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Abstract: Model-based and data-driven methods are commonly used in leak location strategies
in water distribution networks. This paper formulates a hybrid methodology in two stages that
complements the advantages and disadvantages of data-driven and model-based strategies. In
the first stage, a support vector machine multiclass classifier is used to reduce the search space for
the leak location task. In the second stage, leak location task is formulated as an inverse problem,
and solved using a variation of the differential evolution algorithm called topological differential
evolution. The robustness of the method is tested considering measurement and varying demand
uncertainty conditions ranging from 5 to 15% of node nominal demands. The performance of the
hybrid method is compared to the support vector machine classifier and topological differential
evolution approaches as standalone methods of leak location. The hybrid proposal shows higher
performance in terms of location accuracy, zone size, and computational load.

Keywords: leak zone location; data-driven and model-based methods

1. Introduction

Water, a vital resource for humanity, plays multiple roles in everyday life: ranging
from drinking water consumption to the fulfilment of daily tasks. Aiming to guarantee a
ready supply of water for the continuously expanding urban areas, bigger and more convo-
luted water distribution networks (WDNs) have been implemented. As these distribution
systems grow in size and complexity, the task of monitoring and diagnosing faults in their
behaviour becomes more complex [1]. Leaks and pipe bursts are a common anomalous
state in WDNs that generate significant waste worldwide in terms of water losses, wasted
energy, and maintenance costs. As an average, 30% of the water pumped into urban areas
is lost due to unattended leaks [2], in some cases reaching nearly 50% of the water pumped.
Leaks can be classified into background leaks or pipe bursts [3]. Background leaks are
commonly small in size and their effect is nearly imperceptible; therefore they represent
a small percentage of water losses. Pipe bursts, on the other hand, are leaks of a bigger
size and impact which can cause pressure drops in the network. These are the main cause
of water losses in WDNs and its location is a current scientific problem that occupies the
attention of several research groups in the world.

In order to detect the presence of a leak in a pipeline or set of pipes, hardware-oriented
methods are employed. These are characterized by the use of specialized equipment based
on infrared sensors, CCTV cameras, moisture sensors and, the most common, acoustic
sensors, among others [2,4,5]. The analysis of the transient dynamics logged by most of
these technologies allows an exact estimation of the leak location, and sometimes size [6,7].
The development in data logging technologies through wireless sensor networking and
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the internet of things have rendered hardware-based leak location technologies more
accesible [8]; however, the pipeline-level nature of these hardware-oriented methods re-
duces them to a local use. Employing these technologies to locate a leak by exploring a
large area would be time consuming and result in high operational costs. Therefore, the
exploration of every potential leak pipe in a WDN would be prohibitive [9].

Higher scale software-based leak location approaches have therefore been devel-
oped by several authors using the operational variables (i.e., pressures and flows) in the
network [10–18]. These approaches have received significant attention due to the increas-
ing development and accessibility of SCADA systems, as well as other data acquisition
technologies. Software-based leak diagnosis methodologies can be classified into two
distinct groups: model-based strategies [15,16], and data-driven approaches [10,11,14].
Hybrid solutions have also been proposed by combining data-driven and model-based
approaches [17].

Model-based strategies are centered around a mathematical model of the WDN that
describes the relationship between its operational variables, taking into account the net-
work’s structure (topological layout, pipe dimensions, etc.). Leak diagnosis is then effected
by comparing the model outputs with the measured variables in the network. Quiñones-
Grueiro et al. [15] and Steffelbauer et al. [19] formulate the leak location task as an inverse
problem, and identify the location of the leak by finding the optimum network parameters
that maximize the similarities between the model output and the measured leak sample.
The resulting optimization problem is then solved using the differential evolution (DE)
algorithm in [19]; and a modified version of DE which considers the topological char-
acteristics of the network is used in [15]. Li et al. [18] propose a more direct approach,
using the network model to generate a set of sensitivity matrixes that characterize several
leak scenarios in the network. The similarity between the leak samples and the simulated
samples in the sensitivity matrixes is then evaluated in order to identify the simulation
conditions (leak location and size) of the most similar simulated scenarios.

Model-based leak diagnosis strategies do not require historical data of all the net-
work modes, i.e., leaks of different sizes and locations. However, a model of the WDN
is not always available, and its development may be too expensive or complex. Further-
more, the quality of these approaches depends directly on proper model calibration [16];
which should include the modeling of uncertainties like variations in consumer demands,
variations in pipe roughness and diameters due to old age, and sensor accuracy and noise.

Data-driven methodologies take advantage from the historical data from the net-
work and develop data analysis strategies. These may include statistical analysis such as
process control charts [10]; however, an increase in the use of machine-learning-oriented
methodologies has taken place in the past years [11,14,20,21]. Romero et al. [14] and
Zhou et al. [12] define the leak location as a classification problem, and solve it using deep
learning techniques. Chen et al. [13] and Shekofteh et al. [22] implement random forests
(RF) and artificial neural networks (ANNs), respectively, to solve the leak location problem
as a hierarchical classification problem. Sun et al. [21] estimate the pressure values in
every node of the network by applying Kriging spatial interpolation [23]. These estimated
pressure values are then used to locate the leak applying linear discriminant analysis
(LDA) and ANNs as classifiers. Other machine learning techniques have been used such as
support vector machines (SVMs) [11,20] and Gaussian process regression [24].

On the contrary of the model-based approaches, data-driven methodologies only
require knowledge of the structural properties of the network and historical data from
a representative set of network operational modes. However, this advantage doubles as
an obstacle, since historical data of all the network modes is rarely available. Therefore,
synthetic data generated by a network model is often used for training these data-driven
methodologies [11–13].

Moser et al. [17] present a hybrid strategy named error-domain model falsification,
which diagnoses the leak sample by comparing it to a set of model predictions. This
comparison is effected against a threshold that characterizes the variations (uncertainties) in
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the network operational variables. This decision thresholds are generated from a statistical
analysis of historical data. Chen et al. [13] and Zhang et al. [20] use clustering algorithms
based on sensitivity matrixes generated by network models to group the network nodes
into zones before locating the leaks.

A leak can appear in any location in the network. However, it is an accepted as-
sumption in software-based methodologies to estimate the leak location strictly as a
node [11,12,25]. This simplification of the leak location problem has nevertheless been
insufficient due to the inherent uncertainties in the WDN operational variables; and the fact
that, in most networks, the number of sensors is significantly smaller than the number of
nodes. Therefore, finding the exact leak node with high accuracy is a difficult task. Several
works have estimated a zone (a group of network nodes) instead of a single node as a leak
location [11–13,15,20]. This increase in potential location size further simplifies the leak
diagnosis, allowing higher performance. Once the location of the leak has been estimated
to a relatively small area, hardware-oriented technologies can be used in order to identify
the exact location of the leak at pipeline level.

Clustering is often used for generating the zones in the network. Zhang et al. [20]
and Chen et al. [13], for example, use k-means clustering to group the network nodes
with similar leak patterns by analyzing a sensitivity matrix. Quinones-Grueiro et al. [11],
however, use k-medoids clustering to group the nodes according to their topological
characteristics (shortest pipe distances between network nodes). Another zone generation
approach consists in selecting multiple ranking candidates from a final solution. Such is
the case of Zhou et al. [12] who, through a neural-network-based methodology, produces
a location probability for every node in the WDN. The top 5 nodes with the highest leak
location probabilities are then selected as the potential leak zone location. The topological
characteristics of the network are also considered for leak zone generation by including the
area near the estimated leak node. Quiñones-Grueiro et al. [15] construct a zone by also
considering the nodes neighboring the identified leak node as potential leak locations. A
neighboring node is defined as connected to the initial estimated location node through a
single pipe (regardless of the pipe length). Li et al. [18] analyse the relationship between
zone size and location accuracy by generating a zone with the nodes that fall within a
threshold pipe distance (defined as the total pipe length in the shortest path between two
nodes) from the initial estimated location. As expected, a higher pipe distance threshold
reduces the estimated location size while increasing the accuracy of the location strategy.

The main goal of this work, and its main contribution, is the proposition of a hybrid
methodology for the location of leaks in WDNs. This methodology consists of two stages:
an initial data-driven stage in which a subzone of the WDN is identified as a potential leak
location by means of a multiclass SVM classifier; and a second stage that improves the leak
location estimated in the first stage through a model-based approach. This second stage
is formulated as an inverse problem, and it is solved using a variation of the Differential
Evolution (DE) algorithm called Topological Differential Evolution (TDE). The first stage
is meant to work as a search space reduction for the inverse problem. This search space
reduction is expected to improve leak location performance and reduce computational cost.

The proposed methodology is tested under different demand uncertainty conditions
using the hydraulic model of the WDN in the city of Modena, Italy. The performance of
the hybrid method is compared to the SVM classifier and TDE approaches independently
as standalone methodologies.

This paper is structured as follows: Section 2 presents the theoretical bases for this
study, as well as the methodology proposed for the location of leaks. Section 3 presents
the Modena WDN as case study to evaluate the proposed strategy; furthermore, the
characteristics of the developed simulations are detailed, and experimental design is
explained. In Section 4, test results are presented and discussed, and the proposed method
is compared to other leak location approaches. Finally, conclusions and recommendations
for future works are presented.
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2. Materials and Methods
2.1. Network Modeling

The hydraulic model of a WDN requires previous knowledge of its topological char-
acteristics, as well as a detailed account of the physical principles that rule its behaviour.
An approximated mathematical model can be developed based on the mass and energy
balance equations of the network, assuming that flows are stationary, incompressible and
permanent; constant fluid density is also assumed. This model is based around two main
elements: pipes or links, which represent actual pipelines; and network nodes, or junctions,
which represent important consumer takes, output and entry points in the network, and
connections between pipes.

The steady-state mathematical model of a WDN is described by a set of equations
based on the associated physical laws. The flow dynamics in the jth node of the network
are modeled as follows [26]:

nj

∑
i=1

qin
ij −

nj

∑
i=1

qout
ij = dj ; f or j = 1, 2 . . . NT ; (1)

where NT is the number of nodes in the WDN, nj is the number of pipes connected to node
j, qin

ij and qout
ij represent input and output flow, respectively, at node j through pipe i, and

dj represents the consumer’s demand at the node.
The energy balance equations of the model are formalized as follows:

∆H =
E

∑
e=1

he +
F

∑
f=1

h f , (2)

which states that the head difference ∆H between any two nodes in the network is always
the same for every path between the two nodes [26]. With he being the head drops
associated with E elements in the path and h f representing head lifts in F elements along
the path. The head-flow relationship model in a pipe has been defined in different ways.
Darcy-Weisbach’s and Hazen-Williams’s, presented below, are the most common:

hd = Rq$ , (3)

where q is the flow in the pipe and hd is the head drop. R is a coefficient that depends on
the model used, which summarizes several network characteristics like pipe dimensions
and roughness coefficients; and $ usually has a value close to 2 [26].

Leaks are modeled as pressure-driven aggregated demands in the nearest node; the
node flow dynamic presented in (1) is then redefined for the leak node l as:

nl

∑
i=1

qil = dl + fl ; fl = Echξ
l ; (4)

where ξ = 0.5 [27], hl is the pressure head at node l, and Ec is an emitter coefficient, which
summarizes the leak dimensions.

2.2. Leak Location Methodology

The methodology proposed for leak location is presented in Figure 1. A previous leak
detection step is assumed following any of the procedures found in the literature [9,15,17,28];
therefore, only leaks detectable by the sensors installed in the network will be located.
A set of measured hydraulic variables m ∈ <ns represents each of the leak samples,
with ns being the number of sensors (S) installed in the network. The estimated leak
location is generated in two consecutive stages: On the first stage, the WDN is partitioned
into a set of candidate leak zones using agglomerative clustering [29], and taking into
account the topological relationships between network nodes, presented in Λ ∈ <NT×NT . A
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previously trained SVM multiclass classifier, combined with Bayes temporal reasoning [30],
is then used to estimate a potential leak zone ZC. In this stage, a potential leak size range
ECrange = [Ecmin, Ecmax] is also estimated for each sample; and an analysis of dominant
sensors (Sd) is effected based on the estimated leak zone ZC. On the second stage, an
estimated leak node is generated as the solution of an inverse problem using Topological
Differential Evolution (TDE) [15], with ZC and ECrange as search space restrictions. Finally,
temporal reasoning is applied to the leak location estimated as the solution of the inverse
problem and extended to the nearby neighbor nodes following the procedure presented in
Section 2.4.1, generating the estimated leak zone location Zngh for sample m.

Figure 1. Leak Location Methodology.

The requirements for the implementation of the proposed methodology in a practical
WDN application are presented below:

• A set of ns sensors installed in the network to capture the hydraulic information.
• A SCADA system for data acquisition and processing.
• A calibrated network hydraulic model.
• A processing unit (e.g., a personal computer (PC) or industrial PC) to implement and

run the methodology.

The previous requirements can be fulfilled for many urban networks today, being the
hydraulic model the main constraint due to the complexity of its calibration. The proposed
methodology does not require a specific number, or type (pressure or flow), of sensors
to be installed in the network, however, a large number of sensors will most likely result
in a better performance. In spite of being a hybrid leak location methodology, historical
data of the network behaviour is not necessary, since synthetic data generated by the
network model can be used to train the multiclass classifier. Furthermore, the proposed
methodology is completely unintrusive, not requiring any water supply reductions or
interruptions for leak diagnosis.

2.3. Stage 1: Search Space Reduction and Dominant Sensor Selection
2.3.1. Clustering Zones

On the first stage, a clustering algorithm is used to divide the network into a set of
zones. In this work, agglomerative clustering [29] was selected due to its simplicity and
effectiveness. Agglomerative clustering is a hierarchical clustering algorithm that generates
a cluster dendrogram which goes from NC clusters at the bottom level to a single cluster
at the top. This dendrogram is built by iteratively grouping a set C = {c1, c2, . . . , cnc}
of nc elements [29]. For WDN node grouping, every node in the network is considered
as an element, and nc = NT , with C = {1, 2, . . . , NT}. A distance (or similarity) metric
d(·, ·) must be defined between network nodes in order to build the cluster dendrogram.
In this case, the total pipe distance in the shortest path between two nodes is considered
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as the similarity metric: d(ci, cj) = Λ[i, j]. Once the cluster dendrogram has been built,
nz clustered zones can be produced, with 1 ≤ nz ≤ NC, by selecting the corresponding
level in the dendrogram [31]. By matching every leak sample with the clustered zone that
contains the actual leak node, nz class labels are defined for the multiclass classifier.

2.3.2. Support Vector Machine Classifier

A Support Vector Machine (SVM) is selected as the classifier for the first step in the leak
zone location methodology presented in this work. SVM classifiers are based on finding a
hyperplane that optimally separates the two classes in training data set D by maximizing
the margin between the hyperplane and the support vectors [32]. The support vectors
are defined as the datapoints from any of the classes that are closest to the separating
hyperplane. Aiming to maximize the separating power of the hyperplane, data samples
are projected into a higher dimensional space by means of the Kernel trick. Therefore, a
kernel function K(·, ·) is defined between any two datapoints. The separating hyperplane
between two classes is formalized as follows: g(x) = wTx + b; where w ∈ H is a margin
vector derived from the support vectors, with H being the dot product space of feature
samples; and b is an offset value. The position of the hyperplane is described by both
w and b, and x is a feature vector or data sample. The training of an SVM classifier is
then reduced to finding the optimal values for w and b solving the optimization problem
presented in (5) [33]:

max
w,b

[
nt

∑
i=1

ai −
1
2

nt

∑
i,j=0

aiajgigjK(xi, xj)];

with ∑
i

giai = 0, 0 ≤ ai ≤ C ;
(5)

where a ∈ <nt are Lagrange multipliers; D ∈ {xi, yi}nt is the training dataset; and C ∈ <,
C > 0, represents an error penalty that acts as an upper bound to limit the influence of the
individual samples. For this work, the Radial Basis Function (RBF) Kernel, defined in (6),
will be selected due to its non-linear nature, its small number of parameters, and its success
rate in previous works [34].

K(xi, xj) = e−γ(‖xi−xj‖)2
; γ > 0. (6)

In order to ensure the maximum performance of the SVM classifier, a proper hyperpa-
rameter selection must be effected for {C, γ} [20,34].

2.3.3. Bayes Temporal Reasoning

Analyzing leak samples over a time span TH ∈ Z+, rather than at a single time
instance, has shown to improve the leak localization accuracy [15]. Therefore, Bayes
temporal reasoning, as defined in [21,30], is applied to the classification probabilities from
a group of TH leak samples before estimating a leak location ZC.

2.3.4. Leak Size Estimation

For this work, the leak size range is assumed to have been previously estimated for
every sample following the procedure presented in [15]. The potential leak range for
sample i is therefore estimated as ECrangei

= [Eci − 0.1, Eci + 0.1], where Eci is the actual
leak size.

2.3.5. Dominant Sensor Selection

In medium to large WDNs, a leak at a given node has often little to no effect in the
hydraulic variables (flows and pressures) of the nodes located far away. Therefore, varia-
tions due to uncertainties in measurements at locations far away from the leak node can
result detrimental to the leak diagnosis accuracy. In order to avoid this effect, Li et al. [18]
define a set Sd ∈ [1, NT ]

nsd ; Sd ⊂ S of dominant sensors as the nsd sensors that best reflect
the variations caused by a specific leak in the network, with S ∈ [1, NT ]

ns . For this work, a
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set of dominant sensors was selected for every leak sample by considering the nsd sensors
closest to the estimated leak zone ZC, following the procedure presented in Appendix A.

2.4. Stage 2: Leak Location as an Inverse Problem

An inverse problem consists in mapping the effect of the variation in model parameters
on the input-output relationship of a given model [35]. Therefore, the solution of an inverse
problem comes down to finding a parameter vector θ, such that the model output ŷ matches
the real output y for a given input x. The leak location task can be posed as an inverse
problem by defining the model parameters θ = {Ec, ω} for a hydraulic model of the WDN,
where the input vector d̂N ∈ <NT represents the nominal demands, and m̂d is a vector of
the model outputs measured by the dominant sensor. The leak location problem is then
solved by finding the leak node ω in which a simulated leak of size Ec maximizes the
similarity between the output vector m̂d and the real leak sample md measured by the
dominant sensors. Leak node estimation is then formalized as the optimization problem
in (7):

min
θ

fn(md, M(θ)) , θ = {Ec, ω} ; s.t.

Ecmin ≤ Ec ≤ Ecmax ,

ω ∈ ZC;

(7)

where M(θ) = m̂d represents the network numerical model. The parameter search space
consists of: [Ecmin; Ecmax], which defines the limits for the possible leak sizes; and ZC,
which defines the topological search space (i.e., the potential leak location nodes). If the
topological search space hasn’t been restricted, every node in the network is a potential
leak location, and ZC = {1, 2, . . . , NT}. The cost function fn is defined as the Euclidean
distance between the real leak sample md and the simulated leak sample m̂d as presented
in (8):

fn(md, M(θ)) =

√√√√ nsd

∑
k=1

(|mdk
− m̂dk

|)2 . (8)

The optimization problem presented in (7) is solved using a variation of the differential
evolution algorithm called topological differential evolution (TDE). For its implementation,
a mutation (F) and a crossover (Cr) coefficient must be properly selected. Furthermore, the
following stop criteria must also be selected for the TDE algorithm: maximum iterations
gmax, stagnation iteration limit SL, and cost tolerance ϕ. A detailed description of the TDE
algorithm is presented in Appendix B.

2.4.1. Temporal Reasoning and Neighbor Expansion

Temporal reasoning is implemented for TDE by generating a leak location zone
combining the estimated nodes over a time span TH . Defining ω = {ω1, ω2, . . . ωTH},
where ωi ∈ Z+ is the estimated leak node for sample i, an estimated leak zone by means of
temporal reasoning is then defined as ZT = ∪TH

i=1ωi.
As stated earlier, leak zone generation can be implemented extending the estimated

leak location to the nearby neighbor nodes [15,18]. Neighbor zone extension from the
temporal-reasoning-derived estimated zone ZT was implemented in this work. Assuming
ZT consists of Nn nodes with 1 ≤ Nn ≤ TH , matrix Zm ∈ {0, 1}Nn×NT is defined:

Zm[i, j] =
{

1 i f j = ωi
0 otherwise

. (9)

Submatrix ΛZ contains the pipe distances from every node in the network to each
node in ZT , and is calculated as follows:

ΛZ = Zm ∗Λ (10)
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Finally, the estimated leak zone Zngh is generated by grouping the network nodes
with a total pipe distance smaller than a threshold λ from at least one of the nodes in ZT :

Zngh = {n ∈ Z+, n ∈ (1, NT)|ΛZi(n) 6= ∅}, (11)

where
ΛZi(n) = {i ∈ Z+, i ∈ (1, Nn)|ΛZ[i, n] < λ}. (12)

2.5. Performance Measures
2.5.1. Leak Location Accuracy

Leak location accuracy is defined as the percentage of leak samples that were correctly
located in the dataset:

ACC = 100 ∗ ∑nt
i=1 Li

nt
, (13)

with

Li =

{
1 if Ωi ∈ Znghi
0 otherwise

; (14)

where Ωi is the actual leak node for sample i and Znghi is the estimated leak zone for
sample i.

2.5.2. Leak Zone Size

Two leak zone size indexes are defined. The first one is the number of network nodes
in the estimated leak location:

ZNSi = |Znghi| (15)

The second zone size index defined is the total pipe length in the zone and is formal-
ized as follows:

ZPSi =
∑NT

j=1 ∑NT
k=1 β jkΛ[j, k]

2
, (16)

where

β jk =

{
1 if j, k ∈ Znghi, and j and k are neighbor nodes
0 otherwise

. (17)

Note that ZPSi is calculated by dividing by 2 to account for the fact that Λ is a
symmetric matrix. A small leak size index, both in number of nodes and total pipe distance,
is a desirable result. Smaller estimated leak zones reduce the time it takes to find the exact
leak location in a subsequent step. Mean and standard deviation values are calculated for
every dataset: {ZNS, σZNS}, {ZPS, σZPS}.

2.5.3. Computational Cost

Since online test time for the classifier is negligible in comparison to the cost of solving
the optimization problem presented in (7), computational cost CC is measured as the
number of generations glast before reaching any of the stop criteria:

CCi = glasti (18)

Mean and standard deviation values are calculated for every dataset: {CC, σCC}.

3. Case Study
3.1. Modena Network

The proposed leak location methodology can be implemented in any WDN with a
properly calibrated hydraulic model. However, its full potential is best taken advantage
of in medium-to-large scale WDNs, since the reduction of the search space considered
in stage 1 of the methodology is practically unnecessary in small networks. Therefore,
the proposed methodology was tested on the hydraulic model of the WDN in the city of
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Modena, Italy (Figure 2), which presents characteristics common to most urban WDNs. It
is a medium sized WDN with 317 pipes and 268 nodes [36]. It is gravity-fed by 4 reservoirs,
therefore, no pumps are installed. This is a meshed WDN, with a relatively high number of
connections per node, which results in higher correlation among the hydraulic variables at
different nodes.

Junctions

Reservoirs

Pipes

Sensors

Figure 2. Modena WDN.

Full supervision of pressures and flows in every node and pipe of a WDN is rarely
found in practice since it would result in excessive instrumentation costs. Therefore, a great
number of leak diagnosis methodologies have been implemented by supervising only a
limited number of variables [13,15]. For the purpose of this study, ten pressure sensors are
installed in the nodes marked in Figure 2. Pressure sensors are often preferred over flow
sensors due to their lower installation and maintenance costs. The optimal location for
the pressure sensors was determined by maximizing the leak detection for a 2000 samples
dataset with different size leaks (Ec ∈ [0.1, 2.0]) randomly generated in the network nodes.
Leak detection is implemented by comparing the sample residuals to a threshold, and the
sensor location optimum is determined through a genetic algorithm (GA) [37].

3.2. Realistic Sample Simulation—Uncertainty Modeling

Taking advantage of the WDN model used for leak location, a group of train and test
synthetic datasets were simulated to evaluate the proposed methodology. The hydraulic
simulation software EPANET 2.0 [27] is used. In order to make realistic enough simulations
of the network modes, the following modeling considerations were made:

• Minimum night flow regime is assumed, ranging from 2 a.m. to 6 a.m. At this time at
night, variation in the demand patterns from consumers are very small, therefore, fixed
nominal demands can be assumed. The characteristic reduction in demand variation
at night time simplifies the location task, increasing its performance; however, this
also means that the leak location can only be identified at night.

• Sensor sampling time is considered to be 15 min per sample, with 4 samples in one
hour. This amounts to a total of 16 samples in a day under minimum night flow
regime. An average between hourly samples is then calculated to filter uncertainties
in the data, resulting in 4 filtered samples in a day. A leak scenario is defined as a
set of 4 filtered samples from a single day, all of which are generated under the same
conditions (leak location and size).

• The leak size for every scenario is sampled randomly from a uniform distribution
within the interval EC ∈ [0.5, 1.0]. This results in leaks that range from 2.6 to 6.3 lps.
A timely location and maintenance of leaks of this size can save from 1.1 to 2.6%
of the network’s total nominal demands during minimum night flow regime. The
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leak size range selected could be described as matching medium sized leaks. Leaks
higher than that interval are relatively easy to diagnose and sometimes result in pipe
bursts visible at street level, which are most likely to be diagnosed by consumer
reports. Leaks smaller than the selected interval are, however, mostly background
leaks, which are often undetectable due to the uncertainties in network demands
and measurements. Figure 3 shows the effect of different sized leaks on pressure
head values for every node of the network, which are compared to nominal (no leak)
patterns; no uncertainties are considered.

• In real WDNs, actual node demands differ from modeled nominal demands due to
variations in consumer patterns. These demand uncertainties must be taken into
account in order to achieve realistic simulations. Therefore, node demands were
sampled from the following Gaussian distribution: ℵ ∼ {dn, ψdn}, where dn is the
nominal demand and ψ ∈ <+ is a demand uncertainty coefficient. Several uncertainty
coefficients are explored in this work. Demand uncertainty is sampled as a Gaussian
distribution centered around the nominal demand because the latter has been esti-
mated as the most probable value. Furthermore, by defining demand uncertainty
standard deviation as a factor of the nominal demand, nodes with higher nominal
demand values are modeled with higher uncertainty.

• In order to guarantee a realistic simulation of the pressure sensors, measurement
noise is sampled from the following uniform distribution [−0.025, 0.025] mH2O, and
stacked additively with the pressure values simulated.

Figure 4 presents a comparison between pressure head values under nominal (no leak)
and leak conditions for every node of the network; consumer demand uncertainty of 10%
(ψ = 0.10) and measurement noise of 0.025 mH2O are considered for the leak samples,
however, no uncertainty is considered for the nominal values. For certain leak nodes,
pressure patterns are practically undistinguishable from no leak behaviour, specially for
small sized leaks; this fact, combined with the typically limited number of sensors installed
in the network, represents the main challenge in the leak location identification task.
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Figure 3. Comparing nominal and leak pressure head behaviour.
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Figure 4. Comparing nominal and leak pressure head behaviour with demand uncertainty and
measurement noise for leaks.

3.3. Experimental Design
3.3.1. Dataset Generation

In order to test the proposed methodology, 5 test datasets were generated following the
procedure described above with 5 different uncertainty coefficients: ψ = {0.05,0.075,0.10,0.125,0.15}.
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Each test dataset contains 2 scenarios per network node, for a total of 536 scenarios
(2144 samples) per dataset. A training dataset was also generated to train the SVM mul-
ticlass classifier with an uncertainty coefficient of 0.10. It contains 50 leak samples per
network node for a total of 13,400 samples.

3.3.2. Hybrid Methodology Implementation

The procedure to follow in order to implement the proposed methodology is presented
below; this procedure can be applied for any WDN that meets the requirements presented
in Section 2.2:

1. The WDN is partitioned into subzones to form classes.
2. A classifier is trained using the training dataset presented in Section 3.3.1 and the

labels generated in step 1.

2.1. For the SVM classifier in particular, hyperparameters {γ, C} are selected using
grid search and 10-fold cross validation in the training set, with the following
grid: γ, C ∈ 2α, α ∈ {−2, 5}.

3. The number of classes (nz), and zones, in the network is selected to guarantee a 95%
classification accuracy for the multiclass classifier.

4. Regarding the TDE algorithm, the mutation (F) and crossover (Cr) factors are also se-
lected through grid search with the following grid: F, Cr ∈ {0.1+ 0.2α}, α ∈ {1, 2, 3, 4}.

5. The number of dominant sensors nsd is selected from the following values: nsd ∈ {2α},
α ∈ {1, 2, . . . , ns

2 }, aiming to maximize leak location accuracy; if location accuracy
values are similar for different dominant sensor values, the number of dominant
sensors that achieves the lowest computational cost will be selected.

6. The stop criteria gmax, SL, and ϕ, as well the population size Kp, for the TDE algorithm
are selected aiming to minimize the computational cost without resulting in loss
of accuracy.

7. Temporal reasoning time horizon TH is selected according to the sampling frequency
and the number of samples in a minimum night flow regime scenario.

8. Neighbor expansion distance λ is selected depending on the desired zone size.

Once online, the TDE algorithm is run 5 times for every leak sample, and the candidate
solution with the smallest cost function value is selected as the estimated leak node. These
multiple runs of the algorithm aim to avoid engaging potential local optima caused by the
random nature of the initialization step.

Parameter search for the Modena WDN case study resulted in the following values:

• Classifier hyperparameters: {γ, C} = {4, 8}.
• Classifier number of zones: nz = 5.
• Mutation factor: F = 0.7, and crossover factor: Cr = 0.9.
• Population size: Kp = 10.
• Maximum generations: gmax = 500.
• Stagnation iterations: SL = 15.
• Cost tolerance: ϕ = 0.05.
• Pipe distance for neighbors: λ = 250 m. An average zone size ZNS of approximately

6 nodes for the ψ = 0.05 case was the desired zone size.
• Temporal reasoning time horizon: TH = 4. All 4 samples in each scenario were selected

for temporal reasoning for both the classifier and the TDE steps of the methodology.
• Dominant sensors: nsd = 4.

However, any value within the range {γ, C} ∈ [2, 64] of the grid can be selected for
the Modena WDN, since similar performance values were obtained. Likewise, similar
performance values were achieved for F, Cr ∈ [0.5, 0.9].

3.3.3. Comparing Leak Location Strategies

The results achieved by the proposed hybrid method for the 5 test datasets are com-
pared to the results achieved by the TDE and SVM multiclass classifier approaches applied
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independently as standalone methodologies. The standalone TDE approach is applied
without topological searchspace reduction, considering ZC = [1, NT ] as the complete net-
work for every sample. In this case, all the sensors installed are considered as dominant
sensors. Hyperparameters and stop criteria for the standalone TDE approach are the
same as the ones selected for the hybrid approach. For the standalone multiclass classifier
approach, ZC is considered as the final estimated leak zone. In this case, nz = 35 is selected
such that the average zone size is similar to the one obtained with the hybrid approach.
Hyperparameters are identical to the ones selected for the hybrid approach.

4. Results and Discussion

A comparison between the hybrid strategy presented and the two independent
methodologies is developed according the performance measures defined in Section 2.5.
Table 1 and Figure 5 present a location accuracy (ACC) comparison between the three
methodologies tested under different demand uncertainty percentages (100ψ) with the five
test datasets.

Figure 5. Comparing Location Accuracy.

Table 1. Comparing Location Accuracy (%).

Method Demand Uncertainty

5% 7.5% 10% 12.5% 15%

Classifier 79.48 77.80 77.33 74.72 70.62
TDE 94.03 88.99 83.58 78.17 69.78

Hybrid 93.28 89.74 85.63 82.65 75.56

The hybrid approach outperforms the other two methodologies for higher uncertainty
values, with a nearly 5% higher location accuracy when the demand uncertainty coefficient
is ψ = 0.15. However, for the lower uncertainty levels, its performance is similar to
the standalone TDE approach, reaching both 93–94% leak location accuracy when the
demand uncertainty coefficient is ψ = 0.05. The standalone classifier presents the overall
lowest performance; however, it deteriorates the least as uncertainty increases, being
the most robust to demand uncertainty among the three. It is this robustness in the
first stage, combined with the non-dominant sensor measurements deprecation, what
makes the hybrid approach more robust, and overall more accurate, than the standalone
TDE approach.

All three methodologies are compared regarding the size of the estimated leak location
zones, considering size in number of nodes (Figure 6) and total pipe distance (Figure 7). A
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smaller estimated leak zone according to both indexes is desirable, and the best zone size
results are highlighted in Tables 2 and 3. Both zone size indexes present the standalone
classifier generating estimated leak zones nearly two times bigger than the other two
methods. Wilcoxon’s signed ranked test [38], with a 95% confidence interval, was applied
to compare zone size, in number of nodes, between the hybrid and the standalone TDE
approaches. This test showed that there were significant statistical differences between
both methods for every uncertainty value, with the hybrid approach generating smaller
zones. The same statistical test was carried out between the same two methodologies
comparing zone size in total pipe distance instead. In this case, the hybrid approach
showed significantly smaller zones for all uncertainty values, except for the 0.05 case,
for which no statistically significant difference was found. Overall, these results assert
the higher performance of the hybrid approach over the standalone TDE and standalone
multiclass classifier, achieving higher accuracy values while estimating smaller zones.

Figure 6. Comparing Zone Size in Number of Nodes.

Figure 7. Comparing Zone Size in Total Pipe Distance.
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Table 2. Comparing Zone Size in Number of Nodes ZNS(σZNS).

Method Demand Uncertainty

5% 7.5% 10% 12.5% 15%

Classifier 9.73(5.41) 9.54(5.37) 9.58(5.32) 9.39(5.16) 9.27(4.74)
TDE 6.33(3.65) 7.38(3.88) 8.10(3.84) 8.74(3.99) 8.97(3.84)

Hybrid 6.06(3.59) 6.77(3.86) 7.27(3.73) 7.71(3.86) 8.20(3.94)

Table 3. Comparing Zone Size in Total Pipe Distance ZPS(σZPS).

Method Demand Uncertainty

5% 7.5% 10% 12.5% 15%

Classifier 1365.19(693.03) 1344.93(681.82) 1347.05(676.68) 1324.39(670.07) 1318.58(630.44)
TDE 647.90(415.12) 773.61(456.10) 864.30(485.54) 935.00(503.47) 923.68(463.24)

Hybrid 638.49(427.52) 720.27(467.09) 789.49(463.95) 822.92(464.85) 867.75(466.61)

Finally, computational cost (CC) is compared between the hybrid and the standalone
TDE approach in the form of number of generations (glast). The computational cost of the
classifier approach (both in its standalone version and within the hybrid methodology) is
not analyzed since it is comparatively unimpactful. Results are presented in Table 4 and
Figure 8.
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Figure 8. Comparing Computational Cost.

Table 4. Comparing Computational Cost.

Method Demand Uncertainty

5% 7.5% 10% 12.5% 15%

TDE 35.48(16.18) 36.94(15.45) 36.50(14.72) 36.20(14.45) 36.08(14.57)

Hybrid 13.08(13.92) 18.22(15.02) 22.57(15.17) 24.71(14.36) 25.42(13.71)

As expected, by reducing the search space of the inverse problem, the optimization
algorithm reaches a solution much faster. The mean hybrid approach TDE run is at least
over 30% faster than that of the standalone TDE approach, being as much as 63% faster
when the uncertainty coefficient is ψ = 0.05. The difference is higher for low uncertainty
values and it reaches a plateau as uncertainty increases. The main reason behind this
behaviour is the fact that the cost tolerance stop criterion ϕ is selected aiming to guarantee
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maximum performance for the lowest uncertainty (ψ = 0.05) case. As uncertainty increases,
so do variations from the nominal pressure values, increasing cost function values in
general. This causes the location of higher uncertainty samples to rarely stop due to
the cost tolerance criterion, tilting towards a generation-oriented stop criterion such as
stagnation (SL) and max generations (gmax).

A topological representation of the results obtained for two correctly located leak
scenarios is presented in Figure 9. In Figure 9a, the actual leak node is located within
the estimated leak zone Zngh; furthermore, it is located within the leak nodes estimated
after applying temporal reasoning to all the samples in the scenario. In Figure 9b however,
temporal reasoning would not have sufficed to identify the actual leak node; in this scenario,
neighbor expansion guarantees that the actual leak node is inside the estimated zone.

Neighbor extension (Z
ngh

)

Temporal reasoning (Z
T
)

True leak node ( )

(a)

Neighbor extension (Z
ngh

)

Temporal reasoning (Z
T
)

True leak node ( )

(b)

Figure 9. Accurately located leaks. (a) Identified at the temporal reasoning step, (b) Identified at the
neighbor expansion step.

5. Conclusions

This study presents a hybrid methodology for leak zone location in WDNs by com-
bining a multiclass SVM classifier and an inverse problem solved using an optimization
algorithm called Topological Differential Evolution (TDE). The classifier is used to reduce
the search space of the inverse problem, aiming to increase its performance and reduce its
computational cost. From the reduced search space, a set of dominant sensors is selected for
leak localization, reducing unwanted uncertainty in measurements. Temporal reasoning is
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applied to both the classifier and the TDE, and the estimated leak location is extended to
the nearby nodes. In order to evaluate the performance of the proposed strategy, 5 datasets
with different demand uncertainty values are tested. The hybrid method is compared
to two other methodologies: a standalone SVM classifier and a TDE approach without
previous topological search space reduction.

The hybrid approach presented similar location accuracy to the standalone TDE
approach for low uncertainty values; however, for higher uncertainty levels, the hybrid
approach outperformed the standalone TDE, proving to be more robust with respect to
demand uncertainty. The standalone multiclass classifier significantly underperformed
in all cases. Estimated zone sizes, measured in number of nodes and total pipe distance,
were smaller for the hybrid approach overall in comparison to the other two methods.
Regarding computational cost, the search space restriction resulted in a reduction of 30%
for high uncertainties and over 50% for low uncertainties. Overall, the hybrid approach
demonstrated to be more robust, while reducing the time it takes to locate the leak.

An unintrusive methodology has been proposed with relatively accessible imple-
mentation requirements. As long as these requirements have been met, the proposed
methodology can be applied to any WDN with a calibrated hydraulic model and it is
expected to yield similar results for other medium-to-large WDNs that are meshed in a
similar way to the Modena network. Historical data of the network behaviour is not neces-
sary for the implementation of the strategy, however, it can be used if available. Moreover,
no specific number of installed sensors is required, and both flow and pressure sensor
measurements can be considered simultaneously.

The main limitation to the proposed methodology is the required availability, and
proper calibration, of a WDN hydraulic model. Furthermore, the restriction of the leak
location task to night hours could result in moderate losses.

Future works will explore different data-driven methodologies in order to improve the
performance of the first stage of the hybrid strategy and reduce the topological search space
even further; and a study of the performance of the proposed leak location methodology
under daytime demand patterns will be performed.
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Appendix A. Dominant Sensor Selection

Algorithm A1 Selecting Dominant Sensor Location

{Inputs: S: sensors installed in the network, ns: number of sensors installed in the
network, nsd: number of desired dominant sensors, Λ: matrix of pipe length distances
between nodes, ZC: zone estimated by the multiclass classifier}
Sd = ∅ {Set of dominant sensors}
n̄sd = 0 {Number of sensors in the dominant sensor set}
while n̄sd < nsd do

Sc = S \ (S⋂ Sd) {Dominant sensor candidates}
Sdist = [ ] {Empty array for sensor distances}
for all s ∈ Sc do

{For every candidate sensor}
Sdist = Sdist ∪min(Λ[ZC, s]) {Minimum distance between the sensor location s and zone
ZC}

end for
if any(Sdist == 0) then

{If any candidate sensor is inside zone ZC}
Sin = Sci ; s.t. Sdisti

== 0 {Candidate sensors inside zone ZC}
Sd = Sd ∪ Sin

else
Sclose = Sci ; s.t. Sdisti

== min(Sdist) {Candidate sensor closest to zone ZC}
Sd = Sd ∪ Sclose

end if
n̄sd = |Sd| {Update number of dominant sensors}

end while
{Output: Sd set of dominant sensor locations}

Appendix B. Topological Differential Evolution Algorithm

A variant of the Differential Evolution (DE) metaheuristic algorithm called Topological
Differential Evolution (TDE) [15] is implemented to solve the optimization problem pre-
sented in (7). DE is a population-based optimization algorithm that can be used to optimize
non-differentiable cost functions. It consists of an initialization step and three operators:
mutation, crossover and selection [39]. These operators are applied over a population of
solution candidates for a given number of iterations called generations. TDE proposes a
reformulation of the mutation operator that takes the topological characteristics of the
WDN into account.

A population Pg = {xg
1 , xg

2 , . . . , xg
Kp
} is defined for every generation g, where each

candidate solution xg
k is defined as xg

k = {Eg
c , ωg}. An overview of the four steps that

characterize the Topological DE algorithm are presented below [15]:

1. Initialization
In the initialization step, an initial population P0 with Kp candidate solutions is
produced by randomly sampling from the search space. The mutation F ∈ (0, 2] and
crossover coefficients Cr ∈ (0, 1) are also defined at this stage [39]. Initialization is
carried out only once for generation 0, while the other three operators are applied to
every generation.

2. Mutation

The mutation operator generates a mutated candidate solution x̄g+1
k = {Ēc

g+1, ω̄g+1}
for every member of population Pg by combining the characteristics of multiple popu-
lation members. This operator promotes exploration of the search space by generating
new characteristics in the mutated population P̄g+1. On one hand, the mutated leak
size coefficient Ēc

g+1 is generated through classic DE random mutation [39]:
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Ēc
g+1 = Ec

g
r1 + F(Ec

g
r2 − Ec

g
r3); (A1)

where Ec
g
r1 , Ec

g
r2 , and Ec

g
r3 are the leak size coefficients from randomly selected mem-

bers in population g. These randomly selected population members are different from
each other and sampled from a uniform distribution.
On the other hand, the mutated potential leak node, ω̄g+1, is generated following the
topology of the WDN [15]:

ω̄g+1 = randi(δg) , (A2)

where randi represents the random selection operator which yields a random (sampled
from a uniform distribution) network node from the neighbor nodes vector: δg =
{δg

1 , δ
g
2 , . . . δ

g
Ngh
}. A neighbor node δ

g
i is defined as a node that is connected to ωg by

a single pipe; and δg ∈ ZC comprehends all the nodes neighboring ωg within the
topological search space.

3. Crossover
The crossover operator is applied to generation g once the mutation operator has been
applied to every member in population Pg. This operator yields a crossed member
¯̄xg+1 = { ¯̄Eg+1

c , ¯̄ωg+1} by combining characteristics from the corresponding mutated
x̄g+1

k and pre-mutated xg
k population members. This operator is non-linear in nature,

and promotes exploitation by combining characteristics from the previous and current
generation into the crossed population ¯̄Pg+1.
Binomial crossover is effected through a crossover probability index cr ∈ <2. This
crossover probability index is sampled from a uniform distribution for every popula-
tion member. The crossed candidate is then generated by comparing the probability
index to the crossover coefficient Cr:

¯̄Eg+1
c =

{
Ēc

g+1 i f cr1 < Cr
Eg

c i f cr1 ≥ Cr
, (A3)

¯̄ωg+1 =

{
ω̄g+1 i f cr2 < Cr

ωg i f cr2 ≥ Cr
. (A4)

4. Selection
The selection operator is applied in order to produce the next generation Pg+1 using
a greedy criterion [39]. Every crossed member ¯̄xg

k is compared to its corresponding
candidate xg

k in population Pg and the one with the smaller cost function fn is selected:

xg+1
k =

{
¯̄xg+1

k i f fn(md, M( ¯̄xg+1
k )) < fn(md, M(xg

k ))
xg

k otherwise
. (A5)

The three operators are applied to every subsequent generation until any of the
following stopping criteria are met:

• Maximum number of generations: g = gmax.
• Stagnation: the best candidate (the candidate with the smallest value of the cost

function fn) xg
best in the population has remained unchanged for SL generations.

• Tolerance: the smallest cost function value in the population fnbest is smaller than a
threshold ϕ.

The solution for the optimization problem presented in (7) is then selected as the best
member of the last generation xglast

best . The leak location is then estimated as node ω
glast
best .
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