach and bleak from preceding years by 
providing rich summer feeding areas, indicated by increases observed in acoustic 
abundance during subsequent years. Determining the role and relative influence of these 
various environmental factors on cohort recruitment and survival, requires further site-
specific study. 

5. Conclusions 
Understanding both the value and limitations of data collected to meet 

environmental monitoring requirements are critical considerations for an appropriate 
application to evidence-led fisheries management. 

This study demonstrates the practicality and benefits of long-term, standardised 
hydroacoustic surveying supported by supplementary boom-boat surveys in large, 
managed, lowland river systems where other methods are unsuitable and destructive 
sampling is unacceptable. This in turn has identified cyclical patterns in fish abundance 
with long periodicity previously identified in small UK rivers. 

This Thames time-series dataset will provide local fisheries managers with a 
comprehensive baseline to determine potential impacts of local and national 
infrastructure projects on fish populations, such as large-scale abstraction for storage 
(Thames Water Abingdon Reservoir Proposal), water transfer schemes (Severn-Thames 
Transfer) and low-head hydroelectric facilities such as the recently commissioned 
Archimedes turbines at Culham. It is also hoped that the benefits of large, landscape-scale 
floodplain improvements, such as the Earth Trusts two ‘River of Life’ schemes, can be 
quantified. 

In determining future survey work, the current study offers broad guidance on 
existing knowledge gaps and where targeted small-scale high-resolution sampling may 
be beneficial. Further research is recommended on the hypothesised benefits of summer 
inundation events accrued under conditions of longitudinal connectivity with subsequent 
benign winter flows and temperatures. 
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