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Abstract: Drinking water contamination events in water networks are major challenges which 
require fast handling by the responsible water utility manager agent, and have been explored in a 
variety of models and scenarios using, e.g., agent-based modelling. This study proposes to use 
recent findings during the COVID-19 pandemic outbreak and draw analogies regarding responses 
and reactions to these kinds of challenges. This happens within an agent-based model coupled to a 
hydraulic simulation where the decision making of the individual agents is based on a fuzzy logic 
system reacting to a contamination event in a water network. Upon detection of anomalies in the 
water the utility manager agent places mobile sensor equipment in order to determine endangered 
areas in the water network and warn the consumer agents. Their actions are determined according 
to their social backgrounds, location in the water network and possible symptoms from ingesting 
contaminated water by utilising a fuzzy logic system. Results from an example application suggest 
that placing mobile equipment and warning consumers in real time is essential as part of a proper 
response to a contamination event. Furthermore, social background factors such as the age or 
employment status of the population can play a vital role in the consumer agents’ response to a 
water event. 
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1. Introduction 
Ensuring the distribution of high-quality drinking water has been one of the biggest 

achievements for public health in recent history. Water distribution systems (WDSs) are 
critical infrastructure in delivering water at desired quantities to a system’s consumers. 
While the quality of water is usually monitored at the source, it is not feasible to track all 
relevant water quality parameters in a WDS in real time. In the case of a harmful 
contamination event, toxic substances might be transported to unsuspecting consumers. 
For monitoring the water quality throughout the water distribution system (WDS), fixed 
water quality sensors which are placed at strategically important locations have proved 
to be effective [1]. Various parameters including pH, residual chlorine conductivity and 
turbidity are constantly measured with the aforementioned sensors, which makes them 
important in the daily operations of water utilities [2]. To enable economical and 
strategical optimisation of the sensor placement, algorithms have been developed to 
identify locations for optimal contamination detection. This way, consumers will not 
ingest contaminated drinking water if the alarm on a water quality anomaly can be rung 
quickly. Among these algorithms are genetic algorithms [3,4], which help establish early 
warning systems with high probabilities of detecting anomalies in water quality. Inline 
mobile sensors which sample water flowing inside the water network and transmit these 
data [5] have proved to be rather ineffective compared to conventional sensors, 
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considering the performance per cost [6,7]. Additional studies have explored the effect of 
the placement of mobile sensor equipment on its ability to collect information on the 
contamination plume in real time and transmit it to the utilities [8]. Various machine 
learning methodologies have been used recently to determine drinking water quality by 
evaluating specific water quality input parameters to determine the global water quality 
state in a water network. For this, artificial and convolutional neural networks 
(ANNs/CNNs) or support vector machines (SVMs) have been used to either determine 
specific harmful water quality parameters in drinking water or to detect whether there is 
a contamination event in the WDS [9–11]. Artificial intelligence was also used in [12] and 
in [13] to develop a methodology determining pipe break rates in addition to considering 
the operational and physical factors of the system and to predict longitudinal dispersion 
coefficients in water pipes, respectively. 

Furthermore, in [14] as well as in [15–17], agent-based modelling (ABM) is utilised to 
represent the highly nonlinear relationship between the hydraulic system, water 
consumers and the utility manager during a contamination event. ABM is highly suitable 
for simulating these complex adaptive systems (CASs) [16], and can be a strong 
foundation for simulating a social system which is supposed to represent the 
dependencies and feedbacks of all involved stakeholders which interact during a 
contamination event in a water network. This involves consumers, utilities, policy makers, 
health officials and conventional as well as social media. 

ABM is a powerful tool where a system is modelled by defining agents which make 
decisions and assess their situation autonomously following predefined rules, equations 
or thresholds [18]. These models can capture emergent phenomena which common 
modelling approaches can rarely deliver, and thus results can be observed which are not 
predictable [18]. These phenomena can be intensified through agents that are able to learn 
via, e.g., machine learning algorithms. 

Agent-based modelling has been used in the field of water resources for various 
applications, such as estimating residual water demand or household water-consuming 
behaviour [19,20]. Ref. [19] developed a model for evaluating water-pricing policies to 
support policy makers in their decisions. Furthermore, ABM was used to simulate and 
point out the risks of current management strategies in water supply systems [21], 
involving stakeholders such as consumers, political actors, water utility companies and 
infrastructure, where the model was validated with real data from utilities. It was also 
used to model water resource allocation in the Nile river basin by using evolutionary 
algorithms to optimise a fair redistribution of resources according to the contribution of 
each agent to a central solution [22]. 

Furthermore, [15] evaluated the reaction of a multi-agent system to contamination in 
a water distribution system and developed new approaches for threat management 
through manipulating a set of hydrants to flush the system. The ABM framework is 
coupled with evolutionary algorithms to identify an optimal strategy for manipulating 
hydrants with the objective of maximising the number of non-contaminated consumers. 
Later, the authors incorporated various physical attributes of consumer agents or their 
ability to move in-between nodes [16]. The ABM approach modelled a sociotechnical 
water event with interactions between the utility manager and the consumer agents. 
Simulations between the consumer agents themselves showed the dynamic and adaptive 
interactions that social agents have on the consequences of a water quality event [14,23]. 

The interactions of consumers of various water systems in agent-based models is 
commonly represented by statistical models. One example for this is given in [16], where 
the compliance of consumers with warnings from the utility manager and the media is 
determined by the use of a compliance variable which can be derived with a conditional 
probability distribution which incorporates, for example, the trustworthiness of the 
source. While many studies base their statistical communication models on assumptions, 
a survey has been conducted which tested the perceptions and reactions of consumers to 
water events, and was used for the aforementioned compliance model [15,16]. 
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Generally, modelling human behaviour is not trivial because humans are not random 
entities, and have diverse abilities and knowledge [24]. Furthermore, the latter study 
explains that humans are generally rational decision-making beings, but their behaviour 
is also influenced by factors such as emotions and intuitive or unconscious decision-
making processes [24]. 

The COVID-19 pandemic, which broke out in December 2019 in Wuhan, China and 
lead to a global health crisis, is the most recent example of a disaster where the reactions 
of the population on the social and behavioural levels can be explored. The effect of a 
disaster situation on the psychological states of individuals from different societal 
backgrounds and their tendency to believe and spread misinformation was investigated 
in some recent studies [25,26]. A large social and behavioural study has been conducted 
on the influence and importance of science communication, moral decision making and 
leadership for an effective response to the COVID-19 pandemic [27]. One evidently very 
successful approach to respond to the coronavirus was a method entitled “contact 
tracing”, which involved tracking people down who might be infected via the information 
given to authorities by already-infected patients or location-tracking apps. Furthermore, 
there are various newly developed numerical and agent-based models that explore 
COVID-19 outbreaks, their dynamics and assess interventions [28,29], in addition to 
models that assess the effects of these interventions on health and economics [30]. Ref. [31] 
developed a machine learning algorithm to predict poor prognosis and morbidity of 
COVID-19 patients by sampling their blood and using matrix factorisation (MF) methods 
as well as random forest (RF) algorithms. The authors of ref. [32] and ref. [33] also utilised 
blood sampling to predict the severity of the course of COVID disease and utilised various 
machine learning methods such as naïve Bayesian classifiers, neural networks, random 
forests or support vector machines. 

This study aims to connect the findings from social and behavioural data during the 
COVID-19 pandemic with an agent-based models to explore the response of consumer 
agents during a contamination event in a water distribution system. While an event in a 
WDS is not a disaster in the same magnitude of a global pandemic or a natural 
catastrophe, the findings from behavioural, social and psychological studies can enrich 
the understanding of decision-making processes, interactions and communication 
between consumer agents after contamination of a water distribution system occurred. 
The combination of the hydraulic simulations and the utilisation of social science for an 
agent-based model forms an important approach for the field of water distribution system 
analysis and gives more realistic prospects of the importance of the interactions of 
individual agents as well as the reaction to and compliance with information and 
directions from authorities and utility managers. Furthermore, there will be analogies 
drawn between the contact tracing methods used during the COVID-19 pandemic and the 
response of utility managers to contamination events, where mobile sensor equipment is 
used to divide the water network into contaminated and safe divisions. 

The rest of this study includes a literature review, a description of the developed 
modelling framework, an example application, conclusions and future work. 

2. Modelling Framework 
An agent-based modelling framework is built to represent the sociotechnical 

foundation needed to explore the consumer’s actions during a contamination event 
according to their social background. 

2.1. ABM Framework and Connection to the Hydraulic Simulation 
Coding an ABM simulator involves five steps [34]: (1) initialisation of the parameters, 

environment and the initial state of the agents, (2) a time loop for processing each time 
step, (3) an agent loop to route the agents, (4) updating each agent behaviour at each time 
step and (5) saving the data for further analysis. The hydraulic and water quality 
simulations are conducted with EPANET 2.0 [35], including the according multispecies 
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extension for EPANET [36]. The latter software is used through an EPANET–MATLAB 
toolkit [37], which can embed into the ABM framework’s time loop so that every part of 
the simulation is accessible with MATLAB, as shown in Figure 1. The water quality 
information is therefore incorporated into the ABM model and is adjusted and processed 
at every time step. Furthermore, the figure shows the concept of the built ABM framework 
to simulate a water contamination event while incorporating the actions and reactions of 
the consumer agents as well as the utility manager. 

 
Figure 1. Pseudocode (left) and conceptual flowchart (right) of the agent-based modelling 
framework. 

There are a variety of advantages with the used approach. As the ABM framework is 
written from scratch in MATLAB without any proprietary or pre-built agent-based 
software, the user is in full control of any agent or system parameter. Moreover, as there 
is a link between the open-source hydraulic simulation software EPANET and MATLAB, 
the coupling of the hydraulic system and the agent-based model is conducted instantly, 
and the synchronisation is conducted in real time. Furthermore, it is possible to solve any 
kind of optimisation problem within MATLAB in real time during the simulation. The 
chosen EPANET water network, Net3, is chosen as a medium-sized network to reduce the 
computing time for this initial proof of concept, while still being complex enough to see 
the capture of the emergent phenomena that this study is aiming to prove. 

The model is initialised with a hydraulic simulation and a random injection at one of 
its network nodes. The hydraulic simulation then passes the water quality information on 
to the ABM which leads to consumers ingesting contaminated water and fixed water 
quality sensors detecting anomalies in water quality measurements. The role of the water 
utility upon detection is to identify multiple grab sampling locations at which to place 
mobile equipment by utilising, e.g., evolutionary algorithms, demand-based heuristics, 
supervised learning methods or through engineering judgement. Thus, with every time 
step the utilities gather more information on the spread and can determine the right 
measures, such as treatment of contaminated parts and more importantly communicating 
the warnings to water consumers via, e.g., social media. 

In particular, the information on the geographical spread in the network will be 
relevant to determine the distress level of the consumers and will have a big effect on their 
actions. Consumer agents will take various actions based on their location in the network, 
social background, their corresponding tendency to feel distress, their availability through 
social media and whether they experience symptoms of any kind after ingesting 
contaminated water. Furthermore, based on their social background, consumer agents 
might lean more towards sharing or believing correct or “fake” information with fellow 
consumers and are able to identify trustworthy sources and comply with them. 

According to consumer actions, such as calling the utilities or going to a medical 
facility because of alleged or actual symptoms, the utility manager receives more 
information on the possible spread and consequences of the contamination event. 

2.2. Model Cycle 
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• Firstly, the EPANET and MSX input files are processed, and the model is initialised. 
• The water quality data are transmitted to the ABM. 
• In each time step, the individual state of each agent is updated. 
• The reading of the fixed sensors indicates an anomaly in water quality to the utility 

manager, who determines the best placement of mobile equipment in order to gather 
additional information on the spread of possible contamination. At first, a global 
warning for all consumers in the network is issued. 

• The consumer agents who receive the message have various options to react, 
according to their social backgrounds. Their changed consumer/demand behaviour 
influences the hydraulics in the system and distressed consumers might call the 
utilities or consult a physician or medical facilities because of alleged symptoms of 
possibly ingesting contaminated water. Furthermore, consumer agents might believe 
or share correct or fake information and subsequently distress or misinform other 
consumers. 

• The utility manager processes the received information. The readings are of the 
mobile equipment as well as information provided by consumers concerning the 
possible geographical locations. The uncertainty of the latter will have to be 
considered. The utility manager continues to determine locations to place mobile 
equipment in order to further exclude regions with no contamination, so that those 
households can be cleared to use the water again or, on the contrary, uphold the 
warning where there still might be toxic substances in the system. The placement 
which enables that will be determined by graph algorithms, engineering sense or 
supervised learning methods. 

• As more information is provided to the consumer agents, they might either be 
reassured or more distressed depending on their location in the network and whether 
this region of the WDS is declared as “cleared” or a “dangerous” location, and react 
accordingly. 

2.3. Role of the Utility Manager Agent 
The utility manager agent is informed about anomalies in the water quality in the 

WDS by simulated fixed water sensors. These are placed in predefined nodes in the 
network. While, in reality, water quality parameters such as the pH value of the water, 
turbidity, conductivity and alkalinity can be measured in the water network by the 
sensors, for this study the concentration of an undefined contaminant is calculated at each 
node for every time step. The fixed sensors will alert the utility manager as soon as the 
contaminant concentration is greater than zero: 

Alert if ∑ (cN)t > 0, ∀ N, s  (1) 

where c represents the contaminant concentration at any node, N, with a fixed sensor, s. 

2.4. Placing Mobile Equipment 
The utility manager will try to place mobile equipment to gather more information 

on the spread as it evolves. Several mobile sensors will be placed in the water network as 
the contamination event evolves. The utility manager´s objective is to zero in on the source 
and to identify the regions of the network without and with any contamination as soon as 
possible. The subsequent secondary objective is to enable as many consumers as possible 
to drink water again after issuing a clearing for their geographical location. Clearing the 
issued warnings is also intended to decrease the distress which the initial warning might 
cause in consumers. 

This study uses engineering sense and graph theory to identify optimal locations for 
multiple grab samplings. The directed network, G, with the nodes, N, and edges, E, 
represents the whole of the water network (Equation (2)). The direction of the flow 
determines the direction of the edges. The objective of placing the mobile sensor 
equipment is to find a network, G′ (Equation (3)), where the placed equipment represents 
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the sources and the sinks of G′ in which there are no detectable harmful substances. This 
will enable the utilities to clear the households in network G′ to consume water again. 
Furthermore, network G′ can also involve the actual sources of the WDS where the water 
quality is monitored, while the sinks are represented by the mobile equipment. Network 
G″ (Equation (4)) involves at least one node, N″, where there is a contaminant 
concentration of c > 0 detected. 

G = {N, E} (2) 

G'= �N', E'�, ∈ N' (c = 0) (3) 

G'' = �N'', E''�, ∈ N'' (c > 0) (4) 

Hence, the primary optimisation objective of the utility manager is given in 
Equations (5)–(7): 

minimize tclear = fABM (x, t) (5) 

Subject to: 

x = xN, N ϵ Z, x ∈ G', G'' (6) 

tdetection< tclear ≤  tmax ,  t, tclear∈ Ts (7) 

where tclear describes the time until all non-endangered consumers are cleared to drink 
water again, x the mobile equipment placement locations and Ts represents the time vector 
of the simulation time steps. Therefore, the objective of the utility manager is to enable as 
many consumers as possible to use the water from the WDS again once it is declared a 
cleared zone. Furthermore, the secondary objective is obviously to minimize the number 
of consumers exposed to the contaminant during that process (Equations (8)–(10)): 

minimize Cex = fABM (x,t) (8) 

Subject to: 

x = xN, N ∈ Z    (9) 

tdetection ≤ twarn< tclear, t, twarn∈ Ts   (10) 

where twarn describes the time when the first warning about the contamination event is 
issued and Cex is the number of exposed consumers. 

2.5. Issuing Warnings and Updates through Social Media 
Additional to traditional media, this study aims to simulate the issuing of warnings 

concerning contamination events through social media. The availability of consumer 
agents depends on their social background, e.g., their age, employment or educational 
status. The number of consumers reached by warnings through social media, considering 
the communication in-between consumer agents themselves, will be determined for every 
time step with an exponential function (Equation (11)): 

�Cre
t

 = b × e a × t  (11) 

where Cre represents the number of consumers reached in every time step, t represents the 
time steps of the simulation and b as well as a are constant factors which depend on the 
social background of the consumers. As during the time of the coronavirus crisis, the 
updates on the location of the contamination spread can be checked online as soon as there 
are validated data available which will be shared through all possible social media 
channels. This represents a more transparent contact tracing for the consumers of the 
water network. 

2.6. Consumer Agents 
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The number of consumer agents in the system will be determined by the demands of 
the network. It is assumed that, on average, one consumer uses 130 L water per day. The 
consumers will be divided into three society types. These types are classified by state 
variables which represent the social background of the individual consumers as given in 
Table 1. Furthermore, Table 1 shows the possible actions which can be taken by the 
individual consumers. In every time step the consumer agent can take specific actions 
based on their state of information, social background, their geographical location and 
whether they show symptoms of any kind after ingesting possibly contaminated water. 
After the consumer agents are informed about the contamination event, their consumer 
behaviour will change. The adjustment of the demands in the system are adjusted as in 
Equation (12): 

�  Dt+1  = 
Ct+1

Ct
 × Dt

Nn

N0
 (12) 

where D represents the demand in the respective time step, C the number of consumers 
drinking water from the WDS and N the nodes in the network. 

Table 1. Relevant social background characteristics of consumer agents divided into three society 
types and the distribution in every society type. 

Social Background Type 1 Type 2 Type 3 
Gender % 

Male 47.1 47.1 47.1 
Female 52.9 52.9 52.9 

Age NA NA NA 
0–12 11.7 10.5 9.5 
12–21 12.5 11.6 7.4 
21–30 8.6 10.9 11.9 
30–40 13.4 15.7 19.3 
40–49 18.4 21.8 23.8 
49–59 12.1 13 14.7 
59–70 13.3 9 9.8 
70–85 10 7.5 3.6 

Parent status NA NA NA 
Child < 16 25.6 22 16.4 
Child > 16 57 54.3 43.9 

No children 17.4 23.7 39.7 
Marital status NA NA NA 

Single 21 25.1 30.9 
Married 73.3 68.9 62.7 

Divorced/separated 5.7 6 6.4 
Household size NA NA NA 

≥ 6 9 8.3 7 
3–5 77.6 80.6 83.6 

2 11.9 10.6 7.5 
1 1.5 0.5 1.9 

Employment status NA NA NA 
Unemployed 10.3 5 1.2 

Retired 8.5 5.1 4.3 
Student 26.3 27.3 36.7 

Employed 54.9 62.6 57.8 
Educational attainment NA NA NA 

None 1.3 0.7 0.1 
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Primary school 6.7 3.1 0.2 
Lower secondary school 21.5 15 2.3 
Upper secondary school 50.6 55 22 
University—bachelors 14.3 17.2 33.3 
University—masters 5.4 8.2 38.5 

University—doctorate 0.2 0.8 3.6 

2.7. Social Background and Distribution in the Network 
The classification of the social backgrounds was almost exclusively taken from [25]. 

The society is divided into three types. These types are randomly distributed over the 
network with the following percentages: Type 1 = 25%, Type 2 = 45% and Type 3 = 10%, 
as shown in Figure 2. Additionally, 20 percent of the nodes are considered to be industrial 
nodes where no consumer agents reside. The distribution of these three consumer agent 
types seemed the most appropriated to representatively describe a society leaning on [25], 
while considering a variety of age, education, etc. structures in a realistic society. The 
validity of this assumption is considered and discussed in the Results section. 
Furthermore, the black nodes in Figure 3 represent industrial, private, governmental and 
water utility facilities where the consumer agents exert water demands, but which are not 
incorporated into the behaviour analysis as they are assumed to be occupied by a 
heterogenous mass of agents. 

 
Figure 2. Distribution of three society types, including industrial and facility nodes in the EPANET 
example application network, Net3. 

 
Figure 3. Fuzzy logic system to determine consumer agents’ actions. 
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2.8. Fuzzy Logic for Determining Consumers’ Actions 
The assignment of the various actions of the consumers is done by utilising fuzzy 

logic. Fuzzy logic is an extension of formal logic which was introduced by [38]. It 
formulises the “approximate reasoning” used by humans in daily life [39]. Instead of 
traditional Boolean logic where only false (0) and true (1) values are processed, fuzzy logic 
recognizes all values in-between zero and one. The available information (or fuzzy set) is 
represented by specific membership functions which assign a value between one and zero 
to each input object. These fuzzy sets are processed by a predefined set of rules and are 
assigned to an output, which is also given as a fuzzy set. These outputs are then 
defuzzified into crisp values which can be processed by the system. Therefore, the fuzzy 
set, A, can be represented as given in Equations (13) and (14): 

A={(y,µA�y�)| y ∈ U} (13) 

µA(y) ∈ [0,1]  (14) 

where y is an element in the fuzzy set, A, and µA(y) represents the membership of y in A. 
The input values for the fuzzy logic system are the various state variables of the social 
background, the geographical location of the consumers and whether they have 
symptoms from ingesting possibly contaminated water (Figure 3). The shown 
membership function graphics are not representative for the actual functions used for the 
fuzzy logic system. They are solely used for the visualisation of the used fuzzy logic 
system principles as described and depicted in the MATLAB 2020a documentation of the 
integrated fuzzy logic toolbox. 

The rules for the interference engine are determined by the probability of specific 
actions for specific input variables. Furthermore, the output is the probability of various 
actions for the individual agent for each time step based on their state of information 
paired with additional state variables. The assumption made at Equation (11) that the 
information spread concerning the contamination event is exponential involves 
communication and information updates through social media. It is assumed that once 
the information on an event reaches a household, all members are notified. 

3. Results 
This section may be divided by subheadings. It should provide a concise and precise 

description of the experimental results, their interpretation and the experimental 
conclusions that can be drawn. 

3.1. Example Application 
EPANET Net3 is used as an example application for this study (Figure 2). It is 

comprised of two pumping stations, 92 nodes, three tanks and two constant head sources. 
The system is subject to a demand loading of 24 h. It is assumed to have fixed water quality 
sensors in the network at junctions 205, 141, 161, 151 and 217. The majority of these sensor 
locations were adapted from [40]. The information gathered by the fixed sensors can be 
an additional supportive source for the utility manager in the process of warning 
consumers about the contamination event and placing of mobile sensor equipment. 

3.1.1. Injection Scenario 
The simulation duration is 24 h. For the first two hours of the simulation an unknown 

contaminant is injected into the system at junction 184 (Figure 4). The fixed water quality 
sensor at junction 205 detects the contaminant concentration approximately one hour after 
the start of the simulation and injection. As aforementioned, the simplification of this 
approach involves the assumption that the water quality sensors can measure a specific 
contamination concentration promptly. Obviously, in situ sensors in a WDS can at most 
detect indicators for water quality anomalies, such as changed pH values, turbidity or 
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conductivity in the system. The simulated water quality sensors in this study alert the 
utility manager once the condition c (mg/L) > 0 is attained. 

 
Figure 4. EPANET network example application, Net3, including the position of the placed mobile 
sensors, the injection node of the contamination injection as well as the fixed sensor that initially 
detected the contamination. 

3.1.2. Mobile Equipment Placement 
As indicated above, the problem of multiple grab samplings is solved here using 

graph theory as well as engineering judgement. A directed graph, G, is created with the 
example application, Net3. The flow directions determine the direction of the edges of G. 
For this study, it is assumed that the flow directions are constant and do not change in the 
course of the simulation. As soon as the contamination is detected by the fixed sensor in 
junction 205 (Figure 4), it is the utility manager’s responsibility to place the mobile 
equipment in such a way that as many nodes and regions as possible can be cleared to 
drink water again or warned to continue halting the usage of water from the WDS. 

From the definitions in Equations (2)–(4), it follows that networks, G’n, have to be 
identified where the mobile equipment represents the sources and the sinks of that 
specific network. Furthermore, the actual sources, e.g., water tanks, reservoirs or actual 
fixed sensors, can also represent a sink or source of the graph, G’n, because water quality 
is assumed to be monitored in these nodes as well. 

For the utility manager to be able to issue a clearance or uphold a warning concerning 
the contamination event for the specific region of G’n, the nodes which shape the sink and 
source nodes have to either show no evidence of water quality anomalies or detect a 
contamination concentration, respectively. A secondary objective for placing the mobile 
sensor equipment in the system is to detect the source of the contamination as soon as 
possible. By excluding regions of the network from the possibility of contamination, the 
utility manager can pinpoint the approximate location of the contamination source as time 
progresses. The placement of mobile equipment is hereby an iterative process which is 
strongly dependent on the network structure. This example comprises the placement of 
six pieces of mobile equipment, approximately two hours after the initial detection of the 
contamination event. The mobile equipment is placed at junctions 209, 115, 157, 109, 187 
and 173 (Figure 4). 
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As shown in Figure 4, the grab sampling through the mobile sensor equipment, 
which was positioned at node 209, given the detection point, is tactically critical because 
it is the root of a tree in the network and every junction and pipe downstream of that node 
might be cleared or not, depending only on the measurement of an individual node. As it 
is downstream of the first detection point, a measurement can give clear evidence of 
possible contamination in the rest of the network downstream. 

Following this rationale, the network can be divided into seven different zones as 
presented in Figure 5. The measurements of the mobile equipment which are shown in 
Figure 6 indicate that zones 1–4 and 6 are contamination-free after the sensor placement, 
three hours after the start of the simulation. Zone 5, where the contamination was detected 
initially, and zone 7 count as “contaminated” networks, and the utility manager must 
communicate that evidence accordingly. The additional information gathered by the fixed 
sensors is mostly neglected in the process of placing mobile sensor equipment. 

 
Figure 5. Division of network into zones which are monitored by mobile equipment in order to 
declare endangered and cleared parts of the water network. 
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Figure 6. Contaminant concentration measured by the placed mobile sensor equipment over the 
course of the 24 h simulation. Except for the sensor at node 209, no contaminant concentration was 
measured. All other measurements from mobile equipment did not detect any contaminations or 
anomalies in the water. 

3.1.3. Issuing Warnings to Consumer Agents 
The utility manager warns consumers through social media. The coefficients in 

Equation (11) of the consumer agents depend on their social background, more closely on 
the educational attainment, age, and employment status of the individual consumer. 
Herein, the availability was assigned to the consumer agents in a deterministic approach. 

It is assumed that the information obtained by the utility manager from the mobile 
equipment is instantly transmitted to the consumer agents. Thus, after one hour of the 
simulation, the utility manager issues a warning for the whole water network so that the 
agents which receive that warning will stop using the water from the WDS and start 
communicating the contamination event. Three hours into the simulation, after the zones 
of contamination were identified, the utility manager updates the information and 
communicates the geographical locations in which there might be still contaminated 
water in the system and gives clearance for the other parts. 

3.1.4. Consumer Agent Actions 
The consumers’ tendency towards certain actions depends on their social 

background as well as on their geographic location, which can count as possibly 
contaminated. In addition, their actions also depend on whether the agents experience 
any symptoms from ingesting contaminated water. 

The sensitivity analysis in this example will differentiate three scenarios to explore 
how the consumers’ actions change for every scenario. Table 2 shows the three scenarios 
and what they include. Scenario one incorporates exclusively the social background into 
the fuzzy logic system which is utilised to determine the consumers’ actions during a 
contamination event. Scenario two considers the social background as well as the location 
of the individual agents in the system. Scenario three includes the social background, the 
location of the individual agent as well as whether possible symptoms from ingesting 
contaminated water have occurred. 
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Table 2. Three different scenarios for a sensitivity analysis. Each scenario incorporates an additional 
input variable into the fuzzy logic system in order to determine the consumer agents’ actions. 

Scenario  Incorporation into Fuzzy Logic 
 Input variables  Input variables  Input variables  

1 Social background NA NA 
2 Social background Location in network NA 
3 Social background Location in network Possible symptoms 

3.1.5. Fuzzy Logic for Assigning Actions to Consumer Agents 
The various input variables, as seen in Table 1, are assigned to certain output 

variables which represent the actions of the consumer agents. Utilising the fuzzy logic 
toolbox from MATLAB 2020a®, in each time step the agents which are informed about the 
contamination event are assigned an action according to their social background, location 
or health status, as well as a pre-defined set of rules. The input variables consist of 
membership functions which show the value range and the according function for each 
variable class. Table 3 shows the number of membership functions of each input variable 
and each scenario. 

Table 3. Amount of membership functions for each input variable of the fuzzy logic system. 

Scenarios Variables Membership Functions 
1,2,3 Age 3 
1,2,3 Parent status 3 
1,2,3 Marital status 3 
1,2,3 Household size 4 
1,2,3, Employment status 4 
1,2,3 Educational attainment  6 
2,3 Geographical location 2 
3 Symptoms 2 

The tendency for sharing truthful information or misinformation can be related to 
the educational attainment of the consumer agents [26]. Furthermore, the tendency for 
consulting a physician can be related to the age of the consumer agents or the household 
size. 

The defuzzified output from the fuzzy logic system are values between zero and one. 
The magnitude of the output of a specific action, Oan, determines whether the action is 
taken by the specific consumer agent, maybe taken or not taken (Equations (15)–(17)): 

If Oan < 0.35   then action is not taken (15) 

If 0.35 < Oan < 0.65   then action is maybe taken (16) 

If Oan > 0.65   then action is taken (17) 

The uncertainties of various key factors for the actions which are maybe taken will 
be explored during the sensitivity analysis. 

4. Results 
4.1. Results Scenario One 

The first scenario solely considers the social background of the consumer agents as 
input variables in the fuzzy logic system for generating the output. The generated output 
determines which actions the consumer agents might take after an initial warning from 
the utility manager concerning a contamination event in the water distribution system. 
Figure 7 shows the scatter plot of the fuzzy logic output of the actions taken by the 
consumer agents in scenario one. The plots are divided into individual actions taken by 
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consumer agents in the three different society types. As the consumers’ behaviour is 
mostly deterministic, there will be no uncertainty analysis needed for the results and 
analysis of the sensitivity analysis. 

 
Figure 7. Scatter plot of the fuzzy logic system output in scenario one for the three different society 
types and the four different possibly taken actions. 

Furthermore, Figure 8 shows the percentage of each action taken by each individual 
society type over the course of 24 h. Because there is no information available on the 
geographical spread of the contamination, the actions are considered to be distributed 
equally throughout the network. 

 
Figure 8. Percentages of the actions taken, maybe taken or not taken by the consumer agents for 
each society type for scenario one. 
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Few consumer agents take the action of consulting a physician through the different 
society types. The highest share of consumers which consult a physician during the 
contamination event are in society type 1, which can be explained by the higher amount 
of elderly people and the consequential poorer health status of fractions of that consumer 
population. Additionally, while there is no information on the geographical spread, a very 
high share of the consumer agents are willing to share information on the contamination 
event with their fellow consumers, with the largest percentages in society type 3, which 
can be attributed to the higher education status of that group. In addition, a higher part of 
the latter group called the utilities to either provide or receive information while most 
consumer agents stayed ambivalent about that particular action. Most of the consumers 
did not choose to share misinformation while around ten percent from society type 1 took 
that action. While it can be related to the education status of that specific group, the minor 
difference of group one to the groups three and five is evident. 

4.2. Results Scenario Two 
In scenario two, the location of the consumer agents in the network is considered as 

an input variable of the fuzzy logic system, hence relevant to the decision-making process 
of the consumer agents. This way, the geographical information on the contamination 
spread is transmitted to the consumer agents by the utility manager, and they can react 
according to their individual location in the network. Two hours after the initial and 
general warning concerning the contamination event, the information on which locations 
in the network are safe for consuming water and which are endangered is spread by the 
utility manager. Approximately 19% of the consumers are possibly affected by the 
contamination event in the WDS. Figure 9 shows the scatter plot of the fuzzy logic 
system’s output for the various actions of the consumer agents. 

 
Figure 9. Scatter plot of the fuzzy logic system output in scenario two for the three different society 
types and the four different possibly taken actions. 

As seen in Figure 10, the location of the individual consumer agents does play a role 
in how these agents react to the information of a contamination event. The fuzzy logic 
rules have been accordingly weighted to consider the location of consumers. The share of 
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consumers consulting a physician has approximately doubled, which evidently can be 
explained by distressed consumers located in the endangered areas. Interestingly, the 
number of consumers which might share information or misinformation has dramatically 
decreased. As most of the consumers (81%) are not affected by the contamination event 
and get this information two hours after the initial issuing of the warning, the interest for 
the majority of the agents is not as high as it was when the contamination event could 
have affected any place in the network. The highest percentage of consumer agents which 
consult a physician are still in the society type 1, while the difference to other society types 
is not significant. The society type 1 agents have a higher percentage of being inclined to 
share misinformation in the case of a contamination event with geographical spread 
information available, while the agents in society type 3, as in scenario one, are more likely 
to share correct information on the spread or call the utilities. 

 
Figure 10. Percentages of the actions taken, maybe taken or not taken by the consumer agents for 
each society type for scenario two. 

4.3. Results Scenario Three 
For the third scenario, an additional input variable determines whether the 

individual consumer agents show possible symptoms from ingesting contaminated water. 
Therefore, it is assumed that ten percent of the consumer agents inside the endangered 
area might show relevant symptoms for which they have to consult with a physician. 
Figure 11 shows the scatterplot of the fuzzy logic output, and Figure 12 the percentage of 
the actions taken by the consumer agents. 

Evidently, there is not substantial change from the second scenario. The fraction of 
consumers which are actually affected by ingesting contaminated water is not majorly 
significant and there might still be a threshold for the consumer agents to consult a 
physician in the first 24 h after contamination. Thus, the difference of the third scenario to 
the second scenario is not noticeably significant. Furthermore, the information status of 
the consumer agents that not only ingested contaminated water but also experience 
symptoms has a big influence on the actual percentage of the agents which consider 
sharing the information or will try to get help. A slight increase in consumer agents which 
consult physicians can be observed, which can be explained by the consumers with 
symptoms from possibly ingesting contaminated water seeking medical help. 
Furthermore, possibly as a result of the gravity of the situation of an event which can have 
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effect on consumer health, there is also an increase in calls to the utilities as well as in 
sharing information on the event with fellow consumers in the network. The relationship 
of the distribution of actions in-between the society types is not different from scenarios 1 
and 2. Agents in society type 1 are still more likely to consult a physician or share 
misinformation while consumer agents in society type 3 are more likely to share correct 
information or call the utilities. 

 
Figure 11. Scatter plot of the fuzzy logic system output in scenario three for the three different 
society types and the four different possibly taken actions. 

 
Figure 12. Percentages of the actions taken, maybe taken or not taken by the consumer agents for 
each society type for scenario three. 

5. Conclusions 
Prior work has documented the use of inline mobile sensors during contamination 

events in a WDS as well as the utilisation of agent-based modelling for exploring, e.g., 
consumer reactions to the policies of utility managers, such as flushing rules or 
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broadcasting warnings. In addition, various studies have used interdisciplinary 
approaches which involve psychology and computer science to simulate agents’ 
behaviour during panic situations. Most previous studies which use agent-based models 
to simulate contamination events in a WDS use statistical and mathematical models as 
well as assumptions regarding the behaviour and decision-making of the consumer 
agents. 

In this study, social background and how the possibly correlated psychological states 
might influence consumer agents’ actions upon a warning about a contamination event 
through traditional and social media are explored. Moreover, analogies to the COVID-19 
pandemic response of “contact tracing” were drawn to set up a scheme of placing mobile 
equipment to trace the contamination spread in the network, while issuing warnings and 
clearances of endangered or safe zones in the network to the consumer agents in real time. 

Additionally, the consumer’s social background, their location in the network as well 
as possible symptoms from ingesting contaminated water were incorporated into a fuzzy 
logic system to determine their actions. The actions incorporate their tendency to consult 
a physician, call the utilities, share information on the ongoing situation or share “fake 
news” due to warnings concerning the contamination event. Furthermore, the consumer 
agents have been divided into three society types in order to represent different 
socioeconomic backgrounds. The society types were further characterised by different 
fractions of the social background input variables in the respective groups. 

It was found that it is important to consider the social background and the structure 
of the population when dealing with a major water quality event in a WDS. In particular, 
the age structure of the population seems to be a good factor in predicting the tendency 
to consult physicians or call the utilities. As other agent-based studies in water resource 
management focus on interaction of stakeholders under certain conditions, e.g., [19,21], 
this study shows that it is crucial to explore the implications which a detailed analysis of 
a consumer’s/stakeholder agent´s background can have on the results of the model. 

While the consideration of the individual location of each agent in the network as 
well as possible symptoms slightly increased the number of agents consulting a physician, 
the number of consumers sharing information or misinformation on the event decreased 
dramatically. This shows that consumers which are not affected by the contamination 
event have less interest in sharing necessary information on the event. This is 
subsequently due to the division of the network into “safe” and “endangered” zones by 
the placement of mobile sensor equipment by the utility manager. This allows the utility 
manager to track and trace the contamination spread and issue clearances for parts of the 
system where consumer agents can continue using water while others do not. While other 
studies dealt with, e.g., optimising the information flow of water advisories [23] or 
flushing methodologies [16] upon a contamination event in a water network, this work 
has shown that considering the geographical spread of the contamination plume is just as 
critical in a contamination response and recovery strategy for water utilities. 

It is shown in this study that placing mobile equipment can be an essential part of the 
response and recovery to a contamination event while considering the population 
structure of any given society. In particular, the real-time information on the geographical 
spread of the contamination event helps to control the response of the consumer agents to 
the contamination event. Placing mobile sensor equipment in real time to divide the 
network into various clusters and to predict and follow up on the fate of the contamination 
in the water network has shown to be very effective, and is a good additional alternative 
to the usage of solely fixed sensors [1] or inline water quality sensors [7,41]. 

Future work should not only consider social backgrounds but also model 
psychological processes and dynamics, which were mostly neglected in this fuzzy logic 
system. Accordingly, for simulating the warnings of the utility manager, a more 
comprehensive social network has to be established. This can be accomplished by using a 
graph which describes the interconnectivity of the social contacts of each agent, including 
family and friends, which are described by the individual nodes in the network. 



Water 2021, 13, 2863 19 of 21 
 

 

Additionally, the influence of real and fake information distribution on the consumer 
agents shall be modelled and processed depending on their social backgrounds. The 
assumptions taken for the societal types can be expanded by using actual census data for 
a specific town or even a virtual town where data on the population structure can be 
found. Furthermore, the movement of various agent types into industrial nodes as well as 
their exact reactions to a contamination event while exerting water demands there can be 
incorporated into future work. Additionally, more methodological ways of solving the 
classification problem of the various input characteristics that are influencing the 
consumer agent’s decision-making, such as support vector machines (SVMs) or random 
forests (RFs) should be explored in future work. This way, the weight of the single 
parameters on the decision-making processes can be singled out and classified more 
thoroughly. Furthermore, while consumer behaviour was mostly deterministic, future 
work should include uncertainty and reliability analysis. 

Future studies should involve the change in flow direction in the water network in 
response to the event. Furthermore, while the consideration of pipe break and dispersion 
are very important for simulating how the contaminants in the system are moving, an 
advection assumption is used for the current hydraulic simulation framework. While the 
study does not take pipe breaks in the system into account, the system assumption 
includes leakages at random positions in the water network. A pipe break approach as 
well as considerations of longitudinal dispersion coefficients will be considered in a future 
stage of this study. 

The medical and geographical information given by the consumers to the medical 
facilities and to the utility manager during the event have to be considered and processed 
in the model while considering the uncertainty of parts of this information. COVID 
pattern-detection algorithms, such as those introduced in the beginning of this study, are 
a type of consideration that will be added to this study in the future as an enriching aspect. 

Additionally, the information gathered by the fixed sensors during the 
contamination event will have to be considered and processed during the process of 
placing mobile equipment and warning the public. 

One way for the utility manager to process the incoming data can be conducted 
through utilising supervised learning algorithms. A support vector machine or a 
dependent number of features and training examples of a neuronal network can be used 
as a decision support tool for placing mobile sensor equipment with the objectives used 
in this study and for processing possible uncertainties as well as information submitted 
by consumer agents through calls to the utilities. Information given to physicians and their 
integration into the wholesome process of collecting and distributing the correct 
information in real time should be incorporated as well. 

Author Contributions: Conceptualisation, L.K. and A.O.; Methodology, L.K. and A.O.; Writing—
Original Draft Preparation, L.K.; Writing—Review and Editing, L.K. and A.O.; Supervision, A.O.; 
Project Administration, A.O.; Funding Acquisition, A.O. Both authors have read and agreed to the 
published version of the manuscript. 

Funding: This research was supported by a grant from the United States–Israel Binational Science 
Foundation (BSF), Jerusalem, Israel (grant no. 2024160). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The data presented in this study are available on request from the 
corresponding author. 

Acknowledgments: This research was supported by a grant from the United States–Israel 
Binational Science Foundation (BSF). 

Conflicts of Interest: The authors declare no conflict of interest. 



Water 2021, 13, 2863 20 of 21 
 

 

References 
1. Janke, R.; Murray, R.; Uber, J.; Taxon, T. Comparison of Physical Sampling and Real-Time Monitoring Strategies for Designing 

a Contamination Warning System in a Drinking Water Distribution System. J. Water Resour. Plan. Manag. 2006, 132, 310–314. 
2. Hall, J.; Zaffiro, A.D.; Marx, R.B.; Kefauver, P.C.; Radha Krishnan, E.; Haught, R.C.; Herrmann, J.G. On-line water quality 

parameters as indicators of distribution system contamination. J. Am. Water Work. Assoc. 2007, 99, 66–77. 
https://doi.org/10.1002/j.1551-8833.2007.tb07847.x. 

3. Ostfeld, A.; Asce, M.; Salomons, E. Optimal Layout of Early Warning Detection Stations for Water Distribution Systems Security. 
J. Water Resour. Plan. Manag. 2004, 130, 377–385. 

4. Ostfeld, A.; Über, J.G.; Salomons, E.; Berry, J.W.; Hart, W.E.; Phillips, C.A.; Watson, J.P.; Dorini, G.; Jonkergouw, P.; Kapelan, 
Z.; et al. The battle of the water sensor networks (BWSN): A design challenge for engineers and algorithms. J. Water Resour. Plan. 
Manag. 2008, 134, 556–568. https://doi.org/10.1061/(ASCE)0733-9496(2008)134:6(556). 

5. Wu, L.; Wan Salim, W.W.A.; Malhotra, S.; Brovont, A.; Park, J.H.; Pekarek, S.D.; Banks, M.K.; Porterfield, D.M. Self-powered 
mobile sensor for in-pipe potable water quality monitoring. In Proceedings of the 17th International Conference on Miniaturized 
Systems for Chemistry and Life Sciences, Freiburg, Germany, 7–31 October 2013; Volume 1, pp. 14–16. 

6. Perelman, L.; Arad, J.; Housh, M.; Ostfeld, A. Event detection in water distribution systems from multivariate water quality 
time series. Environ. Sci. Technol. 2012, 46, 8212–8219. https://doi.org/10.1021/es3014024. 

7. Sankary, N.; Ostfeld, A. Inline mobile sensors for contaminant early warning enhancement in water distribution systems. J. 
Water Resour. Plan. Manag. 2016, 143, 1–12. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000732. 

8. Kadinski, L.; Rana, M.; Boccelli, D.; Ostfeld, A. Water Distribution Systems Analysis. In Proceedings of the World 
Environmental and Water Resources Congress 2019, Pittsburgh, PA, USA, 19–23 May 2019; American Society of Civil Engineers: 
Reston, VA, USA, 2019; pp. 536–542. 

9. Post, C.; Brülisauer, S.; Waldschläger, K.; Hug, W.; Grüneis, L.; Heyden, N.; Schmor, S.; Förderer, A.; Reid, R.; Reid, M.; et al. 
Application of laser-induced, deep uv raman spectroscopy and artificial intelligence in real-time environmental monitoring—
solutions and first results. Sensors 2021, 21, 3911. https://doi.org/10.3390/s21113911. 

10. Asheri Arnon, T.; Ezra, S.; Fishbain, B. Water characterization and early contamination detection in highly varying stochastic 
background water, based on Machine Learning methodology for processing real-time UV-Spectrophotometry. Water Res. 2019, 
155, 333–342. https://doi.org/10.1016/j.watres.2019.02.027. 

11. Ashwini, C.; Singh, U.P.; Pawar, E.; Shristi Water quality monitoring using machine learning and iot. Int. J. Sci. Technol. Res. 
2019, 8, 1046–1048. 

12. Amiri-Ardakani, Y.; Najafzadeh, M. Pipe Break Rate Assessment While Considering Physical and Operational Factors: A 
Methodology based on Global Positioning System and Data-Driven Techniques. Water Resour. Manag. 2021, 3703–3720. 
https://doi.org/10.1007/s11269-021-02911-6. 

13. Saberi-Movahed, F.; Najafzadeh, M.; Mehrpooya, A. Receiving More Accurate Predictions for Longitudinal Dispersion 
Coefficients in Water Pipelines: Training Group Method of Data Handling Using Extreme Learning Machine Conceptions. Water 
Resour. Manag. 2020, 34, 529–561. https://doi.org/10.1007/s11269-019-02463-w. 

14. Zechman, E.M. Agent-based modeling to simulate contamination events and evaluate threat management strategies in water 
distribution systems. Risk Anal. 2011, 31, 758–772. https://doi.org/10.1111/j.1539-6924.2010.01564.x. 

15. Ehsan Shafiee, M.; Zechman, E.M. An agent-based modeling framework for sociotechnical simulation of water distribution 
contamination events. J. Hydroinformatics 2013, 15, 862–880. https://doi.org/10.2166/hydro.2013.158. 

16. Shafiee, M.E.; Berglund, E.Z. Complex adaptive systems framework to simulate the performance of hydrant flushing rules and 
broadcasts during a water distribution system contamination event. J. Water Resour. Plan. Manag. 2017, 143, 1–14. 
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000744. 

17. Shafiee, M.E.; Berglund, E.Z.; Lindell, M.K. An Agent-based Modeling Framework for Assessing the Public Health Protection 
of Water Advisories. Water Resour. Manag. 2018, 32, 2033–2059. https://doi.org/10.1007/s11269-018-1916-6. 

18. Bonabeau, E. Agent-based modeling: Methods and techniques for simulating human systems. Proc. Natl. Acad. Sci. USA 2002, 
99, 7280–7287. https://doi.org/10.1073/pnas.082080899. 

19. Athanasiadis, I.N.; Mentes, A.K.; Mitkas, P.A.; Mylopoulos, Y.A. A Hybrid Agent-Based Model for Estimating Residential Water 
Demand. Simulation 2005, 81, 175–187. https://doi.org/10.1177/0037549705053172. 

20. Linkola, L.; Andrews, C.J.; Schuetze, T. An agent based model of household water use. Water 2013, 5, 1082–1100. 
https://doi.org/10.3390/w5031082. 

21. Tillman, D.E.; Larsen, T.A.; Pahl-Wostl, C.; Gujer, W. Simulating development strategies for water supply systems. J. 
Hydroinformatics 2005, 7, 41–51. 

22. Ding, N.; Erfani, R.; Mokhtar, H.; Erfani, T. Agent based modelling forwater resource allocation in the transboundary Nile river. 
Water 2016, 8, 139. https://doi.org/10.3390/w8040139. 

23. Shafiee, M.E.; Berglund, E.Z. Agent-based modeling and evolutionary computation for disseminating public advisories about 
hazardous material emergencies. Comput. Environ. Urban Syst. 2016, 57, 12–25. 
https://doi.org/10.1016/j.compenvurbsys.2016.01.001. 

24. Kennedy, W.G. Modelling Human Behaviour in Agent-Based Models. In Agent-Based Models of Geographical Systems; Springer: 
Dordrecht, The Netherlands, 2012; pp. 167–179, ISBN 9789048189274. 



Water 2021, 13, 2863 21 of 21 
 

 

25. Wang, C.; Pan, R.; Wan, X.; Tan, Y.; Xu, L.; Ho, C.S.; Ho, R.C. Immediate psychological responses and associated factors during 
the initial stage of the 2019 coronavirus disease (COVID-19) epidemic among the general population in China. Int. J. Environ. 
Res. Public Health 2020, 17, 1729. https://doi.org/10.3390/ijerph17051729. 

26. Pennycook, G.; McPhetres, J.; Zhang, Y.; Rand, D. Fighting COVID-19 misinformation on social media: Experimental evidence 
for a scalable accuracy nudge intervention. Psychol. Sci. 2020, 1–24. https://doi.org/10.31234/OSF.IO/UHBK9. 

27. Van Bavel, J.J.; Baicker, K.; Boggio, P.S.; Capraro, V.; Cichocka, A.; Cikara, M.; Crockett, M.J.; Crum, A.J.; Douglas, K.M.; 
Druckman, J.N.; et al. COVID-19 pandemic response. Nat. Hum. Behav. 2020, 4. https://doi.org/10.1038/s41562-020-0884-z. 

28. Spearing, L.A.; Thelemaque, N.; Kaminsky, J.A.; Katz, L.E.; Kinney, K.A.; Kirisits, M.J.; Sela, L.; Faust, K.M. Implications of 
Social Distancing Policies on Drinking Water Infrastructure: An Overview of the Challenges to and Responses of U.S. Utilities 
during the COVID-19 Pandemic. ACS ES&T Water 2021, 1, 888–899. https://doi.org/10.1021/acsestwater.0c00229. 

29. Maziarz, M.; Zach, M. Agent-based modelling for SARS-CoV-2 epidemic prediction and intervention assessment: A 
methodological appraisal. J. Eval. Clin. Pract. 2020, 26, 1352–1360. https://doi.org/10.1111/jep.13459. 

30. Silva, P.C.L.; Batista, P.V.C.; Lima, H.S.; Alves, M.A.; Guimarães, F.G.; Silva, R.C.P. COVID-ABS: An agent-based model of 
COVID-19 epidemic to simulate health and economic effects of social distancing interventions. Chaos Solitons Fractals 2020, 139. 
https://doi.org/10.1016/j.chaos.2020.110088. 

31. Saberi-Movahed, F.; Mohammadifard, M.; Mehrpooya, A.; Rezaei-Ravari, M.; Berahmand, K.; Rostami, M.; Karami, S.; 
Najafzadeh, M.; Hajinezhad, D.; Jamshidi, M.; et al. Decoding Clinical Biomarker Space of COVID-19: Exploring Matrix 
Factorization-based Feature Selection Methods. medRxiv 2021, Preprint. 

32. Luo, J.; Zhou, L.; Feng, Y.; Li, B.; Guo, S. The selection of indicators from initial blood routine test results to improve the accuracy 
of early prediction of COVID-19 severity. PLoS ONE 2021, 16, 1–18. https://doi.org/10.1371/journal.pone.0253329. 

33. Karthikeyan, A.; Garg, A.; Vinod, P.K.; Priyakumar, U.D. Machine Learning Based Clinical Decision Support System for Early 
COVID-19 Mortality Prediction. Front. Public Health 2021, 9, 1–13. https://doi.org/10.3389/fpubh.2021.626697. 

34. Helbing, D.; Farkas, I.; Vicsek, T. Simulating dynamical features of escape panic. Nature 2000, 407, 487–490. 
https://doi.org/10.1038/35035023. 

35. Rossman, L.A. EPANET 2 Users Manual EPA/600/R-00/57. Water Supply Water Resour. Div. U.S. Agency Environ. Prot. 2000, 
https://www.epa.gov/water-research/epanet. 

36. Shang, F.; Uber, J.G. Epanet Multi-Species Extension User’ S Manual. 2011. Available online: 
https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NHSRC&dirEntryId=218488 (accessed on 10 July 2021). 

37. Eliades, D.G.; Kyriakou, M.; Vrachimis, S.; Polycarpou, M.M. EPANET-MATLAB Toolkit: An Open-Source Software for 
Interfacing EPANET with MATLAB. 1–8. Available online: https://doi.org/10.5281/zenodo.437751 (accessed on 20 April 2019). 

38. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X. 
39. Gerla, G. Effectiveness and multivalued logics. J. Symb. Log. 2006, 71, 137–162. https://doi.org/10.2178/jsl/1140641166. 
40. Schwartz, R.; Lahav, O.; Ostfeld, A. Integrated hydraulic and organophosphate pesticide injection simulations for enhancing 

event detection in water distribution systems. Water Res. 2014, 63, 271–284. https://doi.org/10.1016/j.watres.2014.06.030. 
41. Sankary, N.; Ostfeld, A. Multiobjective Optimization of Inline Mobile and Fixed Wireless Sensor Networks under Conditions 

of Demand Uncertainty. J. Water Resour. Plan. Manag. 2018, 144, 1–13. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000930. 

 
 
 


	1. Introduction
	2. Modelling Framework
	2.1. ABM Framework and Connection to the Hydraulic Simulation
	2.2. Model Cycle
	2.3. Role of the Utility Manager Agent
	2.4. Placing Mobile Equipment
	2.5. Issuing Warnings and Updates through Social Media
	2.6. Consumer Agents
	2.7. Social Background and Distribution in the Network
	2.8. Fuzzy Logic for Determining Consumers’ Actions

	3. Results
	3.1. Example Application
	3.1.1. Injection Scenario
	3.1.2. Mobile Equipment Placement
	3.1.3. Issuing Warnings to Consumer Agents
	3.1.4. Consumer Agent Actions
	3.1.5. Fuzzy Logic for Assigning Actions to Consumer Agents


	4. Results
	4.1. Results Scenario One
	4.2. Results Scenario Two
	4.3. Results Scenario Three

	5. Conclusions
	References

