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Abstract: Temperature-based methods have been developed to infer 1D vertical exchange flux 

between a stream and the subsurface. Current analyses rely on fitting physically based analytical 

and numerical models to temperature time series measured at multiple depths to infer daily average 

flux. These methods have seen wide use in hydrologic science despite strong simplifying 

assumptions including a lack of consideration of model structural error or the impacts of 

multidimensional flow or the impacts of transient streambed hydraulic properties. We performed a 

“perfect-model experiment” investigation to examine whether regression trees, with and without 

gradient boosting, can extract sufficient information from model-generated subsurface temperature 

time series, with and without added measurement error, to infer the corresponding exchange flux 

time series at the streambed surface. Using model-generated, synthetic data allowed us to assess 

the basic limitations to the use of machine learning; further examination of real data is only 

warranted if the method can be shown to perform well under these ideal conditions. We also 

examined whether the inherent feature importance analyses of tree-based machine learning 

methods can be used to optimize monitoring networks for exchange flux inference. 

Keywords: machine learning; groundwater-surface water interactions; integrated hydrologic models; 

groundwater recharge; groundwater monitoring 

 

1. Introduction 

There is a long-standing interest in developing methods to quantify surface-water–

ground-water exchange flux to better understand water and solute exchange across the 

sediment-water interface. Some studies require that multidimensional stream/aquifer flux 

be described with high spatial and temporal resolution, perhaps including consideration 

of time-varying streambed hydraulic properties [1–3]. Other applications only require an 

accurate estimate of the local vertical water flux [4–6]. Hydrologic studies exist along this 

spectrum, giving rise to a need for a range of methods that provide flux estimates with 

different resolutions and requiring different levels of measurement support. 

To quantify water flux, several methods have been developed, including seepage meters, 
differential-discharge measurements, shallow piezometers, tracer experiments, and 

temperature-tracer measurements [7–10]. Due to the underlying assumptions, the labor 

intensiveness, the tempo-spatial resolution, and uncertainty costs, each of these methods have 

limitations in most cases, which are described in detail in [11]. However, there is a particular 

interest in applying thermal-based methods to measure flux. These methods involve the 

interpretation of temperature time series, collected in the subsurface, to estimate 1D vertical 

exchange flux across the streambed [12–19]. These methods are particularly well-suited to 
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measurements under field conditions over large areas where the practical advantages of self-

contained logging temperature sensors make them clearly superior to pressure-based 

methods. In general, temperature-based methods have been based on inferring conductive–

convective heat transport from time series of temperature at multiple depths to estimate water 

flux. To date, temperature-based methods to infer 1D vertical exchange flux across a 

streambed have relied on fitting analytical or numerical models of coupled flow and heat 

transport to subsurface temperature time series. Initial methods fit an analytical solution 

describing the subsurface response to a sinusoidally varying surface temperature forcing 

[12,13]. Later approaches have used numerical models to infer infiltration from temperature 

time series measured in the surface water and in the subsurface [14]. Despite the 

simplifications that underly these 1D temperature methods, they have made major 

contributions to the understanding of reach-to-watershed scale hydrology. However, several 

previous researchers have recognized that uncertainty in the sediment thermal parameters 

can translate to uncertainty in flux estimates [10,17]. Moreover, these approaches generally 

require relatively long (hours to days) time series for calibration. Furthermore, the flux 

estimates have been limited to relatively low temporal resolution—hours to months—because 

the available data do not support unique inversion of the water flux boundary condition at a 

time resolution similar to the data collection frequency. Finally, to date, no published methods 

have considered estimating water flux under conditions of temporally varying, temperature-

dependent hydraulic conductivity using those methods. 

With advances in sensor technology and wireless communication, automated 

groundwater monitoring systems provide us the opportunity to collect groundwater data 

with high temporal resolution. With the aforementioned advancement in data collection as 

well as storage and computation power, data-driven methods, such as machine learning (ML) 

and deep learning (DL), are transforming many scientific disciplines, specifically in water 

resources management and hydrogeology. In general, the power of ML and DL methods lies 

in their ability to learn more complex functions while providing enhanced generalization 

capabilities. Further, recent studies [20–23] have shown the computational benefits of ML/DL 

models as surrogates of physics-based models, relying on intensive numerical simulation. 

In this study, we performed an initial investigation of the possibility of replacing 

these physics-based models with simple machine learning algorithms to infer the 

exchange flux with higher temporal resolution and whether these same tools can inform 

optimal sensor network design. Our objective was to examine the potential uses of simple 

machine learning (ML) techniques to augment numerical model-based analyses of 

streambed infiltration/exfiltration. Specifically, we aimed to determine whether simple 

ML methods, trained on a numerical model, could provide near-real-time flux estimations 

based on five-minute resolution subsurface pressure and temperature time series. Further, 

we examined whether the ML tools could be used to identify a reduced observation 

network, ideally comprised of only temperature sensors, that contained all information 

necessary to infer the surface/subsurface flux. If successful, ML tools could be paired with 

relatively few sensors to extend monitoring of water flux across the ground surface at low 

cost after an initial, more intensive calibration period. 

2. Materials and Methods 

This study represents an initial feasibility study of using machine learning (ML) to 

infer 1D streambed flux based on subsurface temperature time series. To provide an ideal, 

testable basis for this examination, we performed a “perfect-model experiment,” making 

use of model-generated temperature and pressure measurements with corresponding, 

model-generated groundwater/surface water exchange fluxes. For this, a highly resolved 

numerical model of water flow and heat transport produced exchange flux time series at 

the streambed as well as temperature and pressure time series at multiple depths. The 

numerical model’s configuration is described in detail in [24] .The numerical model 

outputs were used as inputs for the ML analyses. The exchange fluxes were the forecast 

targets, and the temperature and water pressure time series at multiple depths were the 
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features. In particular, the input features (derived from the temperature and pressure 

observations) were temperature/pressure, time-delayed temperature/pressure, and 

temperature/pressure gradients in space and time. These inputs and targets are referred 

to as flux time series and subsurface pressure and temperature time series. Both the 

temperature and pressure measurements were subjected to varying levels of 

measurement noise to assess the impact of measurement uncertainty on flux estimation. 

The results of a “perfect-model experiment” are only strictly meaningful in pointing 

out limitations to a method. A more complete test of the promise of ML methods for 

inferring flux from subsurface temperature time series should consider model structural 

error and, ideally, field observations collected with high temporal and spatial resolution. 

However, a perfect-model experiment offers a near-ideal initial test of a method. In the 

context of this study, if model-generated error-free observations’ data cannot support the 

prediction of exchange fluxes that are generated by the same model, then we can conclude 

that it is unlikely that the proposed ML method and data will be successful in practice. 

Further, we can examine the impact of observation error on the method’s performance. If 

the results are promising with added error, then it is worthwhile to conduct further 

investigations that examine the influence of model structural uncertainty, the impact of 

multidimensional hyporheic flow, and time-varying streambed sediment properties, 

among other complicating factors. However, it should be noted that none of these 

complications have limited the use of current temperature-based exchange flux estimation 

methods even though they use physically based models that do not consider them. 

2.1. Generation of Noise-Free Observations with a Numerical Flow and Heat Transport Model 

This study is part of a series of investigations aimed at determining water flux 

between the Columbia River and its underlying aquifer. As a part of these investigations, 

a 3D PFLOTRAN [25] model was constructed to simulate fully-coupled nonisothermal 

flow and heat transport in the subsurface. PFLOTRAN is a parallel multiphase flow 

simulator implemented in object-oriented FORTRAN that uses an integral volume finite 

difference approach with the nonlinearities in the discretized equation resolved thorough 

Newton Raphson iteration. This 3D model was constructed to simulate flow and heat 

transport near the Columbia River at the Hanford 300 A area in Washington [24]. The 

model domain is 400 m × 400 m × 20 m, including three layers with different hydraulic 

and thermal properties (alluvium, Hanford, and Ringold formations). The spatial 

resolution of the uppermost, alluvium layer was 0.5 m × 2 m × 0.1 m to capture the flow 

and temperature dynamics in the shallow subsurface.  

The objective of this study was to test the use of ML methods to infer 1D vertical flow. 

Therefore, a 1D model simulating flow and heat transport was built to generate the 

subsurface temperature and pressure time series at multiple depths and the 

corresponding exchange fluxes at the streambed. The 1D vertical model is 2 m in vertical 

extent with a spatial resolution of 0.01 m; this high spatial resolution was necessary to 

provide accurate temperatures and pressures at the observation depths. The boundary 

conditions applied to the 1D model were extracted from the 3D model, thereby 

transferring as much of the information from the 3D system as possible. The top and 

bottom boundaries of the 1D model were of Dirichlet type for both flow and heat 

transport. The 1D model was homogeneous, with a permeability equal to that of the 

alluvium layer, 3.86 × 10−11 m2. The simulation period was 1 January 2016–30 June 2017 

(1.5 years) with temperature, pressure, and streambed flux generated every 5 min. 

Both the 1D and 3D models accounted for the temperature dependence of the 

viscosity following: 

�� = 241.4 × 10���.�/(�����)(1.0 +  1.0467 × 10�� (p − p���)(T −  305)) (1)

where μw is water dynamic viscosity in micropoise (μP), T is temperature in degrees 

Kelvin (K), p is pressure in bars, and psat is saturation pressure in bars corresponding to 

temperature T [26]. 
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2.2. Model-Generated Time Series Used for Machine Learning Analyses 

The high-resolution 1D vertical flow and heat transport PFLOTRAN model 

generated pressure and temperature at 200 depths with a 0.01 m spacing between 0.005 

and 1.995 m depth below the riverbed. We considered a subset of these measurement 

depths to represent a plausible monitoring network with sensors at depths of 0.015, 0.105, 

and 0.195 m. These depths represent a measurement immediately below the stream bed 

and two sensors placed at approximately 10 cm separation (Figure 1). It should be 

reiterated that this initial study was a perfect-model experiment. Therefore, the numerical 

model results were used, with and without added error, to represent sensor responses 

that could be collected in the field. The resulting time series of streambed flux (Figure 2A), 

subsurface pressure (Figure 2B), and subsurface temperature (Figure 2C) were interpreted 

using simple, tree-based ML methods. The nature of flow in the modeled system resulted 

in predominantly low streambed fluxes with more instances of downward flux than 

upward. The maximum downward flux (shown throughout as negative upward flux) was 

greater than the maximum upward flux (Figure 2A). 

 

Figure 1. Depths of the temperature and pressure observations. 
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Figure 2. Time series of (a) surface/ground water exchange flux across the streambed, (b) pressure 

at three depths, and (c) temperature at three depths. 

2.3. Training and Testing the ML Tools  

We considered two machine learning methods: regression trees and gradient 

boosting, referred to as RT and GB, respectively. The basic structure of these methods is 

presented below for the benefit of readers who are not familiar with them. 

2.4. Implementation of Regression Tree Analyses 

RT techniques consider paired values of targets (here, streambed exchange flux) and 

features (in this case, subsurface temperature and/or pressure observations and/or their 

spatial gradients, between any two observation depths or temporal gradients or between 

any two observation times at a common depth). All of the available data were divided into 

training and testing subsets. The RT considers the training data, searching through the 

features and dividing the targets based on the value of each feature. In this investigation, 

two subsets at each split were formed. The feature and the associated threshold value of that 

feature that result in two subsets with the smallest sample-weighted total variance was 

identified, and the set was divided into two subsets (Figure 3). This procedure was repeated 

for each subset until a user-selected number of splits or until the reduction in variance due 

to splitting failed to meet a user-defined limit. The sequence of feature/threshold values was 

identified based on the training data, and the performance of the trained RT was based on 

its ability to predict the targets in the testing set based on the corresponding testing features. 

(See further discussion of the specific training/testing performed for this study below.) One 

limitation of RT methods is that they are “greedy,” meaning that the feature and threshold 

is identified at each node sequentially, without consideration of the overall optimal set of 

features and thresholds. For this reason, RT is not guaranteed to be optimally efficient. 
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Rather, it is seen as a relatively simple, rapid ML approach that results in a tree structure 

that is relatively easy to interpret. 

The performance of the RT depends on the choice of several user-defined values 

(hyperparameters). A process of hyperparameter tuning allows for the performance to be 

improved. However, to accomplish this, the training data set has to be further divided 

into a training set and a validation set. The training set is used first, then the validation set 

is used for hyperparameter tuning. Finally, the as-yet-unused testing set can be used to 

assess the performance of the trained RT. For our implementation, the hyperparameters 

were: number of levels of the RT, the minimum reduction in variability required, and the 

minimum population of a subset needed to justify branching at a node. The tree-based 

methods used in this study were tuned using cross validation [27]; the parameter values 

are reported in the Appendix A in Table A1. 

 

Figure 3. Illustrative example of a two-level regression tree to segregate streambed exchange flux 

based on subsurface temperature observations at ten depths T(0), T(1) … T(10). 

A strength of RT is its ease of interpretation. Consider the illustrative example shown 

in Figure 3. Temperatures measured at ten depths, T (1) through T (10), were considered 

to form a tree with only two children formed at each node and two levels of nodes. The 

initial set, including all the training fluxes, was composed of 3486 samples with a mean 

value of 0.666 m/s; the MSE between all the flux values and the mean was 0.032. The RT 

process identified the shallowest temperature observation, T (1), with a threshold of 14.37 

°C as the first feature for classification. This divides the fluxes into two groups with mean 

values of 0.749 and 0.583 and sample sizes of 745 and 2741, respectively. The sample-

weighted MSE can be calculated for each split by multiplying the MSE of that set by the 

number of samples in the set after splitting normalized by the total number of samples. In 

the illustrative example, the sample-weighted MSE after splitting was 0.022. The left 

branch identified T (1), again, as the best criterion with a threshold of 5.12 °C, but this did 

not meet the minimum required improvement in MSE to continue, so this branch was 

terminated without splitting. The right branch identified T (10) with a threshold of 14.51 

°C. This split met the variance reduction criterion, so the samples were divided into two 

subsets with mean values of 0.890 and 0.612 m/s. To apply the RT at some time, t, in the 

testing set, only T (1) and T (10) would be considered. If these values were T (1) = 15.0 and 

T (10) = 13.2, then the binary classification at each branch leads to the central box with a 
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mean value of 0.890 m/s. This value of predicted flux at that time would be compared to 

the known flux at that time to assess the performance of the trained RT. 

The highly simplified example shown in Figure 3 demonstrates how RT can be used 

for monitoring network design. That is, for this example, measurements T (2) through T 

(9) were not considered when applying the RT, so they could be eliminated from the 

measurement design with no loss of accuracy. Beyond this simple elimination approach, 

we can quantify the relative importance of T (1) and T (10) by examining how much each 

reduces the sample-weighted variability of the training set. Specifically, at each node we 

can quantify the population-weighted reduction in MSE as: 

� =
1

��
� ������� − ����� (2)

where ni is the number of observations in each subset after splitting, MSEi is the 

corresponding mean squared error of each post-split subset, np is the number of 

observations in the parent set (before splitting), and MSEp is the mean squared error of 

the parent set. These nodal importance values can be summed for each observation (e.g., 

for all instances of T (1)) and then normalized by the sum over all observations to define 

the relative contribution of each observation: 

��=
∑ �����  

∑ ���∈�
 (3)

in which J is the set of all nodes considering observation j, and K is the set of all nodes. In 

this case, observation T (1) has an importance of 0.72, and T (10) has an importance of 0.28. 

In this way, many features can be considered when constructing an RT, and their 

contribution to the inference can be quantified easily, as an inherent part of constructing 

the RT. Practical considerations, such as cost or ease of installation, can then be combined 

with the feature importance results to select a reduced set of observations. 

2.5. Implementation of Gradient Boosting Tree 

RT is a conceptually accessible ML method. However, it has several well-recognized 

limitations [28,29]. RT can be susceptible to overfitting, especially if the input data are 

noisy. The sequential, “greedy” nature of RT can miss combinations of splitting rules that 

may lead to better classification. Additionally, because each leaf (final box on Figure 3) is 

represented by the mean value of its samples, the model produces discontinuous, stepped 

predictions, especially for trees with relatively few levels. Finally, RT expends 

computational effort to attempt to subdivide every node on every level, whereas it may 

be more efficient to expend more effort on areas where the RT is underperforming. These 

limitations of RTs can be mitigated to some degree by adding gradient boosting. Boosting 

begins by constructing a relatively weak RT (e.g., with relatively few levels). Then, a 

second RT is constructed to predict the prediction errors (the residuals) of the first tree. 

This is repeated sequentially, continually reducing the largest prediction errors [30–34]. 

The feature importance values of the sequence of RTs are combined to define the overall 

contribution of each feature to the RT with gradient boosting (hereafter referred to as GB). 

For our implementation, the hyperparameters are: 

The number of weak learners, the number of levels, the learning rate, and the 

minimum population of a subset needed to justify branching at a node. 

2.6. Training and Testing the ML Algorithms 

A key decision facing all ML analyses involves the definition of training and testing 

subsets of the data. The training sets were used to determine the features; the associated 

threshold values were used to segregate the data; and the testing set was used to assess 

its performance. Generally, the ML will only be adept at predicting conditions that are 

bounded by those included in the training set; that is, the training data must be 

representative of the full range of conditions. However, care must be taken to ensure that 
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the testing data are independent of the training set to avoid providing unintended 

information to the ML. For example, if data collected every even minute was used for 

training and every odd minute for testing, the ML would make use of the high temporal 

correlation of the testing and training data. However, if the ML were applied to new data 

with a different distribution, it would likely underperform compared to the training 

results. Following general guidelines for training/testing splits [35,36], we used 70% of the 

data for training and the remaining 30% for testing. For this investigation, both training 

and testing sets must sample the full range of both temperature and flux conditions to be 

fully representative. Because the hydraulic conductivity depends on the temperature, and 

the flux depends on the hydraulic conductivity, care had to be taken to include samples 

from throughout the year, as the daily average temperature varied seasonally. This 

required that several discontinuous periods be included in the training set. 

Simultaneously, it was necessary to avoid having training information leak into the testing 

set due to temporal correlation of the training and testing observations. In particular, 

given that there is a diffusive element of heat transport, it is likely the temperature 

measurements that are close in time will be highly correlated. To avoid this effect, we 

instituted a buffer time of 100 min at the beginning and end of each training period; 

samples within these buffers were not used for testing or training. To satisfy all these 

requirements, we divided the 110,000 observation times into six paired training/testing 

periods (Figure 4) to cover all ranges of flux values during both training and testing 

periods. Training was performed on observations: 500–12,500, 19,000–25,000, 33,000–

45,000, 52,000–70,000, 75,000–90,000, and 97,000–110,000 (shown in blue). We also used 

five-fold cross validation on training period to tune the model [27]. Specifically, testing 

was performed on the remaining observations (shown in red) with the measurements in 

the buffer zones not included (not visible on Figure 4). 

In this study, we added zero mean Gaussian random errors with a standard deviation 

equal to a given percent of the variance of all measurements of a given type (e.g., all 

temperature measurements) collected at all depths and times. That is, the level of relative 

measurement error was assumed to be comparable for temperature and pressure sensors. 

This analysis could be repeated for different relative temperature and pressure errors if 

there was reason to believe that the available sensors had different error characteristics. To 

conform to general descriptions of measurement error, these errors are described as a signal 

to noise ratio (SNR). For example, if the variance of the error free observations is 100 times 

the applied variance of the added errors, then the SNR is reported as 100. A measurement 

set with an SNR of 10 would be considerably noisier than one with an SNR of 100. 
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Figure 4. Time series of training (blue) and testing (red) sets illustrated using data from 0.005 m 

depth. (a) upward flux, (b) pressure, and (c) temperature. 

As described above, tree-based ML methods can consider many possible features and 

identify the most informative (important) as an integral part of forming the RT. Therefore, 

we decided to consider the temperature and pressure time series, and we also examined 

whether temporal and spatial gradients of temperature and pressure were more 

informative than direct measurements. From a hydrologic perspective, we might expect 

that pressure gradients, which are directly related to vertical water flow through the 

hydraulic conductivity, may be more informative than a pressure measurement at a single 

depth. To reflect practically achievable gradient observations, spatial gradients were 

calculated between the sensor depths already included in the observation set; that is, the 

addition of gradient measures did not increase the number of subsurface sensors needed. 

We assumed that measurements were collected every 5 min, so the temporal gradient was 

calculated for a 5-min time delay. We also considered measurements made at the time of 

streambed flux inference and observations made before and after the time of inference. 

This is particularly useful for temperature measurements because it takes time for the 

change in surface flux to impact downward advective heat transport such that there is a 

noticeable affect at a sensor at depth. (Note, streambed flux estimation is rarely, if ever, 

made in real time. As such, there is no prohibition on using data after the time of 

inference.) Specifically, we considered temperature and pressure observations and their 

spatial and temporal gradients with delays ranging from −30 to +30 min, with a 5-min 

resolution, as the inputs for the models.  
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3. Results and Discussion  

We used RT and GB to infer the exchange flux based on model-generated subsurface 

temperature and pressure data with and without added noise. Each method was applied 

to the same training/testing sets to allow for direct comparison of their performance. 

Analyses were performed on observation sets in the following order: temperature and 

pressure data at multiple depths, only temperature data at multiple depths, and collocated 

pressure and temperature sensors at a single depth. 

3.1. Analyses of Temperature and Pressure Data at Multiple Depths 

To define the optimal achievable performance for a practical observation set, we first 

considered all of the available data. Given that we are performing a perfect-model experiment, 

which has a reasonable goal of perfect prediction of streambed flux, we only described the ML 

performance based on cross-plots of the true and inferred streambed flux through time.  

The RT was able to infer upward fluxes very accurately with no added noise (Figure 

5a). Downward flux (shown as negative upward flux) was less well resolved. Specifically, 

both upward and downward fluxes were estimated accurately for fluxes less than 

approximately 0.00002 m/s; estimates of higher downward fluxes showed more error. 

From a physical perspective, this is surprising; temperature-based estimation based on 

matching a physical model relies on advective heat transport to propagate the 

temperature variations at the surface to the measurement locations, resulting in greater 

sensitivity to downward flow. Closer examination of the results shown in Figure 5 point 

to an explanation that offers insight into a possible limitation of this use of ML. Namely, 

remembering that RT produces discretized values of flux (one for each terminal leaf), the 

larger spacing between the flux estimates for high downward fluxes indicates that the 

majority of the effort of the RT was used to refine the lower upward and downward fluxes. 

This is likely due to the relative rarity of high downward fluxes, as seen in Figure 5a. The 

addition of noise with an SNR of 100 (Figure 5c) had little impact on the quality of 

inference of lower upward or downward fluxes. However, added noise further degraded 

the quality of the estimates of high downward fluxes. Adding gradient boosting greatly 

improved the exchange flux estimation, especially for high downward fluxes (Figure 5b). 

This improvement illustrates the advantage of gradient boosting techniques, which 

inherently concentrate on reducing the largest errors at each level of the analysis, which 

resulted in much more finely resolved, and accurate, flux estimations based on combined 

temperature and pressure data. The addition of 100 SNR measurement error had very 

little impact on the performance of GB when considering both pressure and temperature 

measurements at multiple depths. 
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Figure 5. Testing results using temperature and pressure sensors, which are located at, 0.015, 0.105, and 0.195 m. (a) Noise-

free data using RT. (b) Noise-free data using GB. (c) SNR = 100 noisy data using RT. (d) SNR = 100 noisy data using GB. 

The built-in feature importance assessment of RT allows for relatively simple 

interpretation of the observations (types, depths, delays, or gradients) that contribute to 

the regression (Figure 6). RT and GB, with and without added noise, were provided with 

all of the data—temperature and pressure measurements: observations and temporal and 

spatial gradients. A specific observation was identified by its type (P = pressure, T = 

temperature, dz = spatial gradient, or dt = temporal gradient), its depth in meters (0.015, 

0.105, or 0.195), and its time delay relative to the time of exchange flux inference (e.g., −15 

= 15 min prior, +10 = 10 min after). When assessing feature importance with added noise, 

it was necessary to consider the feature importance over multiple error realizations. We 

considered 100 realizations, each with the same SNR but different specific error 

realizations, and averaged the results. 

The clearest result is that only pressure and spatial gradients of pressure were 

identified as important features for RT and GB and for data with and without added noise 

(Figure 6a,d). This was expected given that pressure is more directly related to flux, 

through Darcy’s Equation, than is temperature, through heat transport and through the 

advection dispersion equation. In addition, all of these features were collected at the time 

of flux inference. This likely indicates that the pressure associated with the exchange flux 

propagated through the system very quickly. There are some consistent impacts of added 

noise for RT and GB. Specifically, without noise, both algorithms preferred spatial 

gradients of pressure collected at greater depth. Adding noise increased the reliance on 

direct measurements at shallower depths. This, again, is consistent with our expectations: 

with added noise, the absolute signal should be increased (shallower rather than deeper 

measurements), and instantaneous gradients will magnify measurement errors 

(observations rather than calculated gradients). The fact that these results, based only on 

the feature importance, agree with our expectations based on physical insights give us 
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more confidence in the use of tree-based ML methods to identify optimal observation sets. 

Importantly, this approach to measurement network design does not require the 

computationally expensive combinatorial analyses that are common for these 

investigations. The design recommendations are produced automatically as part of the 

ML training. 

 
Figure 6. Figures (a) through (c) show results for RT; (d) through (f) relate to GB. (a,d) Feature importance for pressure and 

temperature observations (P and T) and spatial (dz) and temporal (dt) gradients for sensors at 0.015, 0.105, and 0.195 m depths 

with (orange) and without (blue) measurement error. The time delay after the flux estimation is shown in parentheses, and 

features with less than 0.001 importance value are not shown in the x axis. (b,e) Summary of feature importance by type–

observed value, temporal gradient (dt), and spatial gradient (dz). (c,f) Summary of feature importance by depth. 

3.2. Analyses of Temperature Data Only 

Temperature-based methods were developed for field use because temperature 

sensors are more robust and less expensive than pressure sensors [14–17]. Therefore, 

despite the clear preference for pressure observations, we continued our examination of 

the possible use of temperature only. Because regression trees are greedy, and we showed 

that pressure observations are more important than temperature observations, we can 

only assess the value of temperature observations by removing the pressure data from 

consideration. Even considering model-generated data with no added noise (Figure 7a), 

there was clear degradation of the accuracy of the inferred flux when using only 

temperature data. The results are improved somewhat for GB (Figure 7b). However, 

neither was tree-based ML able to predict the surface exchange flux with high temporal 
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resolution based on temperature observations with added measurement error with an 

SNR of 100 (Figure 7c,d). We also examined whether RT or GB could resolve the average 

flux calculated over nonoverlapping 30-min windows; yet, the results were not improved 

significantly (not shown). 

  

Figure 7. Testing results using temperature sensors only, which are located at 0.015, 0.105, and 0.195 m. (a) Noise-free data 

using RT. (b) Noise-free data using GB. (c) SNR = 100 noisy data using RT. (d) SNR = 100 noisy data using GB. 

3.3. Analyses of Pressure and Temperature Observations Collected at a Single Depth 

The results of our investigation show clearly that RT and GB showed a strong 

preference for pressure measurements as the basis for inferring surface exchange flux. The 

impetus for developing temperature-based methods was largely practical, based on the 

difficulties of using pressure sensors under field conditions. Therefore, we decided to 

examine whether ML methods could be used to design a compromise solution based on 

a single sensor that measures pressure or both pressure and temperature. The 

performance is shown on Figure 8 as a function of the sensor depth, the type of sensor (P 

or combined P and T), and whether GB is used. In all cases, GB improved the performance 

(red versus blue lines). The presence of measurement noise (series with symbols) 

dramatically decreased performance for deeper sensors but had little impact on shallower 

sensors. Adding temperature data (solid versus dashed lines) improved the performance 

when error was not considered, but it significantly degraded the performance of deep 

sensors with measurement error included. Of greatest practical significance, sensors 

placed within the shallowest 50 cm performed very well; yet, they showed relatively little 

improvement with the addition of GB or temperature measurements. This application 

demonstrates a way in which perfect-model experiments can be used to streamline the 

measurement network design process. In this case, if RT or GB is to be used to infer the 

exchange flux, there appears to be little value in collecting temperature data, and pressure 

data should be collected within the shallowest 50 cm of the streambed. The next step in 
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network design would be to repeat this analysis with more advanced ML algorithms 

before testing the findings in the field. 

 

Figure 8. Performance of one pressure sensor and a combined pressure and temperature observation set with respect to 

the depth of installation considering the influence of measurement error and whether GB was used for the analysis. 

4. Conclusions 

We demonstrated the use of a perfect-model experiment as a first test of the possible 

use of regression trees (with and without gradient boosting) to infer the exchange flux 

between a stream and the subsurface with high temporal resolution based on subsurface 

pressure and temperature observations. Specifically, we used a numerical model to 

generate paired water pressure and temperature values through time at several depths 

beneath a river. We then examined whether ML can be trained to recover the times series 

of flux between the river and the subsurface. Such a perfect-model examination, which 

does not consider possible model structural errors, cannot be used to validate an 

approach. Rather, only two conclusions can be drawn: either that a proposed method does 

not work under these idealized conditions, so it is unlikely to work in the field, or, that 

the proposed approach meets the first test of effectiveness and is worth examining under 

more challenging conditions. We simultaneously conducted a value-of-information 

analysis to determine which observations are most valuable for inferring this flux. The 

results showed that pressure observations were far more informative than temperature 

observations. In fact, with any realistic level of added noise, RT or GB was not able to infer 

streambed exchange flux accurately from subsurface temperature time series alone. 

Analysis of flux estimation based on observations at a single, shallow depth are 

promising, warranting further examination. However, these results also suggest that 

adding temperature information has little or no value. The primary finding from this 

investigation was that a perfect-model experiment approach, combined with the inherent 

feature importance measures of RT or GB, offers an efficient initial assessment of proposed 

measurement network designs. This efficiency was due to the built-in feature importance 

analyses of these tree-based methods, which provide valuable insight into the flow of 

information from observations to predictions with essentially no added computational 

cost beyond training the ML. Clearly, a successful result from a perfect-model experiment 

does not validate a proposed measurement network. However, failure constitutes strong 

evidence that the network is not likely to be successful under less ideal conditions. Future 
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work should extend these analyses to more sophisticated ML methods and to other 

hydrologic monitoring network design challenges. 
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Appendix A 

Table A1. Tuned hyperparameter values for each ML application. 

ML Model n_Estimators Max_Depth 
Learning_R

ate 

Min_Sampl

es to Split 

min_var 

Reduction 

to Split 

Dataset Noisy RMSE 

RT - 7 - 30 0.001 P and T TRUE 7.43×10−7 

RT - 7 - 30 0.001 P and T FALSE 8.51×10−7 

RT - 20 - 30 0.001 only T  FALSE 3.41×10−6 

RT - 12 - 30 0.001 only T  TRUE 8.41×10−6 

RT - 7 - 30 0.001 one P TRUE 1.15×10−6 

RT - 7 - 30 0.001 one P FALSE 1.13×10−6 

RT - 12 - 30 0.001 one P one T FALSE 7.24×10−7 

RT - 7 - 30 0.001 one P one T TRUE 7.17×10−7 

GB 1000 5 0.05 40 - P and T  FALSE 3.13×10−7 
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GB 1000 5 0.1 20 - P and T  TRUE 3.85×10−7 

GB 1000 5 0.05 40 - one P one T FALSE 2.60×10−6 

GB 1000 5 0.05 100 - one P one T TRUE 8.12×10−6 

GB 1000 10 0.1 20 - only T FALSE 9.79×10−7 

GB 200 10 0.008 40 - only T TRUE 1.01×10−6 

GB 1000 3 0.008 500 - one P FALSE 4.56×10−7 

GB 1000 3 0.008 500 - one P FALSE 4.02×10−7 
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