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Abstract: Hydrologic currents and swimming behavior influence routing and survival of emigrating
Chinook salmon in branched migratory corridors. Behavioral particle-tracking models (PTM) of
Chinook salmon can estimate migration paths of salmon using the combination of hydrodynamic
velocity and swimming behavior. To test our hypotheses of the importance of management, models
can simulate historical conditions and alternative management scenarios such as flow manipulation
and modification of channel geometry. Swimming behaviors in these models are often specified to
match aggregated observed properties such as transit time estimated from acoustic telemetry data.
In our study, we estimate swimming behaviors at 5 s intervals directly from acoustic telemetry data
and concurrent high-resolution three-dimensional hydrodynamic model results at the junction of
the San Joaquin River and Old River in the Sacramento-San Joaquin Delta, California. We use the
swimming speed dataset to specify a stochastic swimming behavior consistent with observations of
instantaneous swimming. We then evaluate the effect of individual components of the swimming
formulation on predicted route selection and the consistency with observed route selection. The PTM
predicted route selection fractions are similar among passive and active swimming behaviors for
most tags, but the observed route selection for some tags would be unlikely under passive behavior
leading to the conclusion that active swimming behavior influenced the route selection of several
tagged smolts.

Keywords: San Francisco estuary; Sacramento–San Joaquin Delta; salmonid; route selection; hydro-
dynamic model; movement ecology; agent-based model

1. Introduction

The Sacramento-San Joaquin Delta (Delta) (Figure 1) is a migration corridor and
rearing habitat for juvenile Chinook salmon (Oncorhynchus tshawytscha) that emigrate from
Central Valley rivers to the Pacific Ocean. Chinook salmon abundance in the Delta is a
small fraction of historical abundance which once supported a large salmon fishery [1].
Chinook salmon abundance has decreased largely due to anthropogenic factors including
decreased river flow during emigration [2], fragmentation and loss of habitat due to
dam construction [1], entrainment in water diversion facilities [3], predation by non-native
species [4], limited food supply and exposure to contaminants [3]. Within the Central Valley
multiple races of Chinook salmon historically thrived. Today, winter-run Chinook are
federally listed as an endangered species and spring-run Chinook are listed as threatened.
Central Valley fall-run Chinook salmon are listed as a “species of concern” by NOAA
Fisheries, leading to intensive efforts to quantify and understand Chinook salmon survival
through the Delta [5]. Route-specific survival studies have concluded that survival through

Water 2021, 13, 2904. https://doi.org/10.3390/w13202904 https://www.mdpi.com/journal/water

https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-9908-1669
https://orcid.org/0000-0002-9812-8306
https://doi.org/10.3390/w13202904
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/w13202904
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w13202904?type=check_update&version=1


Water 2021, 13, 2904 2 of 16

the San Joaquin River is considerably lower than other large river systems on the west coast
of North America [5]. In addition, the potential migratory pathways of Chinook from the
San Joaquin River through the Delta also differ in estimated survival rates [5]. However,
the environmental conditions influencing emigrating smolt swimming behavior and the
effect of this behavior on route selection are not well understood.
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Acoustic telemetry data are useful in understanding pathways of emigrating Chinook
salmon through the Delta and studies have shown that mortality varies with migration
route [6,7]. Acoustic telemetry has also shown that fish are not homogeneously distributed
in channels and therefore the proportion of fish entering a specific channel at a divergent
junction (diffluence) can be different from the proportion of flow entering that channel [8].
This difference indicates the importance of swimming. However, unless collected concur-
rently with highly detailed hydrodynamic data, the contribution of fish swimming velocity
to velocity over ground and consequently route selection is unclear. Furthermore, telemetry
data is only diagnostic and cannot be directly used to evaluate engineering projects aimed
at improving Chinook salmon survival. In contrast, a behavioral particle-tracking model
(PTM) can predict route selection for proposed management alternatives that have no
historical precedent.

Our study site at the junction of the San Joaquin River and Old River (Figure 1) is
of great interest both because the Old River route has a high risk of Chinook salmon
entrainment in water diversion facilities [5] and because of high predator density [9]. While
routing into Old River increases the entrainment risk, routing down the San Joaquin River
is associated with high predation losses, and includes a reach with the highest predation
risk in the South Delta observed during a single wet year study [10]. The dominant
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predator of Chinook salmon smolts in this region is striped bass (Morone saxatilis) [11]
and other known predators include largemouth bass and catfishes [12]. Overall, Central
Valley Chinook salmon emigration survival can vary strongly interannually with river
flow with lowest survival during dry years [7,11]. In the highly managed San Francisco
Estuary, management alternatives contemplated to aid survival of emigrating Central Valley
Chinook salmon include timing and location of hatchery fish release, outflow (reservoir
release) management, water diversion limitations, fish salvage facility operation, use of
physical and non-physical barriers, channel modifications, predator removal and other
actions. Given the range of management options, a reliable tool is needed to estimate the
effectiveness of actions in improving outmigration survival.

As a component of a tool to estimate survival associated with management actions, a
behavioral PTM that specifies varying swimming velocities of particles through time can
estimate emigrating juvenile Chinook route selection for both historical conditions and pro-
posed alternatives. In our analysis, swimming velocities estimated from acoustic telemetry
data and three-dimensional hydrodynamic model results were used to infer swimming
behavior of Chinook salmon. This study shares aspects of other swimming behavior
analyses, such as the use of a hydrodynamic model in swimming speed estimates [13]
and route selection studies, including the assumption of surface orientation [14] but we
combined more aspects of observed behavior in our behavioral PTM than these previous
studies. The most complex behavior formulation was a combination of surface orientation
(maintaining a vertical position near the surface), constant rheotaxis and time-varying
swimming. Probability density functions (PDFs) associated with a correlated random
walk (CRW) formulation [15] were found to fit the distribution of estimated time-varying
swimming velocities well. The behavioral PTM incorporating these behaviors with pa-
rameters consistent with telemetry data was then applied to estimate probabilistic route
selection for each observed fish. The results from these models are useful to managers
interested in understanding and managing routing of migrating salmon through complex
estuarine ecosystems.

2. Materials and Methods
2.1. Site Description

The Sacramento-San Joaquin Delta (Delta) extends from where the confluence of the
Sacramento River and the San Joaquin River meet Suisun Bay to the City of Sacramento on
the Sacramento River and several kilometers south of Lathrop on the San Joaquin River
(Figure 1). The study site is at the junction of the San Joaquin River and the head of Old
River (HOR) located at the southern landward extreme of the Delta (Figure 1). In this
tidally influenced freshwater region of the Delta, reversing tidal flows are muted during
high flow periods. The climate is Mediterranean with the majority of rainfall occurring
from November through April with large year-to-year variability in timing, magnitude
and duration of precipitation. Flows are largely regulated by reservoirs in the San Joaquin
Valley watershed. During typical flow conditions, most water entering Old River from the
San Joaquin River is removed at major diversions—the C.W. Bill Jones Pumping Plant of the
Central Valley Project (CVP), operated by the U.S. Bureau of Reclamation, and the Harvey
O. Banks Pumping Plant of the State Water Project (SWP), operated by the California
Department of Water Resources. Correspondingly, fish routing through Old River are at
high risk of entrainment at the water export facilities, or predation near the facilities. A
portion of the surviving smolts which arrive at the facilities are salvaged and trucked to the
western boundary of the Delta where they are released back into the Estuary [2]. Except in
years in which high flow prevents installation, a temporary rock barrier has been installed
at the head of Old River during the spring period of emigrating Chinook salmon in order
to reduce the passage of salmonids into Old River. In 2018 the structure was only partially
installed, extending from the southern shoreline into but not across the channel (Figure 1).

The study period was March–April 2018, timed to capture the emigration of Chinook
smolts. River discharge, reported at Mossdale upstream of the junction and Dos Reis and
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Head of Old River downstream of the junction, was significant and variable during the
study period (Figure 2). During the study period, a tidal signal was clear at all stations,
though the flow direction reversed only at Dos Reis, and only during the lower flow period
before 24 March.
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Figure 2. Chronology of (a) tagged fish release and cumulative arrival in the study area, and
(b) measured flow upstream of the diffluence at Mossdale (MSD), downstream of the diffluence on
the San Joaquin River at Dos Reis (SJD) and downstream of the diffluence on Old River (OH1).

2.2. Fish Release and Acoustic Telemetry

A total of 650 acoustically tagged, hatchery-reared smolts were released from two
sites upstream of the study site: an upstream release site, 60 river km above the study
site and a downstream release site, 14 river km above the study site (Figure 1). While fish
from the upstream release traversed more of the historical migratory route down the San
Joaquin River, in-river predation losses can be substantial in the reach from the release to
the study site. The survival was 47% for a similar reach in 2009 [2] leading to the addition
of the lower release site in order to ensure that sufficient numbers reached the study
site. Releases occurred in March 2018, timed to coincide with the historical emigration
season for sub-yearling, spring-run juveniles [1]. The upper release of 325 smolts occurred
on 2 March 2018, and the lower release of 325 individuals occurred on 15 March 2018
(Figure 2). Data from acoustic receivers between the release sites allowed us to time the
lower release to coincide with individuals arriving from the upper release.

Salmon smolts used in this study originated from the experimental population of
spring-run Chinook reared at the California Department of Fish and Wildlife (CDFW)
Salmon Conservation and Research Facility (SCARF), located at the base of Friant Dam,
near Fresno, CA, USA. The water source for SCARF is the San Joaquin River resulting in a
water chemistry and temperature similar to habitats where natural spawning and rearing
could occur. Smolts were reared at SCARF until fish reached sizes sufficient to maintain a
tag burden of≤5% of total body weight, a minimum of 4.2 g for the 0.216 g Juvenile Salmon
Acoustic Tracking System (JSATS) acoustic transmitter (model SS400, ATS Issanti, MN,
USA). Smolt lengths and weights were measured at the time of acoustic tagging. Smolt
length ranged from 71–86 mm fork length, with an average of 76.6 mm. Acoustic tagging
of the smolts was performed by intraperitoneal implantation where a 2–3 mm incision
was made 0.5–1 mm off the ventral midline, anterior to the pelvic girdle. After each tag
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was inserted, the incision was closed with a surgeon’s knot. Prior to the procedure fish
were anesthetized with a bufferedsolution of tricaine methanesulfonate. Transport tanks
were monitored for oxygen and temperature during the transport process. Temperature
acclimation at the release site prior to release followed a protocol of adjusting by 2 ◦C
per hour until the transport tank temperature equaled in-river temperatures. Additional
details on methods of surgery and handling are described in [16].

A 416 kHz multi-dimensional positioning system by Teknologics, LLC, composed of
an array of 13 hydrophones nominally spaced 70 m apart, was used to record pings from
the tags. Horizontal tag positions were estimated using the YAPS software [17] at a 5-s
interval. Additional information on the tagging and acoustic telemetry data for this study
is available in [18].

2.3. Hydrodynamic Model

A high-resolution three-dimensional SUNTANS [19] hydrodynamic model was de-
veloped for the study site [18]. Typical lateral grid spacing of the unstructured grid in the
region where telemetry data were available was 2–3 m, with somewhat larger edge lengths
farther from the study area. The vertical dimension was discretized with 50 z-layers and a
spacing of 0.27 m. The hydrodynamic model was calibrated against velocity transect data
collected by an acoustic doppler current profiler (ADCP) at nine cross-sections in the study
area. Additional information on model development and calibration is provided in [18]. In
this study, the model domain was extended (Figure 1) from the domain in [18] in order to
ensure that predicted route selection is not influenced by model extent.

2.4. Swimming Behavior Analysis

Tags included in the swimming behavior analysis had at least 10 detections with
at least one detection below the junction. Tags that were detected in the array for more
than 60 min or exhibiting average swim speeds > 0.5 m s−1 were assumed to be predators
and discarded [18]. Detections more than 25 m upstream of the start of the array were
discarded. Detections below the junction were used only in determining route selection
and were not used for swim velocity estimates (due to poor hydrodynamic calibration
below the junction).

For each of the 96 tags that fit these criteria, a swimming velocity was calculated for
each pair of successive relocations from the telemetry data. For each pair of relocations,
the hydrodynamic model-predicted velocity was averaged over the top 2 m of the water
column at the midpoint location and time between relocations, and subtracted from the
velocity over ground estimated from telemetry to get the swimming velocity,

→
u b =

→
u −→u h (1)

where
→
u is the (horizontal) velocity over ground,

→
u h is the hydrodynamic velocity, defined

previously and
→
u b is the swimming (behavior) velocity. Using this approach, and only con-

sidering relocations located upstream (landward) of the diffluence (junction with diverging
flow in the downstream direction), a set of swimming velocities were estimated in [18].

We analyzed this set of horizontal swimming velocities to determine swimming
parameters to use in a Chinook salmon smolt behavioral PTM. The swimming behavior
approach was a combination of surface orientation, constant rheotaxis for each tagged smolt
and a CRW which includes time-varying swimming speed and heading. The horizontal
portion of this formulation was

→
u b =

→
u r +

→
u c (2)

where
→
u r is the velocity associated with rheotaxis, with positive rheotaxis indicating

upstream swimming, and
→
u c is associated with the CRW. We assumed that rheotaxis speed
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was constant in time for each individual but the velocity associated with the CRW varied
at each time step of the simulation. The streamwise hydrodynamic velocity direction is

→
n s =

(
nx, ny

)
=

→
u h∣∣∣→u h

∣∣∣ (3)

where nx and ny are the unit vector components. Since, for a given hydrodynamic velocity,
the direction of rheotaxis is known, Equation (2) can be rewritten

→
u b = −Sr

→
n s + Sc

→
n c (4)

where Sr is the strength of rheotaxis, Sc is a swimming speed associated with the CRW, and
→
n c is the unit vector describing the heading of swimming associated with the CRW.

The parameters of a CRW [15] were estimated from sequential changes in swimming
velocity at each time step. The CRW was parameterized by a Weibull distribution for
swimming speeds and a wrapped Cauchy distribution for turn angles. In order to estimate
the parameters of these distributions, the swimming velocities were converted to a set of
swimming speeds (i.e., the magnitude of

→
u b) and turn angles estimated as the difference

in direction associated with the difference in velocity between two successive swimming
velocity estimates.

∆
→
u

n
b =

→
u

n
b −

→
u

n−1
b (5)

∆θn = atan2
(

∆un
b,y, ∆un

b,x

)
(6)

where ∆θn is the turn angle and atan2 is an arctangent function.
The pulse rate interval of the tags was 5 s and turn angles were estimated for that time

interval. Swimming velocities were only estimated when valid relocations were available
at this interval, not over longer intervals associated with missing relocations. A total of
3871 calculated turn angles were used in the analysis.

2.5. Analysis of the Effect of Position Error

Position error in the acoustic telemetry data can influence estimated swimming speeds
and turn angles. Similarly, inaccuracies in the hydrodynamic model can influence the
estimated swimming velocities. A median position uncertainty of 1.4 m was associated
with the analysis of telemetry data [18]. However, because successive position errors
were highly autocorrelated, and hydrodynamic model errors are also expected to be
autocorrelated, the effect of position error on estimated speeds and turn angles may be
small as only the uncorrelated position errors affect speed and turn angle calculations. In
order to explore the effect of uncorrelated position error on the parameters of the behavior
formulation, we generated synthetic position data with Gaussian position errors

x̃n = x̃n−1 + ∆tWn cos θn +N n

ỹn = ỹn−1 + ∆tWn sin θn +N n
(7)

where x̃n and ỹn are the synthetic cooordinates at time n,W is a Weibull random variable
with shape parameter k and scale parameter λ, and N is a normal random variable with
mean of zero and standard deviation σN . First synthetic tracks were determined assuming
a constant heading (θ) of zero and Weibull distribution parameters estimated from the
telemetry data. Turn angle and speed distribution parameters were estimated for synthetic
datasets with σN ranging from zero to 50 cm, following the same methods as for the
telemetry data. Because the heading associated with behavior (θ) was zero, any change in
heading in the synthetic data results from position error.

After a bound of position error was estimated from that approach, Equation (7) was
applied to generate synthetic positions from the combination of position error and a full
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CRW. We then fit a revised shape parameter k, scale parameter λ, and turn angle parameter
γ, associated with the combination of swimming behavior and position error. In contrast
to estimates of these parameters directly from the telemetry data, this approach provides
an estimate of actual swimming accounting roughly for the effect of position error.

2.6. Behavior Formulation

A set of proposed behavior formulations combining the aspects of behavior observed
in the telemetry data and assumed vertical distribution were implemented and the route
selection resulting from each were evaluated. The components of behavior representa-
tions were surface orientation, rheotaxis and a continuous random walk. Each behavior
formulation was a combination of these individual components.

The velocity of each particle, representative of an individual fish, at each time step in
the model was the sum of the hydrodynamic velocity and the swimming velocity:

→
v

n
=
→
v

n
h +

→
v

n
b (8)

where
→
v

n
is the two-dimensional vector of predicted horizontal fish velocity over ground,

→
v

n
h is the predicted hydrodynamic velocity and

→
v

n
b is the predicted swimming (behavior)

velocity, all at time step n in the behavioral PTM. The swimming velocity and other
properties associated with each particle were updated at a 5 s interval.

The predicted swimming velocities in Equation (8) at time step n were specified
according to the statistical distributions fit in the telemetry data analysis, resulting in
the equation

→
v

n
b = −N (µ, σ)

→
n

n
s +Wn(k, λ)

→
n

n
c (9)

where N is a normally distributed variable with mean µ, standard deviation σ, andW is a
Weibull random variable with shape parameter k, and scale parameter λ. In the behavioral
PTM simulations the rheotactic speed at any point in time and space was limited to 50% of
the downstream hydrodynamic velocity and the speed applied in the CRW was capped
at 0.5 m s−1 to only allow physiologically realistic swimming speeds, consistent with
estimates of swimming speeds [18]. The unit vector

→
n

n
c was updated at each time step

based on the heading
θn = θn−1 + C(γ) (10)

where C is a wrapped Cauchy-distributed variable with scale parameter γ and an implied
peak position of zero. Upon encountering the shoreline, any component of the heading onto
land was reset so that the swimming is along shore. Note that the correlated aspect of the
CRW was the heading which was perturbed by the wrapped Cauchy distributed variable.
In contrast the swimming speed component of the CRW was independent between time
steps. The rheotaxis remained constant for each particle during the simulation, according
to the normal random number drawn for that particle.

The vertical position of passive particles varied due to vertical advection and diffusion.
The vertical aspect of the behaviors implemented was surface orientation in which a vertical
position was specified which corresponds to vertical distance from the water surface to
a particle. Each particle was assigned a unique vertical position drawn from a uniform
random distribution in the range of 0.25 to 2 m, consistent with a depth range over which
predicted hydrodynamic velocity was averaged in the analysis of swimming velocity [18].
In shallow water, the depth from the surface was not allowed to be in the lowest 25% of the
water column. Therefore, for example, in a 1 m deep water column, a particle with a target
depth of 1.2 m below the water surface would be reassigned a depth of 0.75 m below the
water surface (0.25 m above the bed).

2.7. Behavioral Particle-Tracking Model Simulations

Modeling scenarios were performed for a set of hypothesized behaviors. The three
behavior components are surface orientation, rheotaxis and a correlated random walk



Water 2021, 13, 2904 8 of 16

(CRW) described previously. Combinations of these three components are explored (see
Table 1). The combinations of behavior components are formed by linear superposition of
individual components. For example, the combined effect of rheotaxis and a CRW results
from addition of the swimming velocity associated with rheotaxis to the velocity associated
with the CRW. The base behavior was passive particles and the most complex behavior
included surface orientation, rheotaxis and CRW. The remaining six behaviors included a
subset of the behavior components. For each tag and each behavior, 1000 particles were
released at the location and time of the first detection of the tag in the array.

Table 1. Route selection and behavior evaluation metrics across all tags for each behavior formulation.
HOR Fraction is the fraction of particles that have head of Old River route selection; Likelihood
reports the metric described by Equation (11); Fraction Consistent reports the fraction of particles
with route selection consistent with their associated tag; HOR Bias reports the difference between the
fraction of particles with HOR route selection for tags with San Joaquin River route selection minus
the fraction of particles with San Joaquin Route selection for tags with HOR route selection.

Behavior HOR Fraction Likelihood Fraction
Consistent HOR Bias

Passive 0.438 2.17 × 10−79 0.698 0.125
Surface Orientation (SO) 0.430 1.42 × 10−76 0.710 0.117

Rheotaxis (R) 0.436 1.02 × 10−79 0.693 0.123
Correlated Random

Walk (CRW) 0.443 1.13 × 10−43 0.691 0.130

SO + R 0.428 3.75 × 10−75 0.705 0.116
SO + CRW 0.444 1.98 × 10−41 0.700 0.132
R + CRW 0.448 1.16 × 10−44 0.683 0.135

SO + R + CRW 0.449 1.35 × 10−40 0.690 0.136

For each behavior scenario and each tag, 1000 particles were released at the location
of the first detection of each tag. Each particle was tracked for 12 h though most particles
transit the acoustic array in approximately 10 min.

The particle-tracking model (PTM) component of the behavioral PTM calculates
three-dimensional particle trajectories using hydrodynamic velocity and eddy diffusivity
predicted from the three-dimensional hydrodynamic simulation [20] and the swimming
velocity according to the formulation described previously. Vertical diffusion was repre-
sented by the Milstein scheme [21] as recommended in [22], and the time step for diffusion
was specified following [23]. Note that the vertical diffusion did not influence the vertical
position of particles for the surface-oriented behavior. A constant horizontal diffusion
of 0.01 m2 s−1 was applied, consistent with turbulent diffusivity estimated from scaling
relationships [24]. The hydrodynamic velocity field was output from the hydrodynamic
model at a 15 min interval and swim velocities and particle positions were estimated at a
5 s interval, corresponding to the 5 s pulse interval for the tags.

2.8. Swimming Behavior Evaluation

The behavioral PTM calculated route selection of each particle that transited past the
diffluence based on the initial transit, consistent with the determination of observed route
selection from telemetry data. Only tags that were detected at the diffluence were included
in this analysis. The fraction of particles consistent with the route selection of the tag was
tabulated for each behavior. Only particles that transit the diffluence were counted.

The probability of the observed route selection given the particle tracking results
for each behavior was evaluated with a likelihood metric corresponding to a binomial
distribution. For example, for a single observed tag, if 600 of the associated particles
took the Old River route and 400 took the San Joaquin River route at the diffluence, the
probability associated with an observed route selection of Old River would be 0.6. This
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is multiplied for each tag to form an overall likelihood quantifying the consistency of the
behavioral PTM results with acoustic telemetry data,

L(b) =
ntags

∏
l

max(P(r|b), 0.001) (11)

where L(b) is the likelihood of behavior b, P(r|b) is the probability of the observed route
occurring based on the predicted routes for behavior b, and ntags is the number of tagged
salmon smolts in the dataset. A lower bound on the probability of 0.001, the reciprocal of
the number of particles released per tag, was included to ensure that the likelihood did not
become zero in the (rare) case in which none of the particles for a behavior had the same
route selection as the observed route for a given tag.

In addition to this likelihood metric, we report the predicted fraction of particles
taking the HOR route, the bias towards the HOR route relative to the observations, and
the fraction of predicted routes consistent with corresponding observed routes. The bias is
calculated as the fraction of false positive predictions of the HOR route (particles predicted
to take the HOR route for tags observed taking the SJ route) minus the false positive
predictions of the SJ route.

3. Results
3.1. Swimming Behavior Parameters

Equation (1) was applied to estimate swimming speed for each pair of relocations at a
5-s interval. As an example of the hydrodynamic information used in this approach, the
near-surface hydrodynamic velocities predicted on 19 March 2018 at 4:26 a.m., at the time
of transit of tag 7B4D, is shown in Figure 3.
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An average rheotactic velocity was calculated for each individual tag. These were
combined to form a histogram which was fit with a normal distribution having mean of
0.0819 m s−1 and standard deviation of 0.123 m s−1. Positive rheotaxis was more common
than negative rheotaxis (Figure 4a).
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The distribution of swimming speed for each pair of consecutive relocations at a 5 s
interval was fit with a Weibull distribution (Figure 4b) resulting in a k of 1.56 and λ of
0.205 m s−1. The turn angle was estimated for each consecutive pair of heading estimates
at a 5 s interval and the distribution was fit with a wrapped Cauchy distribution (Figure 4c)
resulting in an estimated γ of 0.608.

3.2. Analysis of the Effect of Position Error

Equation (7) was used to quantify the effect of position error on estimated turn
angles. In preliminary exploration, the wrapped Cauchy turn angle parameter was the
parameter most sensitive to position error. Therefore, we generated synthetic data with
no change in heading in the CRW formulation (turn angle of zero) so that estimated turn
angles in analysis of the synthetic positions resulted solely from position error. The best
fit CRW determined for each value of position error and the parameter which varied
most strongly with assumed position error was γ, which increased roughly linearly with
position error. At an assumed standard deviation of position error (σN) of 18 cm, the
estimated Cauchy from fitting the distribution of synthetically-generated turn angles
associated with Equation (7) was smaller than what was estimated from the observed
position estimates. This indicated larger turns from position error of 18 cm than the turns
based on the telemetry data-based swimming speed analysis. Conditional primarily upon
the assumption of normally distributed position error, this analysis suggests that the actual
uncorrelated position error was smaller than 18 cm. The distributions of swimming speed
and turn angle from the synthetic data including position error were well described by
Weibull and wrapped Cauchy distributions, respectively. For that reason, fitting a position
error parameter and behavior parameters simultaneously based on the telemetry data
would lead to confounding of parameters in our specific behavior formulation.

Given the estimated upper bound on uncorrelated position error of 18 cm, a position
error of 10 cm was assumed and revised CRW parameters were fit, resulting in γ of 0.774,
k of 1.47, and λ of 0.198. The revised parameters are associated with lower swimming
speed and smaller turns than the estimates of parameters which did not account for the
effect of position error.

3.3. Behavioral Particle-Tracking Model Results

The behavioral PTM predicted position at a 5 s interval for each of 1000 particles
for eight different behavior formulations for each of 96 tags. As an example, position
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estimates for tag 7B4D are shown in Figure 5. This tag enters the acoustic array towards
river left (Figure 5a) on 19 March 2018 at 4:17 p.m., transits the array in 21 min, and exits
into Old River.
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Figure 5. Observed and predicted positions for tag 7B4D: (a) position estimates of tag 7B4D and
time from entry to acoustic array; (b–f) distributions of particles at 1 min (blue), 5 min (magenta)
and 10 min (salmon) for; (b) passive; (c) surface-oriented; (d) rheotaxis; (e) CRW; (f) combination of
surface-oriented, rheotaxis and CRW.

For each behavior formulation, 1000 particles were introduced at the time and lo-
cation of the entry of each tag to the acoustic array (specifically the first detection not
more than 25 m upstream of the receivers). Passive particles for the example tag 7B4D
were transported downstream and started arriving at the confluence in roughly 10 min
(Figure 5b). The horizontal spreading of the particles was due to horizontal turbulent
diffusion and vertical shear dispersion associated with vertical variability in velocity, which
caused particles near the bed to be advected more slowly than particles at the surface.
Shear dispersion can also act laterally when lateral velocities, such as secondary circulation
velocities, are present.
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The surface-oriented behavior particles were distributed from 0.25 m to 2 m below
the water surface. This surface orientation resulted in less shear dispersion and faster
downstream advection of most particles (Figure 5c). In cases where secondary circulation
is present, surface-orientation can be expected to result in accumulation of particles at the
outside of bends. Given that minimal secondary circulation was observed in the ADCP
observations or the hydrodynamic model [18] in this region, the behavioral PTM predictions
did not show strong accumulation at the outside of bends or other specific lateral position.
However, it should be noted that the hydrodynamic model estimated substantial secondary
circulation in bends of the San Joaquin River upstream of the junction.

In the rheotaxis behavior formulation, each particle was assigned a static rheotaxis
speed for the duration of the simulation. Because the speed drawn varies among particles,
this behavior resulted in a larger longitudinal spread in particles (Figure 5d) but no increase
in lateral spreading relative to passive particles (Figure 5a). Since the mean of the rheotaxis
speed distribution (Figure 4) was positive (upstream swimming), rheotaxis generally results
in slower mean downstream transport relative to passive particles.

In the CRW behavior, each particle updated its swimming speed and direction at a 5-s
time interval. This resulted in a more dispersed particle distribution (Figure 5e) relative to
passive particles (Figure 5b), particularly in the lateral direction.

The combined behavior included surface orientation, rheotaxis and a CRW. It resulted in
the most dispersed distribution by combining the strong longitudinal spreading associated
with variable rheotaxis and horizontal spreading associated with the CRW (Figure 5f).

3.4. Swimming Behavior Evaluation

The route selection of the tagged salmon smolts was strongly dependent on entry
location (Figure 6a). However, for a given entry position, either route is possible. For
example, tags which enter river right (the right side of the river for an observer looking
downstream) sometimes have Old River route selection, which could be expected during
periods of flow reversal on the San Joaquin River (Figure 2). The route selection of indi-
viduals (particles) with active behavior (Figure 6b) was less uniform than passive particle
route selection for a given entry location. Given that 1000 particles were introduced at each
entry location, the tagged fish route selection can be viewed as an individual realization of
route selection for a given entry location. The route selection of each particle involves a
degree of stochasticity due to random components of swimming including the speeds and
directions selected in a CRW formulation, the rheotaxis speed selected and the distance to
the surface. Stochasticity in route selection is also contributed by the diffusion term of the
particle-tracking model representing the effect of turbulent motions.
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The route selection for each particle was determined by the first transit past the
diffluence into Old River or the San Joaquin River. Table 1 presents several metrics of
particle route selection and comparisons between particle and tag route selection. “HOR
Fraction” is the fraction of particles (averaged over all particle entry points) taking the HOR
route, and the similarity across behaviors indicates that average route selection was similar
for all behaviors. The behavior in which most particles selected the same route as the
tagged smolts they represent (summarized in the Fraction Consistent column) was surface
orientation. However, all behaviors produced similar values of this metric. The values
of the likelihood metric spanned from ~10−79 for the rheotaxis behavior, with a similar
value for passive particles, to ~10−40 for the most complex behavior, which included
surface orientation, rheotaxis and a CRW. CRW has the largest likelihood metric for a
single behavior component. This primarily suggests that more complex behaviors were
less likely to produce route selection estimates strongly inconsistent with the observed
route selection of a tag. This is expected for the behavior formulations including the CRW
component which is likely to disperse particles and avoid cases in which no particles follow
a route consistent with the associated tag. Greater likelihood metrics were also associated
with surface orientation and rheotaxis indicating some support for those behaviors. A
notable trend of the particle-tracking results is to overestimate head of Old River route
selection (Table 1). This may be due to imprecise predictions of flow into each junction,
which is strongly controlled by boundary conditions using measured flow observations
which themselves may be imprecise. The bias in estimated route selection may also be
influenced by lower detection efficiency of the acoustic array in Old River downstream of
the diffluence. Lack of detection downstream of the diffluence resulted in exclusion from
the dataset used in this analysis, leading to under-representation of tags with Old River
route in the dataset. The lowest estimated HOR Bias metric is for the surface orientation
and rheotaxis behavior.

4. Discussion

Behavioral PTM models and individual-based models can represent fish movement
by a wide range of approaches [25]. One approach is to specify instantaneous swimming
velocity through time which can vary in response to hydrodynamic or other environmental
conditions [13,26]. In some cases, the only data available indicating the distribution of fish
through time is trawl data collected at monthly or other coarse time intervals. In that case,
hypothesized behavior formulations can be evaluated based on the consistency of predicted
distribution with catch data from trawls [27]. In contrast, acoustic telemetry data collected
at a time interval of several seconds, combined with hydrodynamic modeling, allows
estimation of instantaneous swimming behavior of salmon at small spatial scales [13]. The
swimming speed can be further analyzed to provide swimming behavior formulations with
instantaneous swimming velocities. This provides a swimming behavior formulation with
instantaneous velocities directly supported by observations. Here we used the telemetry
data both to inform the representation of instantaneous swimming and also to evaluate the
ability of each behavior formulation to reproduce observed route selection.

The statistical distribution of estimated swimming speeds from the combined use
of acoustic telemetry data and three-dimensional hydrodynamic modeling was well-
represented by a Weibull distribution, and turn angles were well-represented by a wrapped
Cauchy distribution, as used in other animal movement representations [15]. There was
evidence that the swimming speed at subsequent 5 s intervals was autocorrelated, but this
autocorrelation was not strong. The proposed behavior formulations could be extended in
future work to account for autocorrelation in speed, particularly given a larger acoustic
telemetry dataset. Data could also be analyzed to identify multiple behavioral states [28]
allowing state switches over time. However, due to the limited quantity of telemetry
data, particularly because a typical duration between first detection and exit from the
array is 15 min, it would be challenging to identify changes in behavioral state from the
present data.
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On average, the route selection of the particles was fairly consistent with observed
route selection for all behavior formulations. However, the likelihood metric estimated
for each behavior formulation (Table 1) indicates that passive behavior is the least likely
behavior formulation. We conclude that, although the route selection of passive particles
often matches the observed route, the observed route selection of some individual tags was
unlikely to result from passive behavior, and that active behavior influences route selection.
This is consistent with findings of [14] which indicated that surface orientation would
influence route selection at a channel junction along a bend. Our study area is one that
would not be expected to have as large an influence of surface orientation on route selection
because the channel leading up to the diffluence is relatively straight so surface-oriented
particles may be expected to be fairly uniformly distributed laterally.

Due to the small spatial extent of our study, we caution against generalization of
the route selection results. Additional particle-tracking and behavioral PTM modeling
with particle releases further upstream (not reported here) showed strong differences
in route selection between the surface-orientation behavior and passive particles. The
observed vertical positions of Chinook salmon smolts could not be reliably calculated in
this study but vertical position observations would be a useful addition to future studies.
In addition, extending the study to resolve lateral distribution of tags upstream of the
first bend upstream of the diffluence may lead to strongly different conclusions about the
importance of behaviors on route selection.

These results inform understanding of swimming behavior and potential management
of juvenile Chinook salmon. For example, the conclusion that smolts were not behaving
as passive particles, consistent with previous work [13], is important for managers be-
cause it suggests that actions such as non-physical barriers that influence salmon smolt
behavior may increase survival by influencing route selection. We did not investigate the
drivers of smolt behavior in this paper, however we do suggest that multi-dimensional
tracking systems such as that used in this study could be leveraged to disentangle these
dynamics. Future work will be critical in understanding the drivers of juvenile salmon
behavior and the extent to which managers can affect behavior and routing. Such results
would certainly be valuable in California but could also hold value across the Pacific and
Atlantic Coasts where juvenile salmon migrations and management are similarly affected
by human activity.
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