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Abstract: Accurate rainfall forecasting in watersheds is of indispensable importance for predicting
streamflow and flash floods. This paper investigates the accuracy of several forecasting technologies
based on Wavelet Packet Decomposition (WPD) in monthly rainfall forecasting. First, WPD decom-
poses the observed monthly rainfall data into several subcomponents. Then, three data-based models,
namely Back-propagation Neural Network (BPNN) model, group method of data handing (GMDH)
model, and autoregressive integrated moving average (ARIMA) model, are utilized to complete the
prediction of the decomposed monthly rainfall series, respectively. Finally, the ensemble prediction
result of the model is formulated by summing the outputs of all submodules. Meanwhile, these
six models are employed for benchmark comparison to study the prediction performance of these
conjunction methods, which are BPNN, WPD-BPNN, GMDH, WPD-GMDH, ARIMA, and WPD-
ARIMA models. The paper takes monthly data from Luoning and Zuoyu stations in Luoyang city of
China as the case study. The performance of these conjunction methods is tested by four quantitative
indexes. Results show that WPD can efficiently improve the forecasting accuracy and the proposed
WPD-BPNN model can achieve better prediction results. It is concluded that the hybrid forecast
model is a very efficient tool to improve the accuracy of mid- and long-term rainfall forecasting.

Keywords: monthly rainfall forecasting; back-propagation neural network; group method of data
handing; autoregressive integrated moving average; wavelet packet decomposition

1. Introduction

Hydrological time series forecasting is essential for a variety of real-world manage-
ments or operation of water resources systems [1,2]. Precipitation is affected by many
factors such as atmospheric circulation, topography, climate change, and human activities.
The improvement of precipitation prediction has received a lot of attention across the world
and many models have been constructed to improve the hydrological process simulation
and prediction accuracy [3–5].

These models can fall into two categories: knowledge-based models and data-based
models [6]. Knowledge-based model is a numerical simulation technology that describes
natural phenomena on the basis of an internal physical mechanism of the system [7]. How-
ever, the lack of multisource information and optimization complexity of computation
parameters limit the generalization of physical-based models [8]. In contrast, data-based
models can obtain satisfying results by using historical data without involving the physical
load within hydrological time series [9,10]. Hence data-based models have received a
lot of attention in the hydrological forecasting field. In this paper, we are devoted to
verifying several data-based models for monthly rainfall time series forecasting. There
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are many data-based models, e.g., artificial neural networks (ANN) [11], genetic program-
ming (GP) [12], support vector machines (SVM) [13], and adaptive neuro-fuzzy inference
system (ANFIS) [14].

Box–Jenkins models [15], which are considered as the most comprehensive tool in all
statistical methods of time series forecasting, include auto-regressive (AR), moving average
(MA), autoregressive moving average (ARMA), ARIMA, and other models. ARIMA is a
linear statistical model and normally used to simulate and forecast time series with tempo-
ral correlation [16,17]. With the advance of technology such as computers, communication,
remote sensing, and geography information systems, the prediction ability of the ARIMA
model has been greatly improved [18]. Rahman et al. [19] used Mann–Kendall, Spear-
man’s rho test, and the ARIMA model to analyze and predict rainfall trends in Bangladesh.
Mishra et al. [20] compared seasonal ARIMA and ARIMA models for runoff forecasting
accuracy in the River Brahmaputra Basin, and the results indicated that ARIMA could pro-
vide higher accuracy. Rizeei et al. [21] combined a soil conservation service–curve number
(SCS-CN) model with an ARIMA and land transformation model to monitor the changes
of surface runoff. Wang et al. [22] proposed a hybrid Empirical Mode Decomposition
(EMD)/Ensemble Empirical Mode Decomposition (EEMD)-ARIMA model for long-term
runoff forecasting.

ANN, a nonlinear data-based model, is extensively used for hydrological applica-
tions [23,24]. The major application of ANN can be summarized as streamflow forecast-
ing [25,26], rainfall forecasting [27,28], groundwater problems [29,30], suspended sediment
estimation [31], regional drought analysis and forecasting [32,33], etc. Among different
kinds of ANN, BPNN is a multilayer feed forward ANN with unidirectional transmis-
sion, which has advantages of learning and extracting the features, memory association,
parallel architecture, and independent learning and adaptive capabilities [34]. The BPNN
model has been widely applied to precipitation prediction, study of rainfall prediction with
meteorological parameters [35], estimation of regional surface soil moisture [36,37], etc.
Consequently, we attempt to use BPNN for monthly rainfall forecasting as a nonlinear
data-based model.

GMDH is a sub-model of ANN for complex system modeling [38]. The main principle
is to construct an analytic function of the system by quadratic node transfer function. The
coefficients of binomial transfer function are obtained by polynomial regression. GMDH
has been successfully used in broad fields such as economics, engineering, science, medical
diagnostics, control systems, signal processing, and water resources [39,40].

Although the performance of ANN is remarkable in dealing with linear problems, it
cannot handle non-stationary and nonlinear problems that arise in rainfall data. Studies
have shown that forecasting accuracy of models could be improved by appropriate data
preprocessing techniques to eliminate noises in hydrological time series. In recent years,
many scholars have performed a lot of work based on this idea to improve the prediction
performance of models. Partal and Kişi [41] proposed a wavelet-neuro-fuzzy model,
especially suitable for forecasting daily rainfall time series, which have zero rainfall in
summer months. Wang, et al. [42] proposed the EEMD-ANN model to forecast medium-
and long-term runoff time series. Yu, et al. [43] explored Fourier transform (FT) and
support vector regression (SVR) for forecasting monthly reservoir inflow and compared
them with EEMD-SVR and SSA-SVR models, and found that FT-SVR consumed more
computational resources in parameter calibration. The least-squares wavelet analysis
(LSWA) [2] has shown promising results in successful analysis of streamflow and climate
time series. Feng, et al. [44] combined variational mode decomposition (VMD), SVM, and
quantum-behaved particle swarm optimization (QPSO) to forecast monthly streamflow
and achieved excellent prediction results.

Most common decomposition approaches perform well only when the input variables
meet certain conditions. For example, EMD may suffer from mode mixing due to intermit-
tent signal [45], and this effect is important to hydrological applications. The stationarity of
time series has a great influence on the accuracy of position in the domain identified by
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FT method [46]. Nevertheless, hydrological time series are non-stationary, which means
that statistical properties will fluctuate over time [47]. In recent years, researchers have
paid great attention in WPD. The main idea of WPD method is using multiple filters to
decompose the original signal into more linear sub-signals with different frequency char-
acteristics, which can be regarded as an improved version of the wavelet decomposition
(WD). In discrete wavelet transform (DWT), when performing next layer decomposition,
only approximate coefficients obtained from the upper layer can pass through the filter [48].
However, when the WPD method performs the next level of decomposition, both the
low-frequency sequence and high-frequency sequence can pass the filter [49], and the total
number of coefficients is still the same without redundancy. Therefore, WPD can extract the
features of the original signal more comprehensively, which not only provides a wide range
of possibilities for signal analysis but also allows the best matching analysis of the signal.
Meanwhile, compared with DWT, the decomposition structure of WPD provides more
opportunities to improve computational efficiency [50]. Therefore, WPD is preferred in
this paper in consideration of the complex nonlinearity and non-stationary characteristics
of hydrologic time series.

The purpose of this paper is to investigate the accuracy of ARIMA, GMDH, and BPNN
models based on WPD in monthly rainfall forecasting. Most former research often improve
the accuracy of prediction models by optimizing model parameters using optimization
algorithms, and the improvement effect of this method is often not obvious. In this paper,
the data preprocessing method is adopted to improve the accuracy of forecasting models,
which can attain more linear sub-series and significantly reduce the difficulty of prediction.
Firstly, we use WPD to decompose original monthly rainfall series into a series of sub-series
with different frequencies and spatiotemporal resolutions. Then, the subseries decomposed
by WPD are used as input data of ARIMA, GMDH, and BPNN to train for prediction.
Finally, the prediction results of each hybrid model are obtained by linearly accumulating
the outputs of each submodule.

The paper is arranged as follows: Section 2 introduces the basic theory principles
of methods and evaluations indices. The forecasting experiments and discussion are
presented in Section 3. Finally, Section 4 concludes the paper.

2. Materials and Methods
2.1. Study Region

Two hydrological stations located in Yiluo River Basin on the south bank of the middle
stream of Yellow River are considered as the case study. Yiluo River is an important
first-level tributary of Yellow River and one of the main sources of floods in the lower
reaches of Yellow River, with a drainage area of 18,881 km2. The mainstream Luo River is
446.9 km long, and the tributary Yi River is 264.8 km long. Luoning and Zuoyu Stations
are located in the middle stream of Luo River and the middle and upper stream of Yi River,
respectively. The average annual rainfall of the two stations are 635.2 mm and 834.3 mm,
respectively. The inter-seasonal fluctuations of rainfall in two stations are very strong. For
Luoning station, the average annual rainfall in December and January are 7.9 mm and
7.5 mm, respectively, and the average annual rainfall in July and August are 115.6 mm and
96.6 mm, respectively, indicating high difficulty of modeling. The location of the study area
is shown in Figure 1.
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Figure 1. Location of Luoning and Zuoyu stations.

2.2. Data Sets and Pre-Processing

Monthly rainfall data from two stations are used to investigate the accuracy of several
prediction methods. Table 1 shows statistical parameters of monthly rainfall data at
Luoning and Zuoyu stations. It can be observed that the original data shows obvious
standard deviation, indicating a high difficulty of modeling. Figures 2 and 3 present rainfall
data for the two stations, where the data run from 1980 to 2016. In this study, data from
1980 to 2013 are used for training and the final three years are utilized for testing.

Table 1. Statistical parameters of monthly rainfall data at Luoning and Zuoyu stations.

Station Max (mm) Min (mm) Mean (mm) Std (mm)

Luoning All 313.8 0 47.18 50.93
Training 313.8 0 47.05 50.86
Testing 261.7 0.4 48.66 52.39

Zuoyu All 430.2 0 69.53 74.39
Training 430.2 0 69.92 75.33
Testing 316.2 0 65.05 63.44

Note: Max is the maximum, Min is the minimum, Std is the standard deviation.

WPD is used to decompose two observed monthly rainfall series into a series of
sub-series. The data of all series are divided into training and testing datasets that are
normalized to a range of [0, 1] as

x′i =
xi − min

1≤i≤n
{xi}

max
1≤i≤n

{xi} − min
1≤i≤n

{xi}
(1)

where x′i and xi are the normalized and the observed value of the i-th data sample,
respectively.
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2.3. Methods
2.3.1. ARIMA Model

The ARIMA model proposed by Box and Jenkins [15] has been extensively utilized
for analyzing and forecasting hydrologic time series [51]. The principle of ARIMA is to
use historical times series to find the forecasting noise, so that the data can be processed
smoothly, thus solving the random disturbance problem of the series [52]. ARIMA model
construction includes six steps: data acquisition, data preprocessing, model identification,
model order determination, parameter estimation, and model verification. Two monthly
series collected from China are taken as the test cases. Data preprocessing is the test of
stationarity of time series. Recently, ACF (autocorrelation function) and PACF (partial
autocorrelation function) are generally adopted to test the stationarity of data. In this paper,
the Box–Jenkins method is used for model identification, and Bayes information criteria
(BIC) method is used for model order determination. In ARIMA (p, d, q), p represents the
number of autoregressive terms, q is the number of moving average terms, and d is the
order of differential.
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AR model of order p, which is written as AR(p), can be expressed as follows:

xt = φ1xt−1 + φ2xt−2 + · · ·+ φpxt−p + λt (2)

The MA(q) model is:

xt = λt − ψ1λt−1 − ψ2λt−2 − · · · − ψqλt−q (3)

Thus, the expression of ARMA (p, q) is defined below as:

xt = φ1xt−1 + φ2xt−2 + · · ·+ φpxt−p + λt − ψ1λt−1 − ψ2λt−2 − · · · − ψqλt−q (4)

The ARIMA model is obtained by the d-order difference of the ARMA model. There-
fore, the ARIMA (p, d, q) model is:

yt = φ1xt−1 + φ2yt−2 + · · ·+ φpyt−p + λt − ψ1λt−1 − ψ2λt−2 − · · · − ψqλt−q (5)

where xt represents the predicted value of the model at time t, φi is model coefficient, xt−j
is previous observation, ψi is model parameter related to white noise, λt is white noise
process that obeys a normal distribution with zero mean and variance σ2, λt−j is previous
noise term, and yt = ∇dxt, · · · denotes computation according to the above law. Note that
yt can be replaced with xt only when d = 0.

2.3.2. BPNN Model

BPNN, proposed by Fausett [53], is a typical multilayer ANN on the basis of error back
propagation. BPNN uses the slope reduction method to find the point(s) with minimum
error [54]. These three layers, that is, input layer, hidden layer, and output layer, are
employed in BPNN (as shown in Figure 4). The signal is input into the network by the
input layer and output by the output layer. BPNN adds several layers (one or more layers)
of neurons between the input layer and the output layer. These neurons are called hidden
layer neurons. They have no direct contact with the outside world, but the change of their
state can affect the relationship between input and output. A conventional three-layer
BPNN is used to establish the prediction model of monthly precipitation series in this
paper. Tan-sigmoid is the transfer function between the output layer and hidden layer, and
the nonlinear Levenberg–Marquardt (LM) algorithm is the training function of BPNN.

Water 2021, 13, x FOR PEER REVIEW 6 of 24 
 

 

1 1 2 2t t t t q t qx λ ψ λ ψ λ ψ λ− − −= − − − −  (3)

Thus, the expression of ARMA (p, q) is defined below as: 

1 1 2 2 1 1 2 2t t t p t p t t t q t qx x x xφ φ φ λ ψ λ ψ λ ψ λ− − − − − −= + + + + − − − −   (4)

The ARIMA model is obtained by the d-order difference of the ARMA model. There-
fore, the ARIMA (p, d, q) model is: 

1 1 2 2 1 1 2 2t t t p t p t t t q t qy x y yφ φ φ λ ψ λ ψ λ ψ λ− − − − − −= + + + + − − − −   (5)

where tx  represents the predicted value of the model at time t , iφ  is model coeffi-
cient, t jx −  is previous observation, iψ  is model parameter related to white noise,  is 

white noise process that obeys a normal distribution with zero mean and variance 2σ , 

t jλ −  is previous noise term, and d
t ty x= ∇ ,   denotes computation according to the 

above law. Note that ty  can be replaced with tx  only when d = 0. 

2.3.2. BPNN Model 
BPNN, proposed by Fausett [53], is a typical multilayer ANN on the basis of error back 

propagation. BPNN uses the slope reduction method to find the point(s) with minimum 
error [54]. These three layers, that is, input layer, hidden layer, and output layer, are em-
ployed in BPNN (as shown in Figure 4). The signal is input into the network by the input 
layer and output by the output layer. BPNN adds several layers (one or more layers) of 
neurons between the input layer and the output layer. These neurons are called hidden layer 
neurons. They have no direct contact with the outside world, but the change of their state 
can affect the relationship between input and output. A conventional three-layer BPNN is 
used to establish the prediction model of monthly precipitation series in this paper. Tan-
sigmoid is the transfer function between the output layer and hidden layer, and the nonlin-
ear Levenberg–Marquardt (LM) algorithm is the training function of BPNN. 

x0

x1

...

xm

...

y0 l0

y1

yn

l1

ln

gk O

w00

w01

w0n

w10

w11

w1n

wm0

wm1

wmn

w0k

w1k

wnk

Input Layer Hidden Layer Output Layer

 
Figure 4. Schematic diagram of a BPNN structure. Figure 4. Schematic diagram of a BPNN structure.



Water 2021, 13, 2871 7 of 24

The mathematical principle of BPNN model is as follows:

yi =
m

∑
j=0

wijxj + β j (6)

where xj is input neuron and j ∈ (0, m), m is the number of input neurons, wij is weight of
the ith neuron in the input layer corresponding to the jth neuron in the hidden layer, β j is
bias-related weight of hidden neurons, yi is input of the hidden layer node (i = 0, 1, . . . , n),
and n is the number of neurons in the hidden layer. Tan-sigmoid is the transfer function
between the layer output and the hidden layer, and its form is as follows:

li =
1

1 + e−yi
(7)

The output layer is estimated by the following equation:

gk =
n

∑
i=0

wikli + βk (8)

O = max(0, gk) (9)

Among them, gk and O represent input and output values of the output layer, respectively.
The formulas above are the principles of the feedforward propagation mode of the

BPNN model. In the process of cyclic simulation, errors generated by the system are
collected and returned to the output value. By adjusting the weights and thresholds of
neurons, network parameters corresponding to the minimum error are determined to
generate an ANN system which can simulate the original problem.

2.3.3. GMDH Model

GMDH was developed by Ivakhnenko [55] as a self-organizing approach, which can
be applied for multivariate analysis and modeling of complex systems. GMDH has been
used to deal with problems of high-order polynomial regression, especially modeling and
classification of systems [56]. An important feature of the GMDH method is that external
information (i.e., information and data not used in model construction and parameter
estimation) is used in modeling, the data of training period is used for modeling, and
the information of testing period is only used to select the optimal complexity model.
Input and output variables of GMDH are connected by a complex Volterra function in the
following form [57]:

ŷ = s0 +
n

∑
i=1

sixi +
n

∑
i=1

n

∑
j=1

sijxixj+
n

∑
i=1

n

∑
j=1

n

∑
k=1

sijkxixjxk + · · · (10)

where x denotes the input variable of system, si is the weight, ŷ is output variable, and n
is the number of input variables. Many applications in the quadratic form with only two
variables are termed partial descriptions, and use the following form to predict output:

ŷn = s0 + s1xni + s2xnj + s3x2
ni + s4x2

nj + s5xnixnj (11)

The coefficient si is obtained by minimizing the Mean Square Error (MSE) between
the input–output data pairs:

minMSE =

(
N

∑
n=1

(ŷn − yn)
2

)
/N (12)

where N is the sample size of the training set.
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The GMDH model adopts the principle of the classic neural network whose signal
propagates forward through network nodes. After the weight has been computed, optimal
transfer function of the node is obtained and then its output is passed to the next layer of
nodes. As shown in Figure 5, the structure of GMDH network is constantly changing during
the training process. GMDH will select the input variables that affect the prediction, which
means that the connection between neurons in the network is not fixed, but is selected
during training to optimize the network structure; The number of layers in the network is
also automatically selected to produce maximum accuracy and avoid over fitting. Solid
neurons in each layer are selected neurons, and hollow ones represent unselected neurons.
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2.3.4. Wavelet Packet Decomposition (WPD)

Mallat [58] proposed a Wavelet Representation (WR) theory to compute and interpret
multiresolution representation by decomposing the original signal utilizing orthogonal
wavelets. WPD reduces the noise of signal by decomposing the signal into different
frequencies, which can be regarded as a special WR. In the procedure of orthogonal
wavelet decomposition, the signal is decomposed into approximate coefficients and de-
tail coefficients after passing through multiple filters. When performing the next layer
decomposition, the upper low-frequency series and high-frequency series are split into two
components, and so on. Wavelet function ψ(t) can be defined as:∫ +∞

−∞
ψ(t)dt = 0 (13)

The form of SWT (successive wavelet transform) of x(t) is:

Wψx(a, b) = |a|−1/2
∫

R
x(t)ψ ∗

(
t− b

a

)
dt (14)

where ψ(t) represents the mother wavelet and ψ∗ denotes its complex conjugate, a and
b(a, b ∈ R) are the scale expansion parameter and time translation parameter, respectively. In
engineering applications, input signal is usually discrete. Let a = aj

0, b = kb0aj
0(a0 > 1, b0 ∈ R)
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(j, n ∈ Z), j and n denote the frequency localization and time localization. The DWT form
of x(t) is shown in the following equation:

Wψx(j, k) = a−j/2
0

∫
R

x(t)ψ ∗ (a−j
0 t− kb0)dt (15)

Normally, we can set a0 = 2 and b0 = 1, and this case is the most efficient for practical
applications [58]. Therefore Equation (14) becomes the binary orthogonal wavelet transform:

Wψx(j, k) = 2−j/2
∫

R
x(t)ψ ∗ (2−jt− k)dt (16)

Unlike DWT, WPD passes more filters, which decompose the signal using both high-
frequency components and low-frequency components:

φj,k(t) = 2−j/2φ(2−jt− k)
ψj,k(t) = 2−j/2ψ(2−jt− k).

(17)

where φj(t) is the scaling function or the approximation coefficients, and ψj(t) is wavelet
function (also termed detail coefficient). The two functions correspond to two finite pulse
filters, namely, low-pass filter (LPF) h(n) and high-pass filter (HPF) g(n). Hence, the
equation of orthogonal wavelet packet is:

Wφx2n(t) =
√

2 ∑
k∈Z

hnφn(2t− k) (18)

Wψx2n+1(t) =
√

2 ∑
k∈Z

gnψn(2t− k) (19)

where h(n) and g(n) are subject to the following condition:

∑
n

h(n)2
= 1, ∑

n
g(n)2

= 1, ∑
n

h(n) =
√

2, ∑
n

g(n) = 0 (20)

The wavelet packet function is written by:

Wj,n,k(t) = 2j/2Wn(2−jt− k) (21)

The wavelet packet coefficients can be computed by:

Wj,n,k =
∫

x(t)Wj,n,k(t)dt (22)

Figure 6 illustrates the binary tree of a three-layer WPD. The original signal is shown
by x and each node corresponds to a frequency band. LPF and HPF represent low-pass
filter and high-pass filter, respectively. The original signal is decomposed into eight
subsequences by a three-level WPD. AAA3 and DDD3 represent the lowest frequency and
highest frequency, respectively.
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2.4. Evaluation Indices

To evaluate the forecast capacity of different models, four generally adopted standard
statistical metrics are used in this study to estimate the global and local errors of models.
They are namely RMSE (root mean-squared error) [59], MAE (mean absolute error) [60], R
(coefficient of correlation), and NSEC (the Nash–Sutcliffe efficiency coefficient) [61]. RMSE
is sensitive even to small errors, which can size the model performance for high rainfall
values. However, MAE is suitable for measuring the goodness of fit of model in cases of
moderate precipitation. R sizes the degree of collinearity criterion of two variables. NSEC
is a widely used index to evaluate the performance measurement of hydrological models.
The following formulas are used for computing these parameters:

RMSE =

√
1
n

n

∑
i=1

(Qy(i)−Qx(i))2 (23)

MAE =
1
n

n

∑
i=1

∣∣Qy(i)−Qx(i)
∣∣ (24)

R =

n
∑

i=1
(Qx(i)−Qx)(Qy(i)−Qy)√

n
∑

i=1
(Qx(i)−Qx)

2 n
∑

i=1
(Qy(i)−Qy)

2
(25)

NSEC = 1−

n
∑

i=1
(Qy(i)−Qx(i))2

n
∑

i=1
(Qx(i)−Qx)

2
(26)

where Qx(i) and Qy(i) are the observed and predicted rainfall, respectively, Qx and Qy
represent their average values, and n is the total number of input samples.

2.5. Hybrid Forecasting Models

This study investigates the accuracy of ARIMA, BPNN, and GMDH models based
on WPD in monthly rainfall forecasting. The framework of hybrid models is showed in
Figure 7. It can be summarized from Figure 4 that the main steps of the hybrid model
prediction architecture are:
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Step 1: Observed monthly rainfall series are decomposed into eight subsequences
with different frequencies and spatiotemporal resolutions, four low-frequency series, and
four high-frequency series using WPD.

Step 2: In this study, ACF and PACF are employed to select the number of input
variables for the model, and then set values of basic model parameters.

Step 3: ARIMA, BPNN, and GMDH models are used as forecasting tools to model
and predict each decomposed sub-sequence separately.

Step 4: Finally, the ensemble monthly rainfall forecasting result of model is formulated
by summing the outputs of all submodules.

To sum up, the hybrid WPD-ARIMA, WPD-BPNN, and WPD-GMDH forecasting
models use the idea of “decomposition and ensemble”. The paper takes 35-year monthly
rainfall data from Luoning and Zuoyu stations in Luoyang, China as the test cases.

3. Results
3.1. Decomposition Results Using WPD and Input Variables Determination

The original monthly rainfall time series are decomposed into eight subsequences with
different frequencies and amplitudes using the WPD method. The frequency characteristics
of each subsequence are different, and each sub-series plays a different role in the original
dataset. The results of WPD of the original monthly rainfall time series data at level 3 are
shown in Figures 8 and 9.
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Generally, it is very important to set an appropriate number of input variables for
data-based prediction models because it is closely related to the characteristics of system
to be modeled [62]. In this paper, ACF and PACF are selected as the potential indicators
for determining the appropriate input variable. ACF and PACF are normally utilized to
pre-determine the sequence of the autoregressive process and modeling of time series [63].
Figures 10 and 11 show ACF and PACF values of the original precipitation series for
Luoning and Zuoyu stations, whilst the values of ACF and PACF for all decomposed
subseries are not presented here. Referring to ACF and PACF values of the series and
influencing factors of precipitation, Table 2 lists input variables of the original series and
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their subsequences at Luoning and Zuoyu stations. Among them, qt−p represents the pth

variable before the target output variable.
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Table 2. Number of input variables for different data series from Luoning and Zuoyu stations based
on ACF and PACF analysis.

No. Series
Input Variables

Luoning Station Zuoyu Station

1 Original xt−1~xt−12 xt−1~xt−13
2 WPD1 xt−1~xt−12 xt−1~xt−12
3 WPD2 xt−1~xt−12 xt−1~xt−12
4 WPD3 xt−1~xt−12 xt−1~xt−13
5 WPD4 xt−1~xt−11 xt−1~xt−11
6 WPD5 xt−1~xt−12 xt−1~xt−12
7 WPD6 xt−1~xt−12 xt−1~xt−12
8 WPD7 xt−1~xt−13 xt−1~xt−13
9 WPD8 xt−1~xt−11 xt−1~xt−13

3.2. Model Development

Six models, namely BPNN, WPD-BPNN, GMDH, WPD-GMDH, ARIMA, and WPD-
ARIMA models, are employed for benchmark comparison to study the prediction perfor-
mance of these conjunction methods.

(1) ARIMA
Generally, the ARIMA model based on the difference process is applied to the model-

ing of non-stationary series. In this paper, the stationarity of the original monthly rainfall
series and subsequences are tested by the Augmented Dickey–Fuller (ADF) test. The results
of ADF unit root tests are shown in Table 3. The h value of the original and all subsequences
of the two stations are zero. The p-value of the original sequence and all sub sequences of
the two stations is zero, except that the p-value of the original sequence of Zuoyu station is
0.0004. When h = 1, p-value < 0.05, and the value of t-statistic is less than the preset upper
limit, the null hypothesis is rejected, and the sequence can be considered as stationary;
otherwise, the series needs to be differential. It can be seen from Table 3 that the sample set
data is stationary series without a single root effect.

Table 3. ADF test in the sample data set.

Name Sample Data Set t-Statistic Value Critical Value

Luoning Original −5.85207 −3.42041
WPD1 −6.70412 −3.42041
WPD2 −14.33 −3.42041
WPD3 −12.6215 −3.42041
WPD4 −16.2217 −3.42041
WPD5 −9.58776 −3.42041
WPD6 −18.1806 −3.42041
WPD7 −14.919 −3.42041
WPD8 −24.0394 −3.42041

Zuoyu Original −4.86539 −3.42041
WPD1 −6.63558 −3.42041
WPD2 −14.6596 −3.42041
WPD3 −12.2977 −3.42041
WPD4 −16.5301 −3.42041
WPD5 −10.0685 −3.42041
WPD6 −17.6399 −3.42041
WPD7 −14.3801 −3.42041
WPD8 −25.9766 −3.42041

The next step is to choose the optimal ARIMA (p, d, q) model, and the best fitted
values of p and q are selected according to the BIC method. ACF and PACF are used
to predetermine the structure of data sets. Furthermore, referring to the BIC minimum
criterion, the best fitting model is determined for the original sequence and the decomposed
subsequence of the two stations. The values of p and q are determined based on ACF and
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PACF, and the significance test has to be passed, that is, when p-value is less than 0.05,
select the parameter with minimum BIC statistics. ARIMA models for various sequences
are shown in Table 4. The decomposed sub-sequences of Luoning and Zuoyu stations
are modeled by the ARIMA model. The original time series are modeled by seasonal
ARIMA model (SARIMA), where p, d, and q represent the autoregressive term, the order of
difference, and the moving average term of SARIMA model, respectively.

Table 4. The structure of each sequence.

Name Sample Data Set
ARIMA (p, d,

q)/SARIMA (p, d, q)
(P, D, Q)

BIC

Luoning Original SARIMA (5,1,1)
(1,1,1) 7.602

WPD1 ARIMA (2,1,3) 1.005
WPD2 ARIMA (2,0,8) 4.016
WPD3 ARIMA (2,0,7) 2.091
WPD4 ARIMA (3,0,5) 3.333
WPD5 ARIMA (5,0,7) −0.274
WPD6 ARIMA (2,0,7) 1.469
WPD7 ARIMA (2,0,7) 1.098
WPD8 ARIMA (6,0,8) 1.132

Zuoyu Original SARIMA (5,1,1)
(1,1,1) 8.119

WPD1 ARIMA (2,0,5) 1.469
WPD2 ARIMA (3,0,3) 4.844
WPD3 ARIMA (2,0,8) 2.209
WPD4 ARIMA (2,0,8) 2.992
WPD5 ARIMA (10,0,7) -0.128
WPD6 ARIMA (3,0,8) 1.745
WPD7 ARIMA (2,0,7) 1.43
WPD8 ARIMA (6,0,4) 2.229

(2) BPNN
A conventional three-layer BPNN is used to establish the prediction model of monthly

precipitation series in this paper. Tan-sigmoid is the transfer function between output and
hidden layers, and the nonlinear Levenberg–Marquardt (LM) algorithm is the training
function of BPNN. The maximum number of iterations is 100. The number of input layer
nodes is the same as the number of input variables. The optimal value is determined
by continuously adjusting the number of hidden layer neurons in the range of 2 to 13.
The original dataset falls into training samples and test samples. According to the four
quantitative indexes, a cross-validation approach is utilized to determine the number of
hidden neurons. With the increase of the number of hidden neurons, variations in the
statistical indicators of Luoning/Zuoyu station corresponding to different hidden layer
nodes are shown in Figures 12 and 13. In this paper, we use p to refer to the number of
hidden layers. It can be observed from Figures 12 and 13 that p is not highly correlated with
the performance of BPNN model. For Luoning station, when p = 8, RMSE and MSE of
training and testing periods are both at a minimum, while R and NSEC reach a maximum.
For Zuoyu station, when p = 8, MSE and RMSE of the testing set reach the minimum
value; meanwhile, NSEC and R attain the maximum value. However, when p is seven,
MSE and RMSE of the training set reach the minimum value, NSEC and R of the training
set reach the maximum value. Therefore, p is chosen to be eight for both Luoning and
Zuoyu stations.
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(3) GMDH
The number of input layer nodes is the same as the number of input variables, and

then the regression of output value of upper layer is computed to create the second layer
network. GMDH uses the best new variables in each layer to build the next layer network.
The GMDH model includes three parameters, namely a denoting the maximum number
of layers, b denoting the maximum number of nodes in each layer, and p denoting the
selection pressure. In this paper, a and b are determined as 3 and 15, respectively, whilst p
is set equal to 0.75 via a trial-and-error method, and the convergence criteria is RMSE. This
paper determines an appropriate maximum number of hidden layers and nodes of GMDH
model by a trial-and-error method. We set a equal to 2, 3, and 5, and b equal to 5, 10, and
15. The results (not supplied) show that the numbers of a and b have a significant effect on
the performance of the GMDH model.

(4) WPD
WPD is adopted for data preprocessing, which can eliminate noises in hydrological

time series. The selection of an appropriate mother wavelet is very significant to WPD.
The Symlet wavelet function is an improved version of the classical Daubechies wavelet
function, which evades the change of waveform in the process of signal decomposition [64].
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Therefore, the fourth order Symlet wavelet function is considered as the mother wavelet
function. In this paper, three-scale wavelet WPD is selected because large-scale wavelet
packet decomposition may lead to information loss.

3.3. Results and Discussion

Based on the above description, different methods are utilized to model the observed
rainfall and extracted sub-sequences. Tables 5 and 6 list the statistical indexes of different
algorithms for Luoning and Zuoyu stations during training and testing periods.

Table 5. Forecasting performance indices of models for Luoning station.

Model Training Testing

R RMSE MAE NSEC R RMSE MAE NSEC

ARIMA 0.608 40.926 27.442 0.352 0.459 46.474 27.792 0.191
WPD-

ARIMA 0.984 9.210 7.298 0.967 0.988 8.224 6.060 0.975

BPNN 0.667 37.896 25.913 0.445 0.484 45.775 29.204 0.215
WPD-
BPNN 0.998 3.296 2.384 0.996 0.997 4.054 2.912 0.994

GMDH 0.584 41.299 28.495 0.340 0.600 41.844 24.575 0.344
WPD-

GMDH 0.970 12.372 9.588 0.941 0.966 13.734 11.171 0.929

Table 6. Forecasting performance indices of models for Zuoyu station.

Model Training Testing

R RMSE MAE NSEC R RMSE MAE NSEC

ARIMA 0.679 55.717 38.124 0.459 0.576 53.689 31.856 0.263
WPD-

ARIMA 0.987 12.455 9.525 0.973 0.992 7.970 6.415 0.984

BPNN 0.709 53.518 36.089 0.500 0.607 50.37 31.846 0.352
WPD-
BPNN 0.997 5.935 4.102 0.994 0.998 3.705 2.889 0.996

GMDH 0.662 56.751 39.460 0.433 0.643 48.271 30.439 0.405
WPD-

GMDH 0.973 17.771 13.970 0.945 0.980 14.797 11.623 0.944

For Luoning station, the WPD-BPNN model attains the best RMSE, MAE, R, and NSEC
values during the training period, which are 3.292, 2.384, 0.998, and 0.956, respectively.
In the testing phase, the WPD-BPNN model also attains the best R, RMSE, MAE, and
NSEC statistics of 0.997, 4.054, 2.912, and 0.994, respectively. Meanwhile, for Zuoyu station,
the WPD-BPNN model attains the best RMSE, MAE, R, and NSEC values during the
training period, which are 5.935, 4.102, 0.997, and 0.994, respectively. In analyzing the
results during the testing phase, the WPD-BPNN model attains the best R, RMSE, MAE,
and NSEC statistics of 0.998, 3.705, 2.889, and 0.996, respectively. Referring to the four
evaluation indicators in this paper, WPD-BPNN can attain the best performance in monthly
precipitation prediction.

Tables 7 and 8 list the comparison of results on model prediction performance by
different indicators. When forecasting monthly rainfall at Luoning station, WPD-BPNN
is able to attain the best improving capability of RMSE and MAE in the training phase,
while WPD-GMDH is able to attain the best improving capability of R and NSEC in the
training phase. In analyzing the figures during the testing phase, WPD-BPNN attains
the best improving capability of RMSE and MAE, while WPD-ARIMA attains the best
improving capability of R and NSEC. In addition, it can be seen from Table 8 that the
prediction performance of the models is similar for Zuoyu and Luoning stations. Therefore,
the monthly rainfall series decomposed by WPD method as the input of BPNN model
can drastically improve the forecasting accuracy. This reaffirms the superior performance
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of WPD. Furthermore, the enhancement capabilities of different evaluation methods are
different in terms of different phases and different forecasting measures.

Table 7. Comparison of results of model prediction performance for Luoning station.

Model Index Training (%) Testing (%)

WPD-ARIMA &
ARIMA R(↑) 61.81 115.48

NSEC(↑) 174.54 732.71
RMSE(↓) 77.5 80.3
MAE(↓) 73.4 78.19

WPD-BPNN & BPNN R(↑) 45.52 106.8
NSEC(↑) 123.98 362.45
RMSE(↓) 91.3 91.14
MAE(↓) 90.8 90.3

WPD-GMDH &
GMDH R(↑) 66.22 61.17

NSEC(↑) 176.38 170.22
RMSE(↓) 70.04 74.35
MAE(↓) 66.35 54.54

Note: (↑) represents the percentage of performance improvement of the new model compared to the origi-
nal model, and (↓) represents the percentage of performance reduction of the new model compared to the
original model.

Table 8. Comparison of results of model prediction performance for Zuoyu station.

Model Index Training (%) Testing (%)

WPD-
ARIMA&ARIMA R(↑) 45.34 72.08

NSEC(↑) 105.30 273.50
RMSE(↓) 77.65 85.15
MAE(↓) 75.02 79.86

WPD-BPNN&BPNN R(↑) 40.53 64.51
NSEC(↑) 98.86 183.50
RMSE(↓) 88.91 92.64
MAE(↓) 88.63 90.93

WPD-
GMDH&GMDH R(↑) 46.81 52.33

NSEC(↑) 118.32 133.37
RMSE(↓) 68.69 69.35
MAE(↓) 64.60 61.82

Note: where (↑) represents the percentage of performance improvement of the new model compared to the
original model, and (↓) represents the percentage of performance reduction of the new model compared to the
original model.

For the two research objects in this paper, the performance of all models during train-
ing and test periods are shown in Figures 14–17. The performances of hybrid models for
monthly rainfall simulation are able to attain better performance than those of conventional
ARIMA, BPNN, and GMDH methods. WPD-BPNN presents the best performance, and
its trend line is almost perfectly close to the smooth line of the observed data. In contrast,
there are huge deviations between the prediction results obtained by ARIMA, BPNN, and
GMDH methods and observed data. In addition, the prediction values of the extreme
points of the three single models are far less than the observed value, and the peak predic-
tion also has an obvious lag effect. However, compared with ARIMA, GMDH, and BPNN,
the three WPD-based models have greatly improved the peak value accuracy and time
positioning. Meanwhile, the models prior to improvement cannot capture abrupt changes
of precipitation in rainy season. Therefore, compared with several existing methods in this
paper, WPD-BPNN is the most efficient tool for monthly rainfall forecasting, since it can
achieve excellent prediction results.
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4. Conclusions

In recent years, the improvement of hydrological forecasting accuracy has attracted
widespread attention around the world. In order to broaden the scope of hydrological
forecasting theory, this study explores the performance of several data-driven methods
based on WPD in monthly precipitation forecasting. Firstly, the observed monthly rainfall
time series are decomposed into eight subsequences with different frequencies and spa-
tiotemporal resolutions by WPD. Then, three data-based models, namely BPNN, GMDH,
and ARIMA models, are utilized to complete the prediction for the decomposed monthly
rainfall series, respectively. Finally, the ensembled prediction result of the model is formu-
lated by summing the outputs of all submodules. Monthly rainfall data from two stations
in China are utilized to test the performance of these methods. To evaluate the forecast
capacity of different models, four standard statistical metrics are adopted to estimate the
global and local errors of the models.

The results reveal that the WPD model is suitable for the decomposition of monthly
rainfall series, and WPD-BPNN can provide the best performance during both training and
testing periods in terms of the four evaluation indicators in this paper. The following briefly
introduces the advantages of the WPD-BPNN method. Firstly, the principle of WPD is
simple and inclusive, and it can comprehensively and deeply analyze the characteristics of
monthly precipitation series. Secondly, the prediction performance of BPNN only depends
on the characteristics of input variables. Finally, the proposed model does not require
complex decision-making for the explicit form of the model in different cases. Therefore,
the hybrid forecast model based on WPD technology is an efficient tool to improve the
accuracy of mid- and long-term rainfall forecasting.

It should be pointed out that, although this paper has fully verified the feasibility of
WPD-BPNN in monthly precipitation forecasting, there are still several limitations to be
explored in the future research. Firstly, the study is carried out based on two time series, so
we will test the generalization of the proposed model. The second is to test the performance
of other algorithms combined with WPD. The last major issue is to develop an appropriate
optimization algorithm to improve the performance of WPD-BPNN. In future research, it is
necessary to conduct in-depth research on the three aspects above to explore more efficient
and accurate forecasting techniques and make contributions to the field of hydrological
forecasting.
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Abbreviations

WPD wavelet packet decomposition
BPNN back-propagation neural network
GMDH group method of data handing
ARIMA autoregressive integrated moving average
ANN artificial neural network
GP genetic programming
SVM support vector machines
ANFIS adaptive neuro-fuzzy inference system
AR auto-regressive
MA moving average
ARMA autoregressive moving average
LM Levenberg–Marquardt
EMD empirical mode decomposition
EEMD ensemble empirical mode decomposition
FT Fourier transform
SVR support vector regression
QPSO quantum-behaved particle swarm optimization
VMD variational mode decomposition
LSWA least-squares wavelet analysis
WD wavelet decomposition
DWT discrete wavelet transform
WR wavelet representation
LPF low-pass filter
HPF high-pass filter
RMSE root mean-squared error
MAE mean absolute error
R coefficient of correlation
NSEC Nash–Sutcliffe efficiency coefficient
ACF autocorrelation function
PACF partial autocorrelation function
ADF augmented Dickey–Fuller
BIC Bayes information criteria
SCS-CN soil conservation service-curve number
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