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Abstract: This study aims to propose a strategy to optimize the performance of the Support Vector
Machine (SVM) scheme for extreme Meiyu rainfall prediction over southern Taiwan. Variables
derived from Climate Forecast System Reanalysis (CFSR) dataset are the candidates for predictor
selection. A series of experiments with different combinations of predictors and domains are designed
to obtain the optimal strategy for constructing the SVM scheme. The results reveal that the accuracy
(ACC), positive predictive values (PPV), probability of detection (POD), and F1-score can exceed
0.6 on average. Choosing the predictors associated with the Meiyu system and determine the domain
associated with the correlations between selected predictors and predictand can improve the forecast
performance. Our strategy shows the potential to predict extreme Meiyu rainfall in southern Taiwan
with lead times from 16 h to 64 h. The F1-score analysis further demonstrates that the forecast
performance of our scheme is stable, with slight inter-annual fluctuations from 1990 to 2019. Higher
performance would be expected when the north of the South China Sea is characterized by stronger
southwesterly flow and abundant low-level moisture for a given year.

Keywords: support vector machine; machine learning; extreme Meiyu rainfall

1. Introduction

Taiwan is a mountainous island located in the East Asia Summer Monsoon (EASM)
region. The north-south elongated Central Mountain Range (CMR) in Taiwan is about
2000 m in height on average. The rainfall of Taiwan ties closely to its topography and the
complex spatial-temporal variability of EASM. The rainfall in Taiwan is mainly contributed
by the Meiyu fronts and typhoons in boreal summer [1]. During the Meiyu season, May
and June, the EASM region is often characterized by a quasi-stationary front (Meiyu front)
and its associated rain belt, which is elongated northeast to southwest from the Sea of Japan
to the Bashi Channel and the northern South China Sea [2]. The Meiyu regime may then be
found over the Yangtze River in the period of mid-June to mid-July [3]. When the Meiyu
front moves to Taiwan, torrential rainfall will happen and may cause many disastrous
events. For example, the heavy rainfall of the Meiyu front on 12 June 2005, resulted in large
area inundation and landslide in western Taiwan. The total amount of rainfall in four days
reached 1645 mm in Majia Township over the region of southwestern Taiwan. The damage
loss is about USD 160 million from 12 June to 15 June in Taiwan [4].

While the Meiyu front is located to the north of Taiwan, there is a low-pressure area to
the north of Taiwan and a high-pressure area to the south of Taiwan, corresponding to a
large northward pressure gradient force. This pressure pattern is favorable to the formation
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of southwesterly flow [5], also known as low-level jet [6,7]. The heavy rainfall in southern
Taiwan is found to be correlated with the strong (e.g., 12 m s−1) southwesterly flow at low
levels (e.g., 850 hPa) that occurred in southern Taiwan. When the axis of the southwesterly
flow moves toward southern Taiwan, the moist air is transported from the northern South
China Sea to southern Taiwan and provides a favorable environment for continuous rain
and heavy rainfall [5,8,9].

Recently, artificial intelligence (AI) techniques are broadly used in many disciplines.
To provide valuable information to decision-makers, AI and related data science methods
generally work with big data in different disciplines [10]. In the past decades, the resolution
of model outputs and the amount of observed data has become finer and denser. High
amounts of high-quality data make it possible to apply AI techniques in the atmospheric
science discipline, especially on those types of high-impact weather. Although the dy-
namical model can capture the characteristics of extreme regional events, the high costs
of computation would be the weakness. Owing to the lower requirement of computation,
the AI techniques give another choice in the prediction of high-impact weather while
the computational cost is still high during the training period. The AI schemes that are
generally used on high-impact weather include traditional model output statistics (MOS),
artificial neural network (ANN), decision trees methods, support vector machine (SVM),
convolutional neural network (CNN), etc. [11,12]. An objective system was conducted
to predict synoptic-scale fronts by means of the CNN scheme [13]. The system performs
better than the numerical frontal analysis in front detection. In addition, CNN was used to
estimate the intensity of tropical cyclone (TC) based on satellite images [12]. The results
reveal high-quality estimations on TC intensity as the operational forecasts. The AI is also
applied to the study of air pollution using the support vector machine (SVM) method [14].
Furthermore, the SVM method was also used to identify synoptic weather types [15]. Their
results showed that the SVM method outperformed methods based on the traditional
objective diagnosis. The equitable threat Score (ETS) in their study can reach 0.33 in frontal
system identification, which is higher than the ETS that using the method based on thermal
front parameters [16].

For the simulation of Meiyu rainfall, some problems have been solved in recent decades.
The overall amount and general spatial distribution of Meiyu rainfall over Taiwan can be
well performed by the WRF Model [17]. Moreover, the phase-locked topographic extreme
Meiyu rainfall can also be captured to a reasonable extent by a high-resolution cloud-resolving
model, the cloud-resolving storm simulator (CReSS). Even so, poor forecast performance
is still found in migratory events [18]. Although the dynamical model can capture the
characteristics of extreme events, a finer resolution is required (the horizontal resolution of a
cloud-resolving model is usually less than 5 km) to enhance the forecast performance. The
higher the resolution of the model, the heavier the loading of computational cost. The AI
techniques provide another way to look at this problem. The focus of the study is to propose
an optimal strategy in predicting the regional extreme rainfall events using AI techniques.
Therefore, the SVM-based schemes for daily rainfall will be developed over the region of
southern Taiwan during the Meiyu season. The performance and associated skill scores
for these schemes are evaluated through a series of experiments. The remaining parts of
the article are as follows. Section 2 describes the data, the SVM method, and the design of
the experiments. Section 3 demonstrates the analysis results and the performance of these
schemes. The conclusion and discussion are given in Section 4.

2. Data and Methodology
2.1. Predictand and Predictors

The station’s daily rainfall data from Central Weather Bureau Taiwan are used as
the predictand over the region of southern Taiwan to conduct the SVM-based prediction
schemes (Figure 1). The 32-year (1988–2020) daily rainfall data for May and June in
southwestern Taiwan is ranked. Generally, an extreme weather event can be defined as
a case that is as rare as or rarer than the 10th or 90th percentile of a probability density
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function estimated from observations [19]. Following the definition, the 90th percentile
of daily rainfall is 35 mm (including zero events) and is taken as the threshold to define
extreme rainfall events. The occurrence frequency of daily rainfall over 35 mm for all
stations for 32 years is calculated. Moreover, if the frequency of extreme rainfall occurrence
for a given station is lower than 10%, then most of the event log may be labeled to 0.
The constructed model may perform skillfully by only predicting no extreme rainfall
event for most of the time. To construct a well-trained model, stations for which the
frequency of extreme rainfall occurrence is greater than 10% are selected. The stations
for that the extreme rainfall occurrence frequency is greater than 10% are mostly located
in the mountain region in southern Taiwan (Figure 1). The extreme rainfall events are
then labeled in daily records if any of these stations’ daily rainfall is greater than 35 mm.
On the other hand, predictors are adopted from the Climate Forecast System reanalysis
(CFSR) [20]. The CFSR data provides high-resolution temporal (6-hourly) and spatial
(0.5◦ × 0.5◦) information of weather systems to the corresponded period for the station’s
daily rainfall data.
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Figure 1. Locations of the CWB stations in southern Taiwan that used as the predictand to conduct
the SVM-based prediction schemes. The stations are chosen according to the occurrence frequency
that is greater than 10% for the daily rainfall over 35 mm for 32 years.

2.2. The SVM-Based Prediction Scheme

The SVM is one of the best algorithms for the classification of real-world data [21].
SVM has the potential to classify data clearly in high-dimensional space. For the extreme
event prediction, the SVM classifier is applied to build the connection between the daily
rainfall and the CFSR variables with a shift of time. Figure 2 demonstrates the process
of the prediction scheme. First, the CFSR data is used as the predictors to construct the
scheme. For the purpose of dimension reduction, the randomized principal component
analysis (PCA) is applied to the CFSR variables [22,23]. PCA has been widely used in the
environmental science field for feature extraction from a big dataset. Mathematically, the
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kth principal feature (i.e., mode) of a given time series of variable X with m × n points can
be expressed in the following equation.

Pk(t) =
m

∑
i=1

n

∑
j=1

Ei,j,kXi,j(t), (1)
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Here, the Pk and Ek are the principal components (PC) and the eigenvector in the kth
mode, respectively. In general, the modes would be ranked in descending order according
to the portion of explained variances for the time series. The eigenvector E represents
the spatial projection of the correspondence PC. The strength of this spatial pattern at a
given time t is controlled by the magnitude of P(t). By retaining the leading modes, the
dimension of the variable X could be reduced. In this study, a selected number of PCs for
CFSR variables will be substituted into the scheme as predictors.

Secondly, the labeled rainfall data (predictand) and those selected predictors will then
be included to construct the prediction scheme using the SVM algorithm. When training
the scheme, the polynomial kernel is used in this study as the kernel function of SVM to
produce a hyperplane that can clearly separate groups of heavy rainfall and non-heavy
rainfall events [24]. Meanwhile, the method of 10-fold cross-validation [25] with the same
random seed is applied to all the constructed schemes for evaluation. The ratio between the
amount for training data and the testing data is 9:1 at each time when the cross-validation
is made. After the cross-validation is repeated 10 times, the total size of the testing data
is equal to the total events. The testing data set will be used to evaluate the performance
of the SVM-based prediction scheme in this study. Finally, a binary label for the extreme
rainfall event will be given when the scheme is applied to a set of CFSR data that are
excluded from the training period.

2.3. Experiments
2.3.1. Choice of Predictors

The determination of the choice of predictors and analysis domain play important
roles in a successful prediction scheme. First, most of the variables in CFSR are considered
as the predictors in our experiments, named group1. On the other hand, the selected
variables that may cause extreme rainfall in southern Taiwan will be considered in the
experiment of group2. The principles of selecting variables are based on a large number of
studies about the Meiyu system and torrential rainfall in Taiwan during the Meiyu season.
These Meiyu studies could be categorized into five topics: (1) the structure of front, (2) the
frontal genesis, (3) the evolution of front, (4) the low-level Jet (LLJ), and (5) the interaction
between the Meiyu system and topography [2]. The environment that favors the torrential
Meiyu rainfall happening in southwestern Taiwan is characterized by the development
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of meso-scale convective systems over the Southern Taiwan Strait within the warm and
moist southwesterly monsoon flow. Meanwhile, the interaction between LLJs and Taiwan
topography may enhance the heavy rainfall in the windward slopes of southwestern
Taiwan. During the process of heavy rainfall development caused by the Meiyu system,
the latent heat release plays an important role in maintaining the convective system and
the propagation of the Meiyu regime [26]. Following the concepts of the aforementioned
studies, we facilitate the choice of variables and focus on the low-level standard isobaric
surface, such as 700 hPa, 850 hPa, 925 hPa, and 1000 hPa. For higher levels, we choose the
200 hPa and 400 hPa wind fields associated with upper-level jet and divergence fields. The
associated predictors are chosen as group2 and are listed in Table 1.

Table 1. List of variables at selected levels that were used as predictors in group1 and group2 experiments.

Variables Group1 Group2

Mean sea level pressure (MSLP) Surface Surface
Height (H) 100–950 hPa, interval 50 hPa 700 hPa, 850 hPa

Temperature (T) 100–1000 hPa, interval 50 hPa 700 hPa, 850 hPa, 925 hPa, 1000 hPa
Relative humidity (RH) 100–1000 hPa, interval 50 hPa 700 hPa, 850 hPa, 925 hPa, 1000 hPa

Zonal wind (U) 100–1000 hPa, interval 50 hPa 200 hPa, 400 hPa, 700 hPa, 850 hPa, 1000 hPa
Meridional wind (V) 100–1000 hPa, interval 50 hPa 200 hPa, 400 hPa, 700 hPa, 850 hPa, 1000 hPa
Vertical velocity (W) 100–1000 hPa, interval 50 hPa

2.3.2. Domain Selection

In addition to the choice of predictors, we also investigate the method of domain selection.
Generally, a selected domain should be large enough to describe the large-scale circulation
which is relevant to the predictand [27]. Furthermore, the choice of analysis domain can
also be defined by the boundary of zero correlation coefficient between predictors and the
predictand [28]. In the present study, the two methods above are applied to the experiments.
Domain-1 is the region from 90◦ E to 150◦ E and 10◦ S to 50◦ N, where the Meiyu-related
rain belt associated with the revolution of the EASM is found [29]. Domain-2 will be defined
according to the combination of the correlation coefficients among the main predictors and the
rainfall in southern Taiwan between May and June. This method corresponds to the chosen
predictors and will be further explained in Section 3. The performance of the schemes based
on domain-1 and domain-2 will be examined in Section 3.

Several experiments are designed to obtain an optimal strategy for the scheme con-
struction. Table 2 list the experiments and their descriptions. The scheme based on predic-
tors of group1 and domain1 is defined as EXP-G1D1. The scheme constructed by domain1
using the variables of group2 as predictors (hereafter EXP-G2D1) will then be compared
with EXP-G1D1. The scheme with higher skill between EXP-G1D1 and EXP-G2D1 will
then be selected for further investigation on domain determination. EXP-G2D2 is chosen as
the base experiment to test different forecast lead times further, named EXP-G2D2-L2, etc.

Table 2. List of experiments.

Experiments Variable Type Domain Type Lead Time

EXP-G1D1 Group1 Domain-1 16 h
EXP-G2D1 Group2 Domain-1 16 h
EXP-G2D2 Group2 Domain-2 16 h

EXP-G2D2-L2 Group2 Domain-2 28 h
EXP-G2D2-L3 Group2 Domain-2 40 h
EXP-G2D2-L4 Group2 Domain-2 52 h
EXP-G2D2-L5 Group2 Domain-2 64 h
EXP-G2D2-L6 Group2 Domain-2 76 h



Water 2021, 13, 2884 6 of 13

2.4. Evaluation Methods

The binary labels of extreme rainfall events can be determined by both the SVM
prediction scheme and the corresponding observation pairs. The contingency table (Table 3)
can be made to evaluate the performance of these experiments. The four elements in the
contingency table, true positive, false positive, false negative, and true negative are denoted
as A, B, C, and D, respectively.

Table 3. Contingency table for identifying the extreme rainfall events. Elements A, B, C, and
D indicate true positive, false positive, false negative, and true negative, respectively.

Observation

True False

Predict
True A (true positive) B (false positive)
False C (false negative) D (true negative)

Scores such as accuracy (ACC), positive predictive values (PPV), probability of detec-
tion (POD), and F1-score [30] can be calculated based on these four elements. These scores
are generally used to compare the ability of constructed schemes in identifying extreme
rainfall events. The formulas of these scores are explained as follows:

• ACC depicts the level of agreement between the result of identification and observa-
tion. The lower accuracy would be 0, and the higher accuracy would be 1.

ACC = (A + D)/(A + B + C + D), (2)

• PPV demonstrates the ability of schemes in identifying cases of a true positive. The
formula can be written as:

PPV = A/(A + B), (3)

• POD is also known as the true positive rate. It measures the portion of hits that are
correctly identified:

POD = A/(A + C), (4)

• F1-score is a common measurement for anomaly detection. A higher weighting is
given in the F1-score for true positive cases. The mathematic form of F1-score can be
expressed as:

F1 = 2A/(2A + B + C), (5)

3. Results

A preliminary examination is made based on EXP-G1D1 and EXP-G2D1 to decide the
number of PCs used as predictors in the scheme. The PCs are first ranked in descending
order according to the percentage of total explained variances. Figure 3 demonstrates the
forecast scores of EXP-G1D1 and EXP-G2D1 for the leading 5 to the leading 100 PCs. The
F1-score for EXP-G1D1 increases gradually from K5 to K45 and slightly decreases after
K45. The forecast performs better when the scheme uses the leading 45 modes of PCs (K45).
EXP-G2D1 also shows similar results. The highest score of PPV occurs at K70. However,
the POD shows a decrease from K60 to K70 (figure not shown). This result implies that the
model has too many missing events. In general, a well-trained model is able to increase
the ratio of hits and reduce both the missing and the false alarms at the same time. When
compared with PPV and POD, F1-score includes all three situations and is considered to
be a more comprehensive score to evaluate the model performance. Therefore, we use
the leading 45 modes of PCs for CFSR variables according to the F1-score and applied
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them to be the predictors for constructing our scheme in all experiments. In addition, the
F1-score analysis indicates that the performance of EXP-G2D1 is, in general, better than
that of EXP-G1D1 from K5 to K100. The only difference between EXP-G1D1 and EXP-G2D1
is the choice of predictors. In other words, using the selected predictors associated with
Meiyu rainfall in southern Taiwan in the scheme can improve the forecast performance.
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Domain selection may be another factor to influence the performance of schemes. The
correlation maps between the predictors and the predictand could be one of the guidance
to determine the domain for the constructed scheme [28]. Figure 4 shows the correlation
maps among the main variables and Meiyu rainfall in southern Taiwan. These maps are
characterized by a positive or negative center around Taiwan for most of the variables. The
primary signal is more intensive in the vicinity of Taiwan, which implies that a smaller
area can be defined as Domain-2. A contribution index (CI) obtained from the combination
of the correlation maps proposed in Figure 4 is made to include the contribution of all the
variables (Figure 5). The CI can be defined in each grid point as:

CI =
21

∑
n=1

Vn|Rn|, (6)

Here n is the numbers of used variables, and Vn is the percentage of total explained
variances of the leading 45 PCs for each variable. |Rn| is the absolute value of the corre-
lation coefficient in Figure 4. The results indicate that a maximum center is discernible
in the vicinity of Taiwan. Therefore, Domain 2 is defined as the region of 10◦ N–35◦ N,
105◦ E–135◦ E.

Forecast scores are compared between EXP-G2D1 and EXP-G2D2 to understand the
performance of schemes based on different domains. Figure 6 depicts the performance
of EXP-G2D1 and EXP-G2D2. As shown in Figure 6, the four kinds of forecast scores,
F1-score, POD, PPV, and ACC for both EXP-G2D1 and EXP-G2D2, are all higher than
0.6. The ACC and PPV for EXP-G2D2 are higher than 0.7. Furthermore, all the forecast
scores in EXP-G2D2 are higher than those in EXP-G2D1. Figure 7 gives the difference ratio
of ACC, PPV, POD, and F1-score for EXP-G2D1 and EXP-G2D2 relative to the result of
EXP-G1D1, respectively. The difference is statistically significant under the Student’s t-test
at a 95% significance level. The two-tailed p-value is 0.0378 for EXP-G2D1 and 0.0014 for
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EXP-G2D2. Based on the result, EXP-G2D1 and EXP-G2D2 have better performance than
that in EXP-G1D1, especially the PPV in EXP-G2D2. PPV improves nearly 5% relative to
EXP-G1D1 and is about 4.5% higher than that of EXP-G2D1. The F1-score of EXP-G2D2
is nearly 3.5% higher than that of EXP-G2D1. The result reveals that higher forecast
performance can be found when the scheme is constructed by Domain2.
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The inter-annual variability of the F1-score in EXP-G2D2 is shown in Figure 8, which
examines the SVM-based prediction scheme’s ability to capture the extreme rainfall signals
in the Meiyu season from 1990 to 2019. The result of a testing year can be obtained by
excluding the data of the testing year and then training the SVM scheme by the data from
the other 29 years [31]. This process is carried out for one year at a time. The SVM module
will be re-trained when changing the target testing year. After repeating the process for
30 different testing years, the 30-year’s evaluation score would be obtained. Figure 8
indicates that the maximum of the F1-score is about 0.8 in 1994 and 0.25 for the minimum
in 1992. The average of the F1-score is 0.6. A composite map for low-level moisture
and circulation difference is made between the top 5 and the last 5 years of the F1-score
(Figure 9). Shadings in Figure 9 represent the composite difference of low-level water
vapor flux (integrated water vapor flux from 1000 hPa to 850 hPa), and vectors represent
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the difference of 850 hPa winds (less than 1 m s−1 are not shown). The composite map
indicates that the low-level water vapor flux in the region of 15◦ N–20◦ N, 115◦ E–120◦

E is higher for top-5 years. In contrast, the low-level water vapor flux is found lower in
the region of the Philippian Sea to the southern South China Sea, accompanied by the
weaker southwesterly winds. Based on the result, a higher forecast performance would be
expected when stronger southwesterly and abundant moisture are observed in the region
of 15◦ N–20◦ N, 115◦ E–120◦ E for a given year.
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Figure 10 shows the performance of the forecast schemes for different lead times.
These schemes are constructed based on EXP-G2D2, except for predicting in different lead
times (Table 2). The PPV and ACC are over 0.6 for all the lead times. The POD and F1-score
reveal a decaying along with the increase in the lead time. For the F1-score, most of the
schemes are more than 0.5 concerning different lead times, except for the lead time of 76 h.
In general, the settings of EXP-G2D2 are capable of performing good forecast scores 64 h
earlier to the extreme Meiyu rainfall event in southern Taiwan.
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4. Discussion and Conclusions

This study investigates the strategy to construct an optimal SVM-based scheme for
predicting the extreme Meiyu rainfall events in southern Taiwan. The choice of predictors
and the selection of domain play crucial roles in scheme construction. Different strategies
concerning the combination of predictors and domains are implemented to design several
experiments for different schemes. The ACC, PPV, POD, and F1-score can exceed 0.6 on
average. The strategy of EXP-G2D2 performs best among all experiments. The results
indicate that the strategy of EXP-G2D2 can improve the forecast performance of the SVM
prediction scheme. In other words, choosing the predictors associated with the Meiyu
system and determine the domain associated with the correlation coefficients of selected
predictors and predictand can benefit the construction of the prediction scheme. The
performance of WRF rainfall forecasting during the Meiyu season in Taiwan has been
reported in recent years [17,18]. For example, the threat score (TS) for the 24 h forecasts is
about 0.23 at the 50 mm threshold and 0.3 at the 25 mm threshold from 2012–2014 Meiyu
seasons [18]. Although the case, the rainfall threshold, and the leading time are different,
it is still interesting to show our TS evaluation for reference. As a result, the TS of the
SVM-based prediction scheme in this study reaches 0.4 for the 28 h forecast at 35 mm
threshold over southern Taiwan.

The SVM-based scheme’s ability to capture the inter-annual variability of extreme
Meiyu rainfall events is also investigated. According to the results, higher forecast per-
formance will be expected for the scheme when stronger southwesterly as well as abun-
dant low-level moisture is found over the region to the north of the South China Sea
(15◦ N–20◦ N, 115◦ E–120◦ E) for a given year. In addition, the predictability of the scheme
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based on EXP-G2D2 is further examined. The scheme shows a stable capability to predict
the extreme Meiyu rainfall events in southern Taiwan for lead times from 16 h to 64 h.

This study proposes a strategy to optimize the implementation of an SVM-based
scheme for predicting the extreme Meiyu rainfall events in southern Taiwan. Some critical
issues such as the choice of predictors and the determination of domain are discussed in
the article. A stable scheme could be obtained when following this strategy, while some
uncertainty on the inter-annual variability still exists. The result reveals the high potential
of AI in extreme rainfall prediction. However, the prediction of rainfall amount is not
addressed yet. Further investigation is required for the application of AI techniques to
meteor-hydrological disciplines.

Author Contributions: Conceptualization, J.-L.C. and C.-C.C.; methodology, S.-H.S.; software, T.-S.Y.;
validation, L.-R.H., K.-L.L. and C.-J.W.; formal analysis, J.-L.C. and C.-C.C.; investigation, L.-H.H.;
resources, L.-R.H. and Y.-C.Y.; data curation, J.-L.C., C.-C.C. and L.-H.H.; writing—original draft
preparation, J.-L.C.; writing—review and editing, L.-H.H.; visualization, C.-C.C.; supervision, Y.-C.Y.;
project administration, J.-L.C. and Y.-C.Y.; funding acquisition, Y.-C.Y. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Central Weather Bureau (CWB) Taiwan station data. Available online:
https://www.cwb.gov.tw/V8/C/D/DailyPrecipitation.html (accessed on 5 January 2021); Climate
forecast system reanalysis (CFSR) data. Available online: https://climatedataguide.ucar.edu/climate-
data/climate-forecast-system-reanalysis-cfsr (accessed on 10 January 2021).

Acknowledgments: The authors appreciate Chia-Chun Wu to support the edit of the article. We also
thank the National Science and Technology Center for Disaster Reduction for the support of funding
and other resources.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, C.-S.; Chen, Y.-L. The Rainfall Characteristics of Taiwan. Mon. Weather Rev. 2003, 131, 1323–1340. [CrossRef]
2. Chen, G.T.J. Research on the phenomena of Meiyu during the past quarter century: An overview. In World Scientific Series for

Meteorology of East Asia, East Asian Monsoon; Chang, C.P., Ed.; World Scientific Publishing Co.: Hackensack, NJ, USA, 2004;
Volume 2, pp. 357–403.

3. Chen, G.T.J. Observation aspects of the Mei-Yu phenomena in subtropical China. J. Meteorol. Soc. Jpn. 1983, 61, 306–312. [CrossRef]
4. Estimated Production Loss of Major Agricultural Disasters. 1994–2020. Available online: https://agrstat.coa.gov.tw/sdweb/

public/book/Book_File.ashx?chapter_id=371_80_2 (accessed on 16 August 2021).
5. Chien, F.-C.; Chiu, Y.-C.; Tsou, C.-H. A Climatological Study of Southwesterly Flows and Heavy Precipitation in Taiwan during

Mei-yu Seasons from 1979 to 2018. J. Meteorol. Soc. Jpn. 2021. [CrossRef]
6. Chen, G.T.J.; Yu, C.C. Study of low-level jet and extremely heavy rainfall over northern Taiwan in the Mei-Yu season. Mon. Weather

Rev. 1988, 116, 884–891. [CrossRef]
7. Chen, G.T.J.; Wang, C.-C.; Lin, D.T.-W. Characteristics of low-level jets over northern Taiwan in Mei-yu season and their

relationship to heavy rain events. Mon. Weather Rev. 2005, 133, 20–43. [CrossRef]
8. Chen, G.T.J.; Hsu, Y.S. Composite structure of a low level jet over southern China observed during the TAMEX period. J. Meteorol.

Soc. Jpn. 1997, 75, 1003–1018. [CrossRef]
9. Chien, F.-C.; Chiu, Y.-C. A composite study of southwesterly flows and rainfall in Taiwan. J. Meteorol. Soc. Jpn. 2019, 97, 1023–1040.

[CrossRef]
10. Karstens, C.D.; Stumpf, G.; Ling, C.; Hua, L.; Kingfield, D.; Smith, T.M.; Correia, J., Jr.; Calhoun, K.; Ortega, K.; Melick, C.; et al.

Evaluation of a probabilistic forecasting methodology for severe convective weather in the 2014 hazardous weather testbed.
Weather Forecast. 2015, 30, 1551–1570. [CrossRef]

11. McGovern, A.; Elmore, K.L.; Gagne, D.J.; Haupt, S.E.; Karstens, C.D.; Lagerquist, R.; Smith, T.; Williams, J.K. Using artificial
intelligence to improve real-time decision making for high-impact weather. Bull. Am. Meteorol. Soc. 2017, 98, 2073–2090.
[CrossRef]

12. Wimmers, A.; Velden, C.; Cossuth, J.H. Using deep learning to estimate tropical cyclone intensity from satellite passive microwave
imagery. Mon. Weather Rev. 2019, 147, 2261–2282. [CrossRef]

https://www.cwb.gov.tw/V8/C/D/DailyPrecipitation.html
https://www.cwb.gov.tw/V8/C/D/DailyPrecipitation.html
https://climatedataguide.ucar.edu/climate-data/climate-forecast-system-reanalysis-cfsr
https://climatedataguide.ucar.edu/climate-data/climate-forecast-system-reanalysis-cfsr
http://doi.org/10.1175/1520-0493(2003)131&lt;1323:TRCOT&gt;2.0.CO;2
http://doi.org/10.2151/jmsj1965.61.2_306
https://agrstat.coa.gov.tw/sdweb/public/book/Book_File.ashx?chapter_id=371_80_2
https://agrstat.coa.gov.tw/sdweb/public/book/Book_File.ashx?chapter_id=371_80_2
http://doi.org/10.2151/jmsj.2021-044
http://doi.org/10.1175/1520-0493(1988)116&lt;0884:SOLLJA&gt;2.0.CO;2
http://doi.org/10.1175/MWR-2813.1
http://doi.org/10.2151/jmsj1965.75.6_1003
http://doi.org/10.2151/jmsj.2019-057
http://doi.org/10.1175/WAF-D-14-00163.1
http://doi.org/10.1175/BAMS-D-16-0123.1
http://doi.org/10.1175/MWR-D-18-0391.1


Water 2021, 13, 2884 13 of 13

13. Lagerquist, R.; Mcgovern, A.; Gagne, D.J. Deep Learning for Spatially Explicit Prediction of Synoptic-Scale Fronts. Weather Forecast.
2019, 34, 1137–1160. [CrossRef]

14. Shahriar, S.A.; Kayes, I.; Hasan, K.; Salam, M.A.; Chowdhury, S. Applicability of machine learning in modeling of atmospheric
particle pollution in Bangladesh. Air Qual. Atmos. Health 2020, 13, 1247–1256. [CrossRef]

15. Su, S.H.; Chu, J.L.; Yo, T.S.; Lin, L.Y. Identification of synoptic weather types over Taiwan area with multiple classifiers. Atmos.
Sci. Lett. 2018, 19, e861. [CrossRef]

16. Hope, P.; Keay, K.; Pook, M.; Catto, J.; Simmonds, I.; Mills, G.; McIntosh, P.; Risbey, J.; Berry, G. A comparison of automated
methods of front recognition for climate studies: A case study in southwest Western Australia. Mon. Weather Rev. 2014, 142,
343–363. [CrossRef]

17. Wang, C.-C.; Chien, F.-C.; Paul, S. An evaluation of WRF rainfall forecasts in Taiwan during three Mei-Yu seasons from 2008 to
2010. Weather Forecast. 2017, 32, 1329–1351. [CrossRef]

18. Wang, C.-C.; Chuang, P.-Y.; Chang, C.-S.; Tsuboki, K.; Huang, S.-Y.; Leu, G.-C. Evaluation of Mei-Yu heavy-rainfall quantitative
precipitation forecasts in Taiwan by a cloud-resolving model for three seasons of 2012–2014. Nat. Hazards Earth Syst. Sci. Discuss.
2021. in review. [CrossRef]

19. IPCC. Annex III: Glossary [Planton, S. (Ed.)]. Contribution of Working Group I to the Fifth Assessment Report of the Intergov-
ernmental Panel on Climate Change. In Climate Change 2013: The Physical Science Basis; Stocker, T.F., Qin, D., Plattner, G.-K.,
Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK;
New York, NY, USA, 2013; pp. 1447–1466. [CrossRef]

20. Saha, S.; Moorthi, S.; Pan, H.-L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D.; et al. The ncep climate
forecast system reanalysis. Bull. Am. Meteorol. Soc. 2010, 91, 1015–1058. [CrossRef]

21. Fernández-Delgado, M.; Cernadas, E.; Barro, S.; Amorim, D. Do we need hundreds of classifiers to solve real world classification
problems. J. Mach. Learn. Res. 2014, 15, 3133–3181.

22. Halko, N.; Martinsson, P.-G.; Shkolnisky, Y.; Tygert, M. An algorithm for the principal component analysis of large data sets.
SIAM J. Sci. Comput. 2011, 33, 2580–2594. [CrossRef]

23. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

24. Karatzoglou, A.; Smola, A.; Hornik, K.; Zeileis, A. Kernlab—An S4 package for kernel methods in R. J. Stat. Softw. 2004, 11, 1–20.
[CrossRef]

25. Stone, M. Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. Ser. B 1974, 36, 111–147. [CrossRef]
26. Wang, C.-C.; Chen, G.T.J. Case Study of the Leeside Mesolow and Mesocyclone in TAMEX. Mon. Weather Rev. 2002, 130, 2572–2592.

[CrossRef]
27. Feddersen, H.; Andersen, U. A method for statistical downscaling of seasonal ensemble predictions. Tellus A Dyn. Meteorol.

Oceanogr. 2005, 57, 398–408. [CrossRef]
28. Benestad, R.E. Empirical-statistical downscaling in climate modeling. Eos Trans. AGU 2004, 85, 417–422. [CrossRef]
29. Huang, R.; Huang, G.; Wei, Z. Climate variations of the summer monsoon over China. In World Scientific Series for Meteorology of

East Asia, East Asian Monsoon; Chang, C.P., Ed.; World Scientific Publishing Co.: Hackensack, NJ, USA, 2004; Volume 2, p. 217.
30. Jolliffe, I.T.; Stephenson, D.B. Forecast. Verificaton: A Practitioner’s Guide in Atmospheric Science, 2nd ed.; Wiley-Blackwell: Oxford,

UK, 2012.
31. Michaelsen, J. Cross-validation in statistical climate forecast models. J. Clim. Appl. Meteorol. 1987, 26, 1589–1600. [CrossRef]

http://doi.org/10.1175/WAF-D-18-0183.1
http://doi.org/10.1007/s11869-020-00878-8
http://doi.org/10.1002/asl.861
http://doi.org/10.1175/MWR-D-12-00252.1
http://doi.org/10.1175/WAF-D-16-0190.1
http://doi.org/10.5194/nhess-2020-397
http://doi.org/10.1017/CBO9781107415324.031
http://doi.org/10.1175/2010BAMS3001.1
http://doi.org/10.1137/100804139
http://doi.org/10.18637/jss.v011.i09
http://doi.org/10.1111/j.2517-6161.1974.tb00994.x
http://doi.org/10.1175/1520-0493(2002)130&lt;2572:CSOTLM&gt;2.0.CO;2
http://doi.org/10.3402/tellusa.v57i3.14656
http://doi.org/10.1029/2004EO420002
http://doi.org/10.1175/1520-0450(1987)026&lt;1589:CVISCF&gt;2.0.CO;2

	Introduction 
	Data and Methodology 
	Predictand and Predictors 
	The SVM-Based Prediction Scheme 
	Experiments 
	Choice of Predictors 
	Domain Selection 

	Evaluation Methods 

	Results 
	Discussion and Conclusions 
	References

