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Abstract: In smart mariculture, traditional methods are not only difficult to adapt to the complex,
dynamic and changeable environment in open waters, but also have many problems, such as poor
accuracy, high time complexity and poor long-term prediction. To solve these deficiencies, a new
water quality prediction method based on TCN (temporal convolutional network) is proposed to
predict dissolved oxygen, water temperature, and pH. The TCN prediction network can extract time
series features and in-depth data features by introducing dilated causal convolution, and has a good
effect of long-term prediction. At the same time, it is predicted that the network can process time
series data in parallel, which greatly improves the time throughput of the model. Firstly, we arrange
the 23,000 sets of water quality data collected in the cages according to time. Secondly, we use the
Pearson correlation coefficient method to analyze the correlation information between water quality
parameters. Finally, a long-term prediction model of water quality parameters based on a time
domain convolutional network is constructed by using prior information and pre-processed water
quality data. Experimental results show that long-term prediction method based on TCN has higher
accuracy and less time complexity, compared with RNN (recurrent neural network), SRU (simple
recurrent unit), BI-SRU (bi-directional simple recurrent unit), GRU (gated recurrent unit) and LSTM
(long short-term memory). The prediction accuracy can reach up to 91.91%. The time costs of training
model and prediction are reduced by an average of 64.92% and 7.24%, respectively.

Keywords: aquaculture water quality prediction; TCN deep learning; smart mariculture

1. Introduction

In traditional mariculture, farmers can only rely on breeding experience to control
the water quality, and it is impossible to immediately grasp a drop in aquatic production
caused by water quality problems. In mariculture, the timely and accurate prediction of
water quality can help fishermen take countermeasures before the water environment is
seriously deteriorated. The prediction of water quality can help farmers foresee future
changes in water quality parameters and promptly remind farmers to take measures that
make sure that the fish are living and growing in the most suitable environment. It can
improve the quality of aquatic products while increasing the yield [1–3].

In terms of water quality prediction, traditional prediction algorithms mainly include
the time series method [4], Markov chain method [5], regression analysis method [6,7],
grey theory method [8], and support vector machine [9]. They need a small amount of
historical data, but these prediction methods also have many shortcomings, such as low
prediction accuracy, and do not consider many factors, such as air temperature. Compared
with traditional algorithms, artificial neural networks and deep learning models have
higher robustness and accuracy, and adapt to multiple complex environments. Liu et al.
[10] used the BP (back propagation) neural network to build a multi-scale dissolved oxy-
gen nonlinear prediction model. Zhang et al. [11] and Eze et al. [12] used the LSTM (long
short-term memory) model to predict water parameters in the long and short term, but
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the long-term prediction effect was poor. Han et al. [13] proposed a radial basis function
neural network neural network with a flexible structure by which a model was established
to predict water data. Ye et al. [14] used multi-task and multi-view learning methods to
fuse multiple data sets and combined spatial correlation to predict urban water quality.
However, urban waters are not as complex and changeable as sea water, and they con-
sider fewer influential factors. Liu et al. [15,16] used the SRU (simple recirculation unit)
network and improved deep Bi-SRU (bi-directional stacked simple recirculation unit) net-
work to predict multiple water quality parameters. However, these methods still have
problems, such as a complex network structure and high time complexity, which increase
the hardware requirements. The spatial cross-correlation analysis method [17] combined
with spatial distribution information can solve the inaccuracy and volatility of correlation
analysis, especially if the sample is insufficient. Because of a large number of data samples
in this paper, we use the Pearson correlation coefficient method [18] to analyze the direct
correlation of different water quality factors.

In order to solve the problems above, we combine Pearson’s correlation coefficient
analysis to obtain the prior information between the water quality data, and build and train
a deep learning model based on the TCN (temporal convolutional network). The TCN
is a variant of a convolutional neural network that handles sequence modeling tasks.
The convolution structure of TCN is simple and has high-efficiency and long-term memory
ability. This paper uses the pre-trained TCN model to predict the dissolved oxygen, pH,
and water temperature data. Finally, the prediction model is evaluated from a multi-
faceted perspective.

Our main contributions can be summarized as follows:

• The relationship and influencing factors between water quality parameters are ana-
lyzed. The Pearson correlation coefficient method is used to obtain prior information
among dissolved oxygen, water temperature, pH and other water quality parameters,
which can be used as the input parameters of the model training.

• A water quality prediction model based on the TCN network is constructed and
trained. Compared with the RNN, LSTM, GRU (gated recurrent unit), SRU and BI-
SRU prediction models, the TCN prediction model not only improves the accuracy of
prediction but also requires less time complexity, especially in training and prediction.

The rest of this paper is organized as follows. Section 2 gives the methods of data
acquisition and data correlation analysis. Section 3 presents the water quality prediction
model based on TCN. In Section 4, the experimental results are analyzed and discussed,
the accuracy of the model is evaluated, and the time complexity of the prediction model is
analyzed. Finally, Section 5 summarizes this paper and outlooks future work.

2. Water Quality Data Acquisition and Analysis
2.1. Data Acquisition

In this paper, we use real data for research. The data were collected at the sea aquacul-
ture base in Xincun Township, Lingshui County, Hainan Province, China. Data collection
was realized by deploying sensor equipment in the cage. The collected data were stored in
the data server, and real-time data information could be viewed on the mobile terminal.
The sensor and equipment for water quality data collection are shown in Figure 1.

Because long-distance wireless data transmission is prone to noise interference, and
the equipment is susceptible to seawater corrosion and individual data is missing, it is nec-
essary to preprocess the collected data. Firstly, this paper uses the linear difference method
and threshold processing to fill in the missing information, and then uses smoothing fil-
tering and wavelet transform to filter out the noise interference in the water quality data,
aiming to correct and correct the abnormal water quality data. After the above-mentioned
series of processing, we clarified the water quality data and provided a good foundation
for the follow-up forecasting process.
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(a) IoT equipment (b) Water quality sensor node (c) Underwater video sensor

Figure 1. Experimental data acquisition site. (a) IoT equipment transmitted data to mobile phone
and farmers can monitor water quality in real time. (b) Water quality sensor node collected water
quality factor data such as water temperature, pH and dissolved oxygen. (c) Underwater video
sensor collected and recorded underwater video data.

We visited fishermen and professional farmers, and learned that fishermen need
to feed about 5–6 times a day, and the number of times will change due to weather
changes. Cold weather is relatively less frequent than feeding bait. At the same time,
continuous precipitation weather will have related effects on fish culture. Regardless of
whether it is feeding bait or precipitation, the data of our sensor are always being recorded.

Through the dynamic relationship between the various water quality parameters,
the various water quality parameters influence and reflect each other. For example, precipi-
tation will have a chain reaction effect on water temperature, pH and other parameters,
and adding feed will slightly affect the pH and salinity. However, when the external envi-
ronment is raining, our system records the changes of multiple water quality parameters
and displays them in the training dataset. Finally, we use the deep learning network to au-
tomatically detect the changing trends of various parameters under different precipitation
conditions. The network model digs out the relationship between the hidden parame-
ters. As a nonlinear adaptive dynamic system, the neural network has the advantage of
extracting the internal characteristics of information through self-learning, and it is very
suitable to explore the hidden relationship between data.The basic characteristic values of
the predicted water quality factors are shown in Table 1.

Table 1. The basic characteristic values of the predicted water quality factors.

Water Temperature (0C) pH DO (mg/L) Salinity (PSU) Precipitation (mm) Air Temperature (0C)

Max 28.59 8.73 8.66 36.44 0.01143 31.26
Min 20.70 7.99 0.63 31.65 0 15.97

Median 25.69 8.28 4.58 34.67 0 22.45
Average 25.50 8.29 4.51 34.59 0.000395 22.82

2.2. Correlation Analysis

Before establishing the key parameter in the water quality prediction model, this
paper uses Pearson’s correlation coefficient method [18] to analyze the correlation of key
water quality parameters, such as water temperature, pH, dissolved oxygen, and salinity.
The Pearson correlation coefficient method is commonly used to qualitatively measure
and analyze the strength of the correlation degree between variables. It is defined as the
quotient of the covariance and the standard deviation between two variables. We calculate
the Pearson correlation coefficient between the water temperature, dissolved oxygen, pH
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and other factors which can influence water quality. The calculation results are shown
in Table 2.

Table 2. Result of correlation analysist.

Parameters Water Temperature pH DO Salinity Precipitation Air Temperature

Water temperature 1.0 0.3228606 ´0.35295023 ´0.35055917 ´0.18294075 0.36917955
pH 0.3228606 1.0 0.41250716 ´0.27341231 ´0.07272953 0.20661753
DO ´0.35295023 0.41250716 1.0 ´0.07251022 0.14161098 0.03189754

It can be seen from the above Table 2 that the water temperature has a negative
correlation with salinity and solubility, a positive correlation with air temperature, and a
weaker negative correlation with pH and precipitation. At the same time, pH has a
strong positive correlation with dissolved oxygen, a moderate positive correlation with
water temperature and air temperature, a medium negative correlation with salinity,
and basically no correlation with precipitation. In addition, dissolved oxygen shows a
strong positive correlation with pH, a negative correlation with water temperature, and
almost no correlation with salinity and air temperature.

3. The Prediction Model Based on TCN Deep Learning
3.1. Temporal Convolutional Network

The temporal convolutional network is based on the convolutional neural network
and introduces dilated convolution, causal convolution and residual modules. It can be
used as an alternative to the recurrent neural network (RNN) to better deal with time series
prediction. The overall flowchart of TCN network is shown in Figure 2. In time series
forecasting, the LSTM network solves the problem of RNN network gradient explosion, but
the memory gate of LSTM will gradually forget part of the historical information [19,20],
and all historical information cannot be used. The temporal convolutional network can
effectively combine historical data for long-term prediction through the dilation causal
convolution and residual module. TCN networks are causal in each layer structure, which
means that “leakage” of future information or historical data will not occur [21,22]. Im-
proved SRU (simple recurrent unit—SRU) [23], and GRU [24] networks have improved
model efficiency and prediction effects, but there are also problems in processing variable
length sequences. TCN can obtain the same output sequence length regardless of the input
sequence length, which increases the flexibility of the model. At the same time, TCN can
process time series data in parallel, which greatly reduces the time cost of the model. The
time domain convolutional network is based on the convolutional neural network and
introduces the expansion convolution, causal convolution and residual modules. It can be
used as an alternative to the RNN (recurrent neural network) to better deal with the time
series prediction problem.

We define the time series sequence of the input water quality parameters prediction
model as x0, . . . , xT and the goal of the model prediction is to output prediction values
ŷ0, . . . , ŷT for a period in the future based on the observed historical data. Our prediction
model is to obtain the function F and make it produce the following map:

ŷ0, . . . , ŷT “ Fpx0, . . . , xTq (1)

The process of prediction model training is to continuously optimize the function to
minimize the loss between the real value and the predicted value.

Causal convolution [25]: To prevent the occurrence of information “leakage”, TCN
adopts causal convolution, that is, the convolution operation is performed in the order of
time series. For example, the convolution output at time t is only related to the data at
time t and t´ 1 or earlier. The TCN network adopts the form of a one-dimensional fully
connected network, and uses zero-padded operations to make the length of the hidden
layer and the input layer always consistent.
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pF˚Xqpxtq “

K
ÿ

k“1

fkxt´pK´kq (2)

Residual block(k,d1)

Residual block(k,d2)

1x1 Conv

Residual block(k,dL)

ReLU

Input

Output

(a) overall flowchart of TCN

Dilated Causal Conv

WeightNorm

ReLU

Dropout

Dilated Causal Conv
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ReLU

Dropout

1x1 Conv

(b) TCN residual block

Input

Output

Hidden layer

Hidden layer

Hidden layer

d = 1

d = 2

d = 4

d = 8

(c) dilated causal convolution

Figure 2. Construction of TCN. (a) Overall flowchart of TCN. (b) TCN residual block. The residual
block is stacked in two layers, and each layer is composed of dilated causal convolution and nonlinear
layers. (c) A dilated causal convolution with dilation factors d “ r1, 2, 4, 8s and filter size k “ 2. The
receptive field expands with the increase of d and k which means that more of the input sequence
is covered.

Dilated convolution [26]: Dilated convolution is defined as follows:

`

F˚d X
˘

pxtq “

K
ÿ

k“1

fkxt´pK´kqd (3)

When d “ 1 in the above equation, it means ordinary convolution. In the process of
water quality prediction, the field of view of the convolutional layer can be expanded by
increasing the number of convolution kernels k or expanding the expansion factor d in
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order to dig deeper into the historical water quality data so that the model can learn longer
time series data. To achieve this goal, in actual situations, the expansion factor d is usually
expanded exponentially with a base of 2. Figure 2c shows dilation causal convolution, with
d “ r1, 2, 4, 8s and k “ 2 as an example.

The residual block [27] is represented by f , which performs a series of transformations
on the input x, and then adds it to x for output operations.

o “ ReLUpx` fpxqq (4)

For the deeper network depth n, the larger k and d become very important in TCN
since the receiving range of TCN depends on the network depth n, the filter size k and
expansion coefficient d. Each layer contains multiple filters for feature extraction. Therefore,
in the design of the general TCN model, we use the general residual module to replace the
convolutional layer.

The composition of the residual module is shown in Figure 2b. From Figure 2, we can
see that the residual block is stacked in two layers, and each layer is composed of dilated
causal convolution and nonlinear layers. After the expanded convolution, spatial dropout
is added for regularization. In addition, the input and output have different lengths in the
TCN network, and the residual input x and f pxq are added directly. Therefore, the 1 ˚ 1
convolution operation is introduced between the identity mapping of the residual block in
order to ensure the same tensor scale.

3.2. Evaluation Metrics

In the above training model, we introduced three evaluation metrics [28] to evaluate
the prediction effect, which are defined as follows:

MAE (mean absolute error): MAE is the basic evaluation metric, and the following
methods are generally used as a reference to compare the advantages and disadvantages.

MAE “
1
N

N
ÿ

i“1

|yi ´ ŷi| (5)

RMSE (root mean squared error): RMSE denotes the mean error, which is more
sensitive to extreme values. If there is an extreme value in the training process at some
time points, RMSE is greatly affected by the increasing error. The change in the evaluation
index can be used as the benchmark for the robustness test of the model.

RMSE “

g

f

f

e

1
N

N
ÿ

i“1

p|yi ´ ŷi|q
2 (6)

MAPE (mean absolute percent error): MAPE considers not only the deviation between
the predicted data and the real data, but also the ratio between the deviation and the
real data.

MAPE “
1
N

N
ÿ

i“1

|yi ´ ŷi|

yi
(7)

3.3. Construction of Prediction Model Based on TCN

The overall process of the water quality parameters prediction model based on TCN
is shown in Figure 3. Firstly, the water quality parameters collected by various sensors is
received through the wireless network; then, the missing water quality data are filled by
the linear difference method and the average filtering and wavelet transform are used to
correct the abnormal water quality data and remove noise. Secondly, the Pearson correlation
coefficient analysis method is used to analyze the correlation among water quality factors,
such as water temperature, dissolved oxygen, and pH, to obtain relevant prior information.
Finally, the pre-processed water quality factors and the relevant prior information obtained
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from the analysis are input into the constructed model for training. When the error of
the trained model meets the requirements, we save the model for subsequent testing and
otherwise readjust the hyperparameters and retrain the model.

Start Acquisition
of data

Data
preprocessing

Correlation
analysis

Division of
dataset

Test dataset

Train dataset Train the
TCN model

Save pretrained
model

Is accuracy
sufficient?

Adjustment model
hyperparameter

Test pretrained
model

Analysis of
result End

no

yes

Figure 3. Flowchart of water quality prediction model.

The model in this article is based on the Keras framework and the Python program-
ming language. In addition to the TCN model, the RNN, LSTM, GRU, SRU and BI-SRU
prediction models are also built for comparison in experiments. The analysis of the cor-
relation coefficients of the various water quality parameters above is used as the prior
information, and at the same time, 20,000 sets of water quality parameters are input into the
model for training. In order to control the variables to better compare the prediction effect,
the input dimension of each model is 6 and the output dimension is 1, and each model is
trained for 50 epochs. The batch size is set to 64 after comprehensively considering the
training time and convergence speed. Especially in the TCN prediction model, the size
of the convolution kernel (kernel size) k in each convolution layer is 4, and the expansion
coefficient d is r1, 2, 4, 8, 16, 32s. The description of water quality prediction model is shown
in Algorithm 1.

Algorithm 1: Description of water quality prediction model.
Data: X “ px0, . . . , xTq, d “ r1, 2, 4, . . . , Ls and hyperparameter
Result: prediction value Ŷ “ ŷ0, . . . , ŷT

1 Fill the missing and correct abnormal data;
2 Analyze the correlation degree between key water parameter;
3 Initialize network weights and thresholds;
4 while stop condition is not met do
5 for d “ 1; d ď L; d “ d ˚ 2 do
6 for i “ 0; i ď 1; i “ i` 1 do
7 Dilated causal convolution for X: F˚d X;
8 Weightnorm and dropout is added for regularization.;
9 end

10 Residual block output: o “ ReLUpx` f pxqq ;
11 end
12 end
13 Save pretrained model and analysis result;

The trend of loss function at each epoch during training is shown below. From
Figure 4, we can see that the error between the real data and the predicted data is constantly
decreasing, and finally approaches zero infinitely as the training process progresses. In the
early stage of the training process, the reduction is huge, and it stabilizes in the later stage.
It can also be seen from Figure 4 that the TCN model has the fastest convergence speed
during the training process, followed by the GRU model, and LSTM is slightly slower. At
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the same time, the LSTM model will oscillate slightly after the training epoch to 20 times.
This is because the loss function is in the end and the best point cannot be further reduced.
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Figure 4. Comparison of changes in loss function of different models during model training: (a) dissolved oxygen, (b) pH,
(c) water temperature.

4. Experimental Results and Discussion

The experimental data are collected from marine aquaculture cages with sensor equip-
ment, and then transmitted to a data server for storage through a wireless bridge. The
data collection interval is 5 min, including water temperature, salinity, pH and dissolved
oxygen parameters. A total of 20,000 sets of data are used as experimental data for model
training, and another 3000 sets of data are used for comparison of the prediction results.

The experimental environment used in this paper is a Intel(R) Core(TM) i7-7700HQ
CPU @2.80GHz, 16GB RAM, NVIDIA GeForce GTX 1050Ti 4GB, Windows 10 (64-bit)
operating system, minitconda3 IDE, and the construction of the network is based on the
Keras 2.0 framework and Python 3.6.

The accuracy and measurement range of the sensor are shown in Table 3. F.S. is the
abbreviation of “Fulle Scale” and PSU is the abbreviation of “Practical Salinity Unit”.

Table 3. The accuracy and range ability of the sensors.

Technical Parameters The Type of Sensors

of Sensors Salinity Chlorophyll Turbidity Water Temperature pH Dissolved Oxygen

Range ability 0„100 PSU 0„400 ug/L 0.1„1000 NTU ´10„60 ˝C 0„14 0„20.00 mg/L
accuracy ˘1.5% F.S. ˘3% F.S. ˘1.0 NTU ˘0.2 ˝C ˘0.01 ˘1.5% F.S.

4.1. Comparison of Prediction Effects

We use six different neural network models, including RNN, SRU, BI-SRU, LSTM,
GRU and TCN, to compare the changing trends and values of water quality parameters.
According to the actual situation and the above analysis, these models respectively predict
the future 3000 values of pH, water temperature, and dissolved oxygen. The sampling
interval of water quality data is every five minutes. The comparison between the true value
and the predicted value is shown in Figure 5 below.

It can be seen from Figure 5 that the predicted data are close to the true values, but the
TCN model is better for fitting the real data trend when predicting peak and trough values.
At the same time, it can be seen from Table 4 that the values of MAE, RMSE and MAPE of
the TCN model are much smaller among the test dataset. Therefore, the TCN prediction
model has a better prediction result on water quality parameters.
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Figure 5. Comparison of real and predicted values in different prediction models: (a) dissolved oxygen, (b) pH, (c) water
temperature.

Table 4. Records of MAE, RMSE and MAPE in long-term prediction.

Water Temperature pH Dissolved Oxygen

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

RNN 0.2105 0.3185 0.7635 0.0713 0.1199 0.8210 1.3971 0.7150 10.8982
LSTM 0.1275 0.2392 0.4606 0.0299 0.0614 0.3420 0.4904 1.1672 5.7004
GRU 0.1750 0.1104 0.4010 0.0338 0.0678 0.3870 0.5121 1.2032 6.1280
SRU 0.1646 0.2204 0.6037 0.0290 0.0592 0.3325 0.5731 1.1617 8.5907

BI-SRU 0.1697 0.2276 0.6238 0.0307 0.0599 0.3527 0.5763 1.1577 8.8024
TCN 0.0416 0.0906 0.1152 0.0214 0.0505 0.2729 0.4014 1.1046 3.7750

4.2. Comparison of Time Cost for Training and Predition

In the experiment, we record the time required for each epoch of the six network
models during the training process. The three water quality parameters of dissolved
oxygen, water temperature, and pH are trained for 50 epochs. The time cost results during
training are shown in the Figure 6 below. In the training process of six water quality
parameter prediction models, the time spent by the TCN model is the lowest among
models. This is because the recurrent neural network must predict the sequence strictly
in the order of time, which means that it must wait until the prediction of the previous
time step is completed before the subsequent prediction. However, the TCN model uses
the same filter for each layer, and the convolution operation can be completed in parallel.
Therefore, when encountering a long time series, the TCN model treats it, as a whole, in
parallel, which greatly reduces the training and prediction time.

In the dissolved oxygen prediction model shown in Figure 6a, the LSTM prediction
model is trained for 50 epochs and takes a total of 1511.91 s; the BI-SRU takes 1297.73 s; the
GRU takes 1138.38 s; the SRU takes 672.70 s; the RNN takes 392.93 s; and the TCN takes
276.57 s. In the pH prediction model showed Figure 6b, the LSTM prediction model is
trained for 50 epochs and takes a total of 1531.36 s; the BI-SRU takes 1256.78 s; the GRU
takes 1204.81 s; the SRU takes 650.32 s; the RNN takes 393.80 s; and the TCN takes 275.69 s.
In the water temperature prediction model shown in Figure 6c, the LSTM prediction model
is trained for 50 epochs and takes a total of 1519.70 s; the BI-SRU takes 1310.67 s; the GRU
takes 1185.45 s; the SRU takes 679.09 s; the RNN takes 387.70 s; and the TCN takes 277.98 s.
In training, the TCN model saves 64.92% on time, on average.

After obtaining the trained model, we use the pretrained model to predict 3000 sets of
future water quality values. In the dissolved oxygen prediction process, the LSTM model
takes 3.24 s; the GRU model takes 2.94 s; the SRU model takes 2.28 s; the RNN model
takes 2.19 s; the BI-SRU model takes 3.35 s; and the TCN takes 2.49 s. In the pH prediction
process, the LSTM model takes 3.32 s; the GRU model takes 3.01 s; the SRU model takes
2.25 s; the RNN model takes 2.03 s; the BI-SRU model takes 3.74 s; and the TCN takes 2.45 s.
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In the water temperature prediction process, the LSTM model takes 3.29 s; the GRU model
takes 2.82 s; the SRU model takes 2.33 s; the RNN model takes 2.23 s; the BI-SRU model
takes 3.39 s; and the TCN takes 2.49 s. In prediction, the TCN model saves 7.24% on time,
on average.
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Figure 6. Comparison of training time under different models: (a) dissolved oxygen, (b) pH, (c) water temperature.

4.3. Discussion

From Figure 5 and Table 4, we can see that, compared with other models, the TCN
water quality prediction model has higher prediction accuracy, and the difference between
the the predicted value and the actual value is small. First of all, because the TCN prediction
model adopts the residual network structure to solve the gradient attenuation problem,
it has the ability to explore the characteristics of the deep network so that the model has
a strong fitting ability and generalization ability. Secondly, the TCN model adopts the
structure of dilated causal convolution, and its receptive field expands with the increase in
filter size k and dilation factors d, which can cover more time series, and then can extract
more historical water quality information and improve the accuracy of model predictions.
Finally, the TCN model has a different back propagation path, compared to the recurrent
neural network, and the gradient is more stable during the training process; it is unlikely
to face the problem of gradient disappearance or gradient explosion.

From the experimental results in Section 4.2, it can be seen that the training and
prediction time required for the prediction model proposed in this paper are lower than
other prediction models. First of all, because the TCN prediction model uses a parallel
approach, it does not need to wait for the previous moment to complete the prediction
before the next moment, like a recurrent neural network. Secondly, the memory space
occupied by the TCN model during the training process is also smaller. TCN filters share
parameters among the same layers, and the amount of memory used only depends on
the depth of the network. LSTM, GRU and SRU models need to store a large number of
parameters of input gates, memory gates, and output gates during the training process.
Therefore, the water quality prediction model we propose can greatly reduce the time
complexity and provide fishermen with early warning information in a more timely manner.
This provides a reliable and effective basis for the high-density aquaculture industry to
formulate efficient water quality protection policies and measures.

Based on the above discussions, we know that our prediction method can provide fish
farmers with the changing trend of water quality factors for the next 10 days. Moreover,
through our method, it also can provide decision support for scientific management of
aquaculture water quality. Fish farmers can check the water quality for the next 10 days at
any time and take timely measures to avoid large-scale fish deaths caused by the sudden
deterioration of water quality.
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5. Conclusions and Future Work

At present, most smart aquaculture systems mainly use sensor-based IoT systems to
monitor water quality in real time. This method of real-time monitoring has hysteresis.
Obviously, if the water quality can be accurately predicted for a long period of time in the
future, farmers can be allowed to take measures in advance, which can effectively resist
breeding risks and improve production efficiency. However, the current trend of water
quality is mainly based on the long-term accumulated experience of farmers for speculation.
This method has the characteristics of strong subjectivity, poor reliability and timeliness.

Aiming at the long-term prediction of key water quality parameters in smart maricul-
ture, this paper proposes a prediction method based on temporal convolutional network.
After preprocessing the data with linear filling and sliding filtering, we also use the Pearson
correlation coefficient to analyze the correlation of water quality parameters. Finally, we
input prior information and preprocessed data into the constructed model for training.
Experimental results show that, compared with RNN, SRU, BI -SRU, LSTM and GRU, the
model proposed in this paper has higher prediction accuracy and lower time complexity.
Specifically, this paper proposes that the long-term prediction method of water quality
parameters has a prediction accuracy of 91.91%, an average reduction in training time
of 64.92%, and an average reduction in prediction time of 7.24%. Therefore, in smart
aquaculture, the solution we propose can meet the requirements for accurate prediction of
water quality parameters values.

However, the prediction model we propose is not accurate enough for longer-term
peak prediction. In the future, we will focus on the optimization of the deep learning
network structure and integrate the modules related to peak prediction. In addition, in
order to make the water quality prediction model more robust and further reduce the
impact of climate change on the model prediction, we will collect years of water quality
data as the training dataset in future studies. At the same time, we will incorporate multiple
factors, such as seasonal changes and climate change, into the deep neural network as prior
information so that the prediction model can achieve longer-term prediction results.
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