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Abstract: This study investigates the variation of wave impact loads with the geometrical config-
urations of recurve retrofits mounted on the crest of a vertical seawall. Physical model tests were
undertaken in a wave flume at the University of Warwick to investigate the effects of the geometrical
properties of recurve on the pressure distribution, overall force, and overturning moment at the
seawall, subject to both impulsive and non-impulsive waves. Additionally, the wave impact and
quasi-static loads on the recurve portion of the retrofitted seawalls are investigated to understand the
role of retrofitting on the structural integrity of the vertical seawall. Detailed analysis of laboratory
measurements is conducted to understand the effects of overhang length and height of the recurve
wall on the wave loading. It is found that the increase in both recurve height and overhang length
lead to the increase of horizontal impact force at an average ratio of 1.15 and 1.1 times larger the
reference case of a plain vertical wall for the tested configurations. The results also show that the
geometrical shape changes in recurve retrofits, increasing the overturning moment enacted by the
wave impact force. A relatively significant increase in wave loading (both impact and quasi-static
loads) are observed for the higher recurve retrofits, while changes in the overturning moment are
limited for the retrofits with longer overhang length. The data generated from the physical modelling
measurements presented in this study will be particularly helpful for a range of relevant stakeholders,
including coastal engineers, infrastructure designers, and the local authorities in coastal regions. The
results of this study can also enable scientists to design and develop robust decision support tools to
evaluate the performance of vertical seawalls with recurve retrofitting.

Keywords: wave impact pressure; climate resilience; vertical seawall; recurve walls

1. Introduction

The combined effects of sea-level rise and intensified extreme storm surges due to
climate change will result in the reduction of crest freeboard levels of existing coastal
defence infrastructures in the coming decades and increase the vulnerability of coastal de-
fences to erosion and flooding [1–3]. Traditionally, coastal flood risk management schemes
relied heavily on ‘hard’ engineered coastal defense infrastructures [4–6], which are often
associated with high costs of design, construction and maintenance. One of the effective
methods in enhancing the climate resilience of existing coastal defence infrastructures
against wave induced overtopping hazards is retrofitting [7–9]. While the retrofitted sea
defences may be efficient in mitigating wave overtopping characteristics [10,11], they can
be subjected to violent wave impact loads that may cause structural damage, including
reduction of structural stability of retrofitted infrastructures [12,13].

Recurve walls are considered as an effective approach in mitigating wave overtopping
at vertical seawalls [14–19]. The addition of a recurve wall changes the geometrical shape
of the seawall structure; therefore, it is essential to fully understand the characteristics
of wave impact loads applied on the structure due to the addition of recurve retrofitting,
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in order to make informed decisions regarding the suitability of the retrofitting design
and the stability of the defence structure. Previous research showed that the addition of a
recurve wall on the seawall crest increases the wave impact loads at the structure [18,20,21].
Kortenhaus et al. [18] undertook physical modelling experiments on vertical seawalls with
different overhang lengths on the crest. They reported an increase factor of around 2.0 for
the wave impact force on the recurve parapet. Variations in the geometrical properties
of recurve parapet resulted in changes in the measured impact force. Longer overhang
length or larger recurve angles were reported to cause more significant increases in the
wave impact force [22–25].

In addition to the influence on the magnitude of impact loads, the pressure profile
is also significantly affected by the geometrical properties of the recurve wall, including
overhang length and recurve angle. Generally, for the plain vertical seawall, the maximum
wave impact pressure occurs at around the still water level [26–28]. For a vertical seawall
with recurve retrofitting, the location of maximum pressure moves upward vertically along
the seawall with the increase of overhang length of the recurve wall. By increasing the
overhang length, the location of maximum pressure may move downward towards the
toe of the seawall due to the wave-structure interactions and waves bouncing back on the
overhang portion of the recurve wall [29,30].

Previous research works also suggest different wave characteristics such as wave
periods or wave breaking parameters that led to different interactions between the wave,
the bottom topography, structure, and air in the nearshore region [31,32], enacting variable
magnitudes of the wave loads (e.g., pressure and total force) on the structure. For example,
Ravindar et al. [33] carried out a series of large-scale experiments to investigate the wave
impact forces on recurve walls under a range of breaking wave conditions. They observed
a relatively significant increase in wave loads for small air entrained between the breaking
waves and structures. Similar findings were also reported by Bullock et al. [26], where
they reported that larger impact force usually occurs when less air bubbles are entrained in
front of the structure.

In recent years, several studies have been devoted to investigating the influence
of wave impact loads on vertical breakwaters (e.g., [22,28,33,34]). However, detailed
understanding and reliable prediction of violent wave impact loads on vertical seawalls
with recurve retrofitting are still limited due to the lack of comprehensive data on the
relationship between wave loading and geometrical properties of recurve walls under both
swell and extreme wave conditions. This study aims to bridge this existing knowledge
gap by performing a comprehensive suite of physical model experiments investigating the
wave impact loads for three different shapes of recurve parapets subjected to both swell
and storm wave attacks. Detailed analysis of the physical modelling measurements and
comparison of the results with the existing predictive methods are conducted to examine
the variation of wave impact loads and the overturing moment on the seawall with respect
to the geometrical properties of the recurve retrofitting.

2. Materials and Methods

Physical model experiments were undertaken in a wave flume in the School of En-
gineering at the University of Warwick. The wave channel has dimensions of 22.0(L) ×
0.6(W)× 1.0(H) m with a 1:20 smooth foreshore beach (see Figure 1). The flume is equipped
with a piston-type wave generator and an active absorption system (AWAS). Each test case
consisted of approximately 1000 pseudo-random waves based on the JONSWAP (γ = 3.3)
spectrum, at a 1:50 scale.

The inshore wave characteristics, i.e., wave heights and wave periods, in deep water
and near the seawall structure were measured by the three-point wave gauging method,
adopting Mansard and Funke’s [35] methodology. Additionally, to mitigate any uncertainty
that may arise from reflection induced from the structure, calibration experiments were
performed in ‘bare’ channel condition, maintaining the same wave gauge profiling, as
described by [36–40]. To observe the influence of wave characteristics on wave impact
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loading on the recurve parapet, deep water nominal wave steepness ranging from sop 2%
to 6% were tested in this study. A summary of wave conditions and test configurations
investigated in this study is shown in Table 1.
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Figure 1. Schematic of the test set-up designed for this study (adopted from [10]).

Table 1. Nominal wave conditions and structural configurations used for the physical modelling tests.

hs [m] Hm0 [m] Tp [s] Lp [m] sop [−] Rc [m] Rc/Hm0 [−]

0.07 0.05 0.79 0.98 0.054 0.14 2.67
0.07 0.06 0.88 1.20 0.054 0.14 2.17
0.07 0.07 0.94 1.38 0.050 0.14 2.01
0.09 0.06 0.79 0.98 0.059 0.12 2.08
0.09 0.07 0.88 1.20 0.057 0.12 1.75
0.09 0.07 0.94 1.38 0.051 0.12 1.70
0.09 0.08 1.03 1.66 0.047 0.12 1.53
0.09 0.08 1.10 1.90 0.041 0.12 1.54
0.09 0.09 1.21 2.28 0.039 0.12 1.35
0.09 0.07 1.26 2.46 0.027 0.12 1.83
0.09 0.07 1.36 2.90 0.024 0.12 1.70
0.09 0.07 1.46 3.31 0.020 0.12 1.79
0.09 0.07 1.73 4.67 0.014 0.12 1.82
0.11 0.06 0.88 1.20 0.054 0.10 1.54
0.11 0.07 0.88 1.20 0.057 0.10 1.45
0.11 0.07 0.94 1.38 0.052 0.10 1.38
0.11 0.08 0.99 1.51 0.054 0.10 1.22
0.11 0.08 0.94 1.38 0.057 0.10 1.26
0.11 0.08 1.36 2.90 0.027 0.10 1.27
0.11 0.08 1.46 3.31 0.025 0.10 1.22
0.11 0.08 1.73 4.67 0.017 0.10 1.29
0.12 0.08 1.00 1.56 0.051 0.09 1.13
0.11 0.09 0.99 1.51 0.057 0.10 1.16
0.11 0.09 1.10 1.90 0.048 0.10 1.10
0.11 0.09 1.12 1.97 0.048 0.10 1.05
0.12 0.10 1.10 1.90 0.051 0.09 0.93
0.12 0.11 1.31 2.66 0.040 0.09 0.86

To measure the wave pressure enacted by the incident waves, 10 Trafag ATM.ECON-
type transducers with a measuring range of 0–50 kPa were mounted on the seawall. These
transducers were installed with a minimum offset of 9.0 mm from the center of the structure
(see Figure 2), in order to obtain high resolution pressure measurements along the seawall.
The horizontal force was determined by integrating the wave pressure recorded by each
transducer and frontal area of these transducers (see Equation (1)). The overturning
moment applied on the structure induced by the wave impact pressures was calculated
as the integral of horizontal force recorded by each transducer and their torque arm (see
Equation (2)).

F =
n
∑

i=1
Pi·∆z (1)
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M =
n
∑

i=1
Pi·∆z·zi (2)

where, n is the total number of transducers applied, Pi is the pressure results from the No.
ith transducer, and zi is the corresponding torque arm of No. ith transducer. For reference
case, zi is the absolute height from the center of No. ith transducer to the toe of seawall.
∆z is the length on the structure covered by each transducer.

In general, ∆z = 19.7 mm, and it changes when transducers are mounted on the recurve
wall. Both overall force (F) and overturning moment (M) are analyzed at the significant
level of 1/250, in order to mitigate the uncertainties for an extreme event. Additionally,
pressure transducers were also installed at the bottom side of the tested model recurve
walls to measure the wave pressure applied on the recurve. The sampling frequency for
each transducer was set at 1.28 kHz to ensure high accuracy during measurements.
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Figure 2. Schematic of the position of transducers on the face of the plain vertical seawall (Units: mm).

Three different configurations of recurve retrofits with varying overhang length and
recurve height were tested in this study (Figure 3). Recurve parapets were designed to
include small recurve [SR], long recurve [LR], and high recurve [HR] with a recurve angle
at approximately 45, 60, and 30-degrees, respectively (Figure 3). For each configuration,
recurve retrofit was installed on the crest of the plain vertical seawall (i.e., reference case).
Wave impact forces and the overturning moment induced by the incident wave attack on
the seawall were measured with the transducers positioned at fixed locations along the
vertical length of the structure.
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3. Results and Discussion
3.1. Pressure Distribution up the Wall

Distribution of wave impact pressure on the seawall is considered as a key factor
in the determining of the structural stability of the seawall structure; the location of the
maximum wave load plays a particularly important role in the stability assessment of
retrofitted coastal structures. In Figure 4, the observed spatial distributions of wave impact
pressures on the plain vertical seawall are presented for the two tested toe water depths
of hs = 0.09 m and 0.11 m. The X-axis in Figure 4 represents the relative location of the
pressure transducers, whereas Y-axis represents non-dimensional wave impact pressure at
the seawall. Data presented in Figure 4 show that the peak of the wave impact pressure
occurs approximately at the still water level (SWL), confirming the findings of previous
research [27,41,42] despite the different structural and test configurations. However, for a
few cases, the peak pressure was observed slightly above the SWL which may be attributed
to weaker wave breaking and air entrapment above the SWL when waves reach the
seawall [42]. Additionally, the distribution of the wave impact pressure above the SWL
can be the cause of smaller pressure measured above the SWL for the tested conditions in
this study.
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Figure 4. Distribution of wave impact pressure for experiments with benchmark configuration (plain vertical seawall).
(a) hs = 0.09 m, (b) hs = 0.11 m. Lines with different color represent the pressure distribution from cases with different
wave periods.

Figure 5 represents the pressure profile of the pmax of the whole structure correspond-
ing to the SR configuration benchmarked with the measurements from the reference case
(i.e., plain vertical seawall). The analysis of data presented in Figure 5 demonstrates that
the elevation of pmax on the recurve wall shifts upwards when compared with the pressure
profile for the plain vertical seawall (Figure 4). When the water depth at the toe of the
structure increases from 0.09 m to 0.11 m, it also can be observed that the elevation of
pmax moves upwards. As the recurve wall approaches the SWL, the elevation of pmax rises
gradually. It can be inferred that incident waves are bounced back or trapped under the
recurve wall, as is visually evident in Figure 6, while they are thrown upwards for the
reference cases. An additional volume of water gathers around the interception between
the recurve wall and the vertical seawall, resulting in a rise in local maximum pressure
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elevations and the magnitude of wave pressure enacted on the structure. Similar findings
were also reported by Kisacik et al. [30].
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Figure 6. Incident waves interactions with the seawall and thrown-back by the recurve retrofitting.

Figure 7 presents the distribution of wave impact pressure for the experiments with
LR and HR retrofitting configurations. Overall, it can be observed from Figure 7 that the
pmax occur above the SWL for both the LR and HR configurations. It can be also noticed
that with the increase of water depth, the elevation of pmax also increases. For the tested
LR configuration, the increase in the overhang length causes a decrease in the elevation
of pmax, while increases in the height of the recurve wall for the HR configuration results
in an increase in the elevation of pmax. It can be inferred that incident waves, especially
those with large wavelengths, are bounced downward by the overhang. Hence, the wave
crest for the case of LR reaches a relatively lower point compared to the measurement
corresponding to the SR configuration (Figure 5). These findings are consistent with Kisacik
et al. [29]. The toe of HR is likely to be submerged, causing the crests of more breaking
waves o hit the underside of HR with increased jet velocity. Therefore, the maximum wave
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impact pressure, pmax happens above the SWL and shifts upwards, becoming closer to the
toe of HR.
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Figure 7. Distribution of wave impact pressure for experiments with LR and HR configurations: (a) Long Recurve
hs = 0.09 m (b) Long Recurve hs = 0.11 m (c) High Recurve hs = 0.09 m (d) High Recurve hs = 0.11 m.

3.2. Impact and Quasi-Static Force

For the conditions tested within this study, it was observed that the impact and quasi-
static force occur in one wave event (e.g., see Figure 8), which can be distinguished by the
relative duration of the loading. It was particularly noted that the impact loads act on the
structure with a large force value but in a short duration, whereas the quasi-static loads
act on the structure with much smaller values but more than doubled in the duration of
impact loading. Under impulsive wave conditions, a ‘two-peak’ phenomenon was also
reported that can be inferred with the generation of wave force, similar to those observed by
Peregrine [43]. When a wave arrives and breaks at the seawall, the crest of the wave collides
with the structure and runs up with small air pockets and causes the impact loading as
shown by the first peak in Figure 8a. Afterwards, subsequent oscillations happen due to
the breaking of the incident wave crest and air bubbles remain entrapped in the water,
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as shown in Figure 8b, while under the effects of gravity, the water is deaccelerated and
falls back, causing the second peak, as shown in Figure 8b at around t/Tm = 0.7. These
characteristics of impact and quasi-static loading are consistent with the literature available
for wave loading at vertical walls [26,44,45].
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3.3. Wave Impact Force

This paper mainly investigates the wave impact loads in the horizontal direction,
including the horizontal impact force (Fh) and the overturning moment (Mh) generated
by the horizontal impact force. To mitigate any potential uncertainties in the recording of
the maximum pressure during the tests under impulsive wave conditions, the horizontal
wave impact force data was analyzed to determine the averaged value of the maximum
four events in a test sequence, recorded as Fh,imp1/250, and the corresponding overturning
moment applied on the structure, recorded as Mh,imp1/250.

Figure 9 presents a comparison between the measured horizontal force for the ref-
erence condition and retrofitted configurations. The graph shows that the measured
horizontal impact force increases as the wave becomes more impulsive in nature. When
comparing the wave impact forces for the retrofitted conditions with the plain vertical
seawall, it can be observed that wave impact force increases with the addition of a recurve
wall on the crest of the structure (Figure 9). The magnitude of measured overall horizon-
tal force (Fh,imp1/250) on the seawall moves up for SR configurations, with an increase of
1.3 times the average values, compared to the plain vertical seawall, similar to the findings
of [18]. For the LR configuration, Fh,imp1/250 increases only under extreme impulsive wave
conditions (low h*), as shown in Figure 9, whereas for the HR configuration, an increase in
the measured Fh,imp1/250 can be observed for all the tested conditions presented.

Figure 10 illustrates the increase of Fh,imp1/250 for the three tested recurve retrofits
compared to the reference case. Data in Figure 10 show that when h* increases Fh,imp1/250
also increases simultaneously, except for those two cases tested with a relatively long wave
period. This increment of impact force with the increase in the impulsiveness parameter
confirms the findings reported by [18], demonstrating that non-impulsive wave force
increases more significantly compared to the impulsive wave force when a recurve wall is
retrofitted on the seawall. For the conditions tested with the SR configuration, the Fh,imp1/250
increases up to 1.7 times the measurements for the benchmark case. A similar magnitude
of increase in Fh,imp1/250 can also be observed for experiments with LR and HR retrofits,
with an average increase of 1.4 and 1.5 times larger than those values recorded for the
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plain seawall, respectively. Overall, the maximum increase of Fh,imp1/250 is reported for HR
configuration, with a maximum increase of 2.3 times larger compared to the reference case.
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pared with those measured for plain vertical wall.

The variation in Fh,imp1/250 with respect to the geometrical properties of recurve para-
pets is presented in Figure 11, with an increase ratio of Fh,imp1/250 on LR and HR compared
to the measurements from the SR configuration (e.g., Fh,imp1/250, LR or HR/Fh,imp1/250, SR). The
data points in Figure 11 indicate that the variation of the geometrical shape of recurve wall
influence Fh,imp1/250 on the seawall. For the extreme impulsive wave conditions (h* < 0.09),
Fh,imp1/250 on LR configurations is found to be larger than SR, with a maximum increase
ratio of 1.6, indicating the influence of recurve’s overhang length on impact loading. The
recurve height is also found to increase the Fh,imp1/250; as such the measured Fh,imp1/250 for
the HR configurations show an average increase of 1.25 times compared to the case of SR.
Based on the measurements, it can be concluded that the influence of increasing recurve
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height should be carefully considered for all the wave conditions, while the overhang
length only influences the Fh,imp1/250 under extreme impulsive wave conditions (h* < 0.09).
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Figure 11. Increase in the horizontal impact force (Fh,imp1/250) measured for HR and LR compared
with those measured for SR.

3.4. Wave Quasi-Static Force

In addition to impact loading, knowledge of the influence of recurve geometry on
the overall quasi-static loading on the structure is required to assess the potential risks
generated from long-lasting wave loads. For the tested conditions, the extreme large quasi-
static forces measured in this study are analysed and discussed as the mean value of the
largest four events (Fqs 1/250), adopting the methodology proposed by Cuomo et al., [27],
to minimize the uncertainties that may arise from the physical modelling measurements.
Figure 12 shows an increase in the quasi-static force (Fqs 1/250) measured for recurve retrofits
compared with those observed for the reference case. The results show that the overall
Fqs 1/250 is larger when a recurve wall is mounted on the seawall crest. The influence of
recurve retrofitting is significant, particularly for the lower range of h∗. Fqs 1/250 for SR
configuration becomes up to 1.6 times larger when compared to the measurements from
the reference cases for h* value of 0.05. Overall, for the tested retrofits, an average increase
of 1.2 from the reference case are observed (see Figure 12). More significant increases in Fqs

1/250 are observed for HR and LR cases, with an average increase of 1.6 and 1.3, respectively,
compared to the plain vertical wall.

To investigate the influence of recurve geometry on the magnitude of quasi-static
loads, measured Fqs 1/250 for LR and HR tested configurations are compared with the
measurements corresponding to SR. Figure 13 shows that measured Fqs 1/250 for LR are in
similar magnitude of those observed for the SR case. When comparing measured values
of Fqs 1/250 from HR with SR, it can be reported that Fqs 1/250 values of HR configuration
are larger than the values from SR, with an average increase of around 1.5. Hence, for
the conditions tested within this study, the influence of increased recurve height on the
quasi-static force was significant compared to the influence that was observed for the
increased overhang length.
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Figure 12. Increase in the quasi-static force (Fqs 1/250) measured for recurve retrofits compared with
measurements for plain vertical wall.
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measurements for SR.

3.5. Overturning Moment

The overturning moment (Mz,imp) generated by the wave impact force was also inves-
tigated in this study to analyze the influence of impact force on the stability of the seawall
structure. With regard to the stability concern, the structure must counterbalance the
applied overturning moment with its strength and any additional support provided from
the shoreward structures. The overturning moment was calculated by integrating the indi-
vidual generated wave impact force and the corresponding torque arm (see Equation (2)),
for both the plain vertical seawall and the SR configuration. Figure 14 highlights that the
torque arm for the applied wave impact force changes with the change of the structural
configuration i.e., from vertical seawall to the recurve retrofitting.
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In Figure 15, measured Mh,imp1/250 for the tested recurve configurations are compared
with those determined for the reference case. The data corresponding to the recurve retrofits
are found to be larger when compared with those of the plain vertical wall (Figure 15).
It was found that for the SR configuration, similar to the reference case, the values of
Mh,imp1/250 decrease with the increase of h∗. In Figure 15, the increase ratio of Mh,imp1/250
rises with h∗, from 1.0 up to 2.4 for the retrofitted configurations tested within this study.
However, different scenarios can be observed for the six tests highlighted in Figure 15,
where a large increase ratio of up to 2.5 is observed with low h∗. These tests were all
conducted with Tm−1,0 > 1.3 s and sop < 0.025. Overall, it can be concluded that the
measured Mh,imp1/250 increases with h* in each tested configuration, and both the longer
overhang and height of recurve wall leads to larger Mh,imp1/250. Based on the parametric
analyses of the measurements, a possible reason for this phenomenon is the combined
influence of long wavelength and low crest freeboard. The elevation of pmax is found to
increase for these two highlighted cases, indicating an increased torque arm that results in
a larger overturning moment generated on the whole structure.
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Figure 15. Increase in overturning moment measured for recurve retrofits compared with those
observed for plain vertical wall.

Figure 16 compares the overturning moment determined for the case of LR and HR
configurations with those obtained from the SR configuration. The overturning moments
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observed on LR are generally found to be almost similar when compared with the values
of SR, while there are three cases that show an increase of around 1.3 times greater than SR
values. This can be associated with the similarities in the impact wave force measured for
the LR and SR recurve cases. More significant increases are observed for the experiments
corresponding to the HR configuration. When the height of the recurve wall increases,
Mh,imp1/250 becomes larger than the value corresponding to SR for almost all of the tested
cases. An average increase of around 1.15 times is observed, highlighting the limited but
non-negligible influence of the recurve height on the overturning moment applied on the
seawall.
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Figure 16. Influence of geometrical shapes in overturning moment applied on the seawall structure.

4. Conclusions

A comprehensive suite of physical modelling tests was undertaken to evaluate the
increase in the wave impact loads generated on the seawalls due to the addition of recurve
retrofitting on the crest of the seawall. Detailed measurement and analysis were carried out
to determine the distribution of wave impact pressure, the horizontal impact force and the
overturning moment generated from the wave impact force. For the conditions covered
within this study, test results demonstrate that the overall increase in the magnitude of
horizontal impact wave loads for recurve retrofits is within a factor of 1.3 to 1.5 when
compared to the measurements for the plain vertical seawall, leading to an approximate
increase of 1.5 times the overturning moment generated by wave impact forces.

The magnitude of wave loads (both impact and quasi-static force) acting on the
structure was primarily influenced by the recurve geometrical properties. It was found that
with the increase of overhang length or height of the recurve wall, wave impact force and
the overturning moment generated at the structure also increased simultaneously. Recurve
walls with a long overhang with a low crest freeboard can be particularly hazardous due to
the significant increase in the horizontal impact force under impulsive wave conditions.
For the quasi-static wave loading, it was found that variation of the height of the recurve
parapet significantly influences the wave loading on the seawall structure compared to the
limited influence observed for the overhanging length.

Additionally, it was observed that the location of maximum wave impact pressure
varies with the geometrical shape of the recurve parapet. For the tested conditions, it
was found that with the increase of overhang length or height of the recurve wall, the
elevation of the maximum pressure moves upwards. The experimental set-up of this study
was designed using the established guidelines for a typical two-dimensional wave flume
investigation ass outlined by EurOtop, see [46]. It is therefore believed that outcomes of
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this study would be comparable to the prototype measurements. However, any further
validation of datasets through performing large-scale measurements would be clearly
desirable. Data and information generated from this study provide new knowledge on the
influence of recurve retrofitting on the wave impact force and structural stability of vertical
seawalls, which can directly benefit coastal engineers, managers, and stakeholders to make
risk-informed decisions regarding the design of the geometrical properties of the recurve
configurations considering the probable increase in wave impact loading.
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