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Abstract: The present paper deals with the applicability of the Meyer–Peter and Müller (MPM) bed
load transport formula. The performance of the formula is examined on data collected in a particular
location of Nestos River in Thrace, Greece, in comparison to a proposed Enhanced MPM (EMPM)
formula and to two typical machine learning methods, namely Random Forests (RF) and Gaussian
Processes Regression (GPR). The EMPM contains new adjustment parameters allowing calibration.
The EMPM clearly outperforms MPM and, also, it turns out to be quite competitive in comparison
to the machine learning schemes. Calibrations are repeated with suitably smoothed measurement
data and, in this case, EMPM outperforms MPM, RF and GPR. Data smoothing for the present
problem is discussed in view of a special nearest neighbor smoothing process, which is introduced in
combination with nonlinear regression.

Keywords: bed load transport; random forests; Gaussian processes regression; Meyer–Peter and
Müller formula; sediment transport

1. Introduction

Meyer–Peter, Favre and Einstein [1] published a formula in 1934 related to the trans-
port of uniform sediment on a plane bed, while Meyer–Peter and Müller [2,3] published in
1948 and 1949 the definitive formula related to the transport of sediment mixtures with
different values of specific gravity. The main characteristic of the Meyer–Peter and Müller
(MPM) formula is the distinction of bed roughness due to individual particles from that
bed roughness due to bed forms or the distinction of bed resistance due to skin friction
from bed resistance due to bed forms. The historical development of the MPM formula is
described in detail in Hager and Boes [4]. In this formula, the unit submerged sediment
discharge is calculated, and the roughness effect of the channel bottom and walls is taken
into account. Wong and Parker [5], by using the same databases of Meyer–Peter and Müller,
have suggested two substantially revised forms of the MPM (1948) formula, in which
no correction for bed forms is made. According to Wong and Parker [5], the form drag
correction of the MPM formula is unnecessary in the context of the plane bed transport data.
The amended bed load transport relations of Wong and Parker are valid for lower-regime
plane bed equilibrium transport of uniform sediment.

In the formula applied in our study, the unit sediment discharge is calculated, while
the channel bottom roughness is distinguished into roughness due to individual particles
and roughness due to bed forms.

Herbertson [6] has examined the bed load formula of Meyer–Peter and Müller (1948)
as well as other conventional bed load formulas using similitude theory as a common basis
of comparison. Especially for wide channels with invariable grain size and ratio of sediment
density to water density, Herbertson [6] suggests that the MPM formula is still incomplete
in that the depth effect is not included. The final conclusion of Herbertson regarding the
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MPM formula is cited as: “ . . . the Meyer–Peter and Müller (1948) formula applies only to
material rolling or sliding along the bed load and not to material in suspension, however
temporarily. The latter condition would limit the formula to the lower regime of transport
and presumably the formula will not take account of material transported by saltation”.

Gomez and Church [7] have tested twelve bed load sediment transport formulas for
gravel bed channels, among which is the MPM (1948) formula, using four sets of river data
and three sets of flume data. On the basis of the tests performed, which were conducted
in each case as if no sediment transport information were available for the river, none of
the selected formulas and no other formula is capable of generally predicting bed load
transport in gravel bed rivers.

Reid et al. [8] assessed the performance of several popular bed load formulas in
the Negev Desert, Israel, and found that the Meyer–Peter and Müller [2] and Parker [9]
equations performed best, but their analysis considered only one gravel bed river (Barry
et al. [10]).

Martin [11] took advantage of ten years of sediment transport and morphologic
surveys on the Vedder River, British Columbia, to test the performance of the Meyer–
Peter and Müller [2] equation and two variants of the Bagnold equation [12]. The author
concluded that the formulas generally under-predicted gravel transport rates [10].

The MPM formula [2] was also tested in comparison with the formulas of Parker [13],
Schoklitsch [14] and Recking [15], by means of a field data set of 6319 bed load samples
from sand and gravel bed rivers in the USA. The Meyer–Peter and Müller as well as the
Parker equations were chosen because they permit a surface-based calculation with limited
knowledge of sediment characteristics, and they are widely used [15]. The discrepancy
ratio (average percentage of predicted bed load discharge not exceeding a factor of two in
relation to the observed bed load discharge) obtained the value of 3% for the MPM formula,
which is the lowest value in comparison to the corresponding values of the other three
formulas.

López et al. [16] have tested the predictive power of ten bed load formulas against
bed load rates for a large, regulated gravel bed river (Ebro River, NE Iberian Peninsula).
The bed load MPM formula [2,3] was included in the ten bed load formulas tested. The
discrepancy ratio, as it was defined above, was one of the formula’s performance criteria
applied. Especially for the MPM formula, the discrepancy ratio obtained the value 3% for
the case of using surface bed material.

Overall, the predictive power of the MPM formula was relatively low. The MPM for-
mula [2] belongs to that category of bed load formulas which are based on the assumption
of a critical situation characterizing the incipient motion of grains on the bed. According
to Meyer–Peter and Müller, the dimensionless critical shear stress amounts to 0.047. The
same critical size for rough, turbulent flow, according to Shields [17], amounts to about
0.06. Gessler [18] reported a value of about 0.046 for a 50% probability of grain movement
in a rough, turbulent flow. Miller et al. [19] arrived at a similar value of about 0.045 for
rough, turbulent flow without consideration of the probability of movement.

Yang [20] suggested a dimensionless unit stream power equation for the computation
and prediction of total sediment concentration without using any criterion for incipient
motion. This equation was compared with a similar dimensionless unit stream power
equation proposed by Yang [21], with the inclusion of criteria for incipient motion. In
accordance with the comparison results, both equations are equally accurate in predicting
the total sediment concentration in the sand size range. It should be noted that the new
equation of Yang [20] is valid for sediment concentration greater than 20 ppm by weight.
Both of Yang’s equations were calibrated especially for Nestos River (northeastern Greece)
on the basis of available measurements for bed load and suspended load. Regarding the
comparison between predicted and measured values of total load transport rate, the values
of the statistical criteria used for both equations were very satisfactory, as reported by
Avgeris et al. [22].



Water 2021, 13, 2817 3 of 18

Several studies have shown that omitting the incipient motion criterion may lead to
better results, compared to the existing formulas. For example, Barry et al. [10], on the
basis of 2104 bed load transport observations in 24 gravel bed rivers in Idaho (USA), con-
cluded that formulas containing a transport threshold typically exhibit poor performance.
Kitsikoudis et al. [23] have employed data-driven techniques, namely artificial neural
networks, adaptive-network-based fuzzy inference system and symbolic regression based
on genetic programming, for the prediction of bed load transport rates in gravel-bed steep
mountainous streams and rivers in Idaho (USA). The derived models generated results
superior to those of some of the widely used bed load formulas, without the need to set a
threshold for the initiation of motion, and consequently avoid predicting erroneous zero
transport rates.

Some previous studies of the authors on the calibration of MPM formula are reported
below:

Papalaskaris et al. [24] have attempted to calibrate the MPM formula both manually
and on the basis of the least squares method, in terms of roughness coefficient, for two
streams in northeastern Greece: Kosynthos River and Kimmeria Torrent. Papalaskaris
et al. [25] have also manually calibrated the MPM formula, in terms of roughness coefficient,
for Nestos River (northeastern Greece). In a following study, Sidiropoulos et al. [26] have
calibrated the same formula for Nestos River by means of a nonlinear optimization of two
suitable parameters, while utilizing the average value of the roughness coefficient found
by the manual calibration. In all three studies, the comparison between calculations and
measurements of bed load transport rate was made on the basis of the following statistical
criteria: root mean square error, relative error, efficiency coefficient, linear correlation
coefficient, determination coefficient and discrepancy ratio. The values of the above
statistical criteria for the case of manual calibration were more satisfactory, compared to
the case of nonlinear optimization. However, the manual calibration was carried out on
partial measurement sets, while the nonlinear optimization was carried out on the whole
measurement set.

In view of the fact that the predictive power of the MPM formula did not reach
particularly high levels, the present paper proposes an Enhanced MPM (EMPM) formula,
demonstrating that, under suitable calibration, it shows a much better fitness to field data.
Moreover, the performance of the enhanced formula is compared to machine learning
methods, showing the competitiveness of the semi-empirical formula versus purely data-
driven approaches.

One of the adjustment parameters of the formula is the critical shear stress, the value
of which has been discussed and re-adjusted by various researchers, as already cited. In line
with these investigations and under the data of this study, a zero value of this parameter
gave the optimal calibration results.

Calibration of the EMPM formula was also performed on smoothed data, with the
prospect of mitigating possible noise of the field measurements. A nearest neighbor
smoothing is introduced and applied both in regard to the MPM formula calibration and
to typical machine learning methods. In the case of the smoothed data, the performance of
the EMPM formula turns out to be superior.

The introduction of machine learning methods into the field of sediment transport
modeling brought about new standards in the error metrics of predicted versus measured
data, sometimes tending to overshadow physically based and semi-empirical equations.
This paper aims at turning attention back to such equations by introducing generalized
forms and by establishing competitive and, in the case of smoothing, even better perfor-
mance versus machine learning methods.

2. Materials and Methods
2.1. Study Area and Data

The Nestos River basin (Figure 1, northeastern Greece) considered in this study drains
an area of 838 km2 and lies downstream of Platanovrysi Dam. The river basin outlet is
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located at Toxotes. The river basin terrain is covered by forest (48%), bush (20%), cultivated
land (24%), urban area (2%) and no significant vegetation (6%). The altitude ranges between
80 m and 1600 m, whereas the length of Nestos River is 55 km. The mean slope of Nestos
River in the basin is 0.35%. The stream flow rate and bed load transport rate measurements
concerning Nestos River were conducted at a location between the outlet of Nestos River
basin (Toxotes) and the river delta. The measurement procedures are described in [25].
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Figure 1. The Nestos River basin. The red filled circle symbolizes the location of the bed load
measurements.

The first four statistical moments (mean, standard deviation, skewness and kurtosis)
and other statistical properties were used to describe the bed load measured related
values (Table 1).

Table 1. The average statistical properties of bed load related values. SD is an abbreviation for
standard deviation.

Variable Min Mean Median Max SD Skew Kurtosis

mGm
(kg/(s·m)) 0 0.0225 0.0175 0.0883 0.0201 1.0790 0.7741

Q (m3/s) 0.100 2.457 1.760 11.020 2.242 1.872 3.393
b (m) 6.00 16.20 15.70 32.00 7.35 0.40 −0.82
h (m) 0.10 0.32 0.31 0.61 0.11 0.33 −0.21

um (m/s) 0.20 0.47 0.44 1.48 0.21 1.92 5.02
d90 (m) 0.0014 0.0028 0.0030 0.0037 0.0006 −0.8150 −0.2193
d50 (m) 0.0008 0.0045 0.0014 0.0235 0.0064 1.6859 1.0979

In concrete terms, mGm (kg/(s m)) is the measured bed load transport rate per unit
width, Q (m3/s) is the measured stream discharge, b (m) is the measured width of the
assumed rectangular cross section, h (m) is the measured flow depth, um (m/s) is the
measured mean flow velocity, d50 (m) is the median grain diameter of bed load, determined
by the granulometric curves, and d90 (m) is a characteristic grain size diameter (in case
of taking a stream bed load sample, concerning the sample weight, 90% is composed of
grains with size less than or equal to d90).
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2.2. Meyer–Peter and Müller (MPM) Bed Load Transport Formula

In the MPM formula, referred to in the introduction, the unit submerged sediment
discharge is calculated and the roughness effect of the channel bottom and walls is taken
into account.

In the formula, as applied in our study, the unit sediment discharge is calculated while
the channel bottom roughness is distinguished into roughness due to individual particles
and roughness due to bed forms:

mGc =
8
g

ρF
ρF − ρW

√
1
ρW

(τo − τo,cr)
3/2 (1)

where:

τo = ρWgIrRs, τo,cr = 0.047ρ′ρWgdm, ρ′ =
ρF−ρW
ρW

, Ir = (
kst

kr
)

3/2
I and kr =

26
6
√

d90
(2)

The symbols of Equations (1) and (2) are explained below:
mGc: computed bed load transport rate per unit width (kg/(s·m))
g: gravity acceleration (m/s2)
ρF: sediment density (kg/m3)
ρw: water density (kg/m3)
τo: actual shear stress (N/m2)
τo,cr: critical shear stress (N/m2), characterizing the incipient motion of bed grains
Ir: energy line slope due to individual grains
Rs: hydraulic radius of the specific part of the cross section under consideration which

affects the bed load transport (m).
dm: mean diameter of bed load grains (m)
kst: Strickler coefficient, the value of which depends on the roughness due to individ-

ual grains, as well as to stream bed forms (m1/3/s).
kr: coefficient, with value depending on the roughness due to individual grain

(m1/3/s)
I: energy line slope due to individual grains and stream bed forms
d90: characteristic grain size diameter (m). It was defined for Table 1.
The basic limitations for the MPM formula are the following:

• Slope of energy line (I) from 0.04% to 2%
• Sediment particle size (d50) from 0.4 mm to 20 mm
• Flow depth (h) from 0.01 m to 1.20 m
• Specific stream discharge (Q/b) from 0.002 m2/s to 2 m2/s
• Relative sediment density (ρF/ρw) from 0.25 to 3.2
• Particle size > 1 mm, to avoid the effects of apparent cohesion
• Flow depth > 0.05 m, to assure Froude similitude.

At this point, it should be noted that the mean values of the measured energy line
slope (longitudinal bed slope in the case of uniform flow), sediment particle size, flow
depth, specific stream discharge and relative sediment density are included in the ranges
given above.

According to the Einstein–Barbarossa method (e.g., [27])

A = As + Aw = RsUs + RwUw (3)

where A (m2) is the stream cross section, assuming a rectangular section, approximately,
and where R (m) is the hydraulic radius and U (m) is the wetted perimeter. The indices
s and w stand for bed and walls, respectively. The hydraulic radius Rw is given by the
familiar Manning formula:

Rw = (
um

kwI0.5 )
1.5

(4)
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where um (m/s) is the mean flow velocity through the cross-sectional area A and
kw (m1/3/s), a coefficient depending on the roughness of the walls. It is assumed that
kw = kst. Additionally, I is set equal to the longitudinal stream bed slope on the basis of the
assumption of uniform flow.

Then Rs, by combining Equations (3) and (4), turns out as

Rs =
A−

(
um

kwI0.5

)1.5
Uw

Us
(5)

Equation (1) can be converted to a non-dimensional form (see Appendix A):

m∗Gc = 8
(
1 + ρ′

)[(kst

kr

)3/2 Re∗
2

Re2
p50
− 0.047

dm

d50

]3/2

(6)

where
m∗Gc =

mGc

ρw
√

ρ′gd50 d50
(7)

Rep50 =

√
ρ′gd50 d50

ν
(8)

Re∗ =

√
gRsI d50

ν
(9)

where ν is the kinematic viscosity of water. The size mGc becomes dimensionless by means
of Equation (7). The derivation of Equation (9) is given in Appendix A.

Due to the sandy composition of the bed load in the river locations, the mean grain
diameter dm can be approximated by the median grain diameter d50. Therefore, Equation (6)
acquires the simpler non-dimensional form:

m∗Gc = 8
(
1 + ρ′

)[(kst

kr

)3/2 Re∗2

Re2
p50
− 0.047

]3/2

(10)

The above non-dimensional scheme is in accordance with the dimensional analysis
of Parker and Anderson [28], as utilized in a related paper by Kitsikoudis et al. [23].
Indeed, the non-dimensional groups appearing in Equation (10) are consistent with the
dimensionless variables envisaged in the Parker and Anderson analysis. An analogous
non-dimensional form has been presented by Wong and Parker [5], attributed originally to
N. Chien in a 1954 publication of the US Army Corps of Engineers.

From the non-dimensional form (10), it turns out that, in a way compatible with the
dimensional analysis of [28], the following non-dimensional variables determine bed load
transport: Rep50 (Equation (8)), an explicit particle Reynolds number, Re* (Equation (9)), a
shear Reynolds number, ρ′ (appearing in the third one of Equations (2)), the submerged
specific gravity of the sediment.

2.3. Calibration of an Enhanced Meyer–Peter and Müller (EMPM) Formula

The available data comprise measured values for the physical parameters A, um, Uw,
Us and d50, as well as measured values of bed transport rates mGm, denoted respectively as
Ai, umi, Uwi, Usi, d50,i and mGmi, for i = 1, 2, . . . , N, where N is the number of data points.
These subscripted quantities are substituted into the corresponding Equations (7)–(10),
giving the non-dimensional bed load transport rate of Equation (10) in terms of measured
quantities:

m∗Gci(kst) = 8
(
1 + ρ′

)[(kst

kri

)3/2 Re∗2i

Re2
p50,i
− 0.047

]3/2

(11)
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In Equation (11), kst emerges as an adjustment parameter. Therefore, the following
expression can be used for the calibration of the MPM formula:

f(kst) =
N

∑
i=1

(m∗Gci(kst)−m∗Gmi)
2 (12)

where
m∗Gmi =

mGmi

ρw

√
ρ′gd50,i d50,i

, i = 1, . . . , N (13)

and mGmi, i = 1, . . . ,N, denote measured values of bed load transport rate. Calibration
with respect to one parameter only, namely kst, has already been tried (Sidiropoulos et al.,
2018). In this paper, Equation (12) is further extended, so as to include more adjustment
parameters:

m∗Gci(kst, α,β, γ) = 8α
(
1 + ρ′

)[(kst

kri

)β Re∗2i

Re2
p50,i
− γ

]3/2

(14)

Equation (14) will be referred to as the Enhanced Meyer–Peter and Müller (EMPM)
formula.

Equation (14) can be written as follows in a generalized form:

m∗Gci = fM(dM; pi) (15)

where dM = (kst, α, β, γ) is the vector of parameters,

pi = (Ai, Umi, Uwi, Usi, d50,i, kri, Ii), i = 1, 2, . . . , N (16)

is the vector of measured quantities that were suitably grouped in Equation (10), and

fM(dM; pi) = 8α
(
1 + ρ′

)[(kst

kri

)β Re∗2i

Re2
p50,i
− γ

]3/2

(17)

In analogy to Equations (11) and (12), the difference between computed and measured
quantities is defined as

eiM = fM(dM; pi)− m∗Gmi (18)

where m∗Gmi is given by Equation (13) and fM by Equation (17).
The objective function of the calibration problem is

FM(dM) =
N

∑
i=1

e2
iM (19)

where N is the number of measurement points.
The minimization of the objective function FM of Equation (19) was executed by a

genetic algorithm followed by a Nelder–Mead local search.

2.4. Application of Machine Learning Schemes

A common pitfall in the use of machine learning algorithms is the expectation of
performance regardless of the nature and limitations of the problem and of the presence of
noisy data. In the context of bed load estimation, especially for data that are coming from
natural streams, errors are expected to be higher, as testified by the sediment transport
literature, in which errors are predominantly reported as ratios and not as differences of
compared quantities.

In a preliminary stage of analysis, various machine and statistical learning methods
have been evaluated, such as neural networks (various architectures and regularization
techniques), support vector regression, decision trees, linear models, K-NN regression,
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Gaussian Processes Regression (GPR) and Random Forests (RF). Most methods gave similar
results with the exception of neural networks, which had a tendency to overfit or, in other
words, they fitted too closely on the data, memorizing the noise and, as a result, were
unable to adequately generalize on new data.

In the sequel, RF and GPR algorithms are presented so as to have a broader rep-
resentation of machine learning methods. RF had the best performance and the results
obtained regarding their generalization ability in this problem and dataset justify their use,
as reported later in Section 3.

2.4.1. Random Forests

Random Forests (RF) is a data-driven algorithm in the area of supervised learning
which tries to fit a model using a set of paired input variables and their associated output
responses, and can be used in classification and regression problems. In summary, RF
consists of a number of decision trees [29]. For each tree, a random set is created from the
dataset via bootstrapping [29], and in each node of the tree a random set of n input variables
from the p variables of the dataset is considered to pick the best split [29]. The prediction
of the output response in regression problems is the mean value of the estimations of
these random decision trees. RF is one of the most popular methods applied in machine
learning because of: (a) its robustness to outliers and overfitting, (b) its ability to perform
feature selection and (c) the fact that its default hyperparameters (i.e., the set of parameters
that have to be selected a priori in order to train a RF), as implemented in software, give
satisfactory results [30].

The measured data quantities defined above, under the vector pi, serve as input
variables in the RF learning scheme, while mGmi will be the corresponding target for the
output. The general form of Equations (18) and (19) can be used again for the formation of
the objective function, as follows:

Let
m∗Gci = fR(dR; pi) (20)

in analogy to Equation (15), where dR is the vector of the RF parameters (i.e., the set of
decision trees that operate as an ensemble) that will be determined through training.

Then the deviation of measured from computed values is

eiR = fR(dR; pi)−m∗Gmi (21)

and the objective value of the problem will be

FR(dR) =
N

∑
i=1

e2
iR (22)

2.4.2. Gaussian Processes Regression

A completely different alternative is Gaussian Processes Regression (GPR), which
can be briefly described as follows: In the area of machine learning, Williams and Ras-
mussen [31] developed a regression algorithm based on Gaussian processes, which is a
non-parametric, Bayesian approach that has the ability to work well with small datasets.
In the framework of that algorithm, the prediction for an input test point x is derived
by means of a Gaussian stochastic process with an assumed mean equal to 0 and with
a variance σ2 calculated in terms of covariances involving x and the training data. A
suitable covariance function is selected and parametrized, and finally, the hyperparameters
involved are determined through optimization.

In this case, the formal scheme of Equations (20)–(22) is retained, with dR replaced by
dG for GPR. The vector dG represents the internal parameters of the respective machine
learning process, which will be optimally determined according to the above outline.
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2.5. Training and Testing Procedures

Three methods are presented here for modeling bed load sediment transport. The first
one is the calibration of the EMPM formula, while the second and the third consist in the
application of RF and GPR machine learning methods respectively. In all three cases, a
resampling method needs to be executed in order to estimate the generalization error of
the methods or, specifically, the measure of accuracy of the methods to predict outcome
values from data that are not known a priori. For that reason, bootstrapping [29] is applied,
a procedure that was repeated 100 times.

Every bootstrap sample dataset consists of 116 points generated through random
sampling with replacement of the original 116 data points. Consequently, some observa-
tions may appear more than once and some not at all. The latter are used to estimate the
generalization error (out-of-the-bag error) and the former lead to the training error of the
methods.

The simulation will be carried out for the original raw data, first by calibration of
the EMPM formula and then by training the RF and GPR machine learning methods.
Thereafter, the original data will be subjected to smoothing and the simulation will be
repeated for the smoothed data by the same three methods.

2.6. Nearest Neighbor Smoothing

A smoothing process based on nearest neighbors is introduced as follows:
For each vector pi of input measured quantities (Equation (16)), the distances are

computed to all other vectors pj, j = 1, 2, . . . , N, where N is the number of available
measurement points. The k nearest neighbors to pi are then picked out and the average of
these is taken, as well as the average of the corresponding bed load transport measurements.
These averages will replace the original data. The process is formalized as follows:

Let
ri,j = ||pi − pj||, j = 1, 2, . . . , N (23)

be the distances between pi and all pj’s, including pi itself.
Let

Di = {ri1, ri1, . . . , riN} (24)

be the set of the distances of pi from all other parameter vectors, as computed according to
Equation (22).

Let
ri,i1, ri,i2, . . . .ri,ik

be the k smallest members of the set Di of Equation (23) and let

pi1, pi2, . . . , pik and m∗Gmi1 , m∗Gmi2, . . . , m∗Gmik

be the corresponding k vectors and associated bed load measurements expressed in non-
dimensional form as above (Equation (13)).

Then the following averaging is performed:

pk
i =

1
k

k

∑
j=i

pij, i = 1, 2, . . . , N (25)

m∗kGmi =
1
k

k

∑
j=i

m∗Gmij , i = 1, 2, . . . , N (26)

The pair (pk
i , m∗kGmi) will replace the pair (pi, m∗Gmi) in Equations (18) and (19) for the

formation of objective function FM, and in Equations (21) and (22) for the formation of
objective function FR.
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It needs to be noted here that the nearest neighbor technique is used for smoothing
only and not for prediction, as known from the literature (e.g., [29]). Prediction is performed
by the nonlinear regression that follows the smoothing.

3. Results and Discussion
3.1. Implementation of Algorithms

The EMPM formula presented in this paper was calibrated with respect to the four
parameters kst, α, β and γ, contained in the objective function of Equation (19). The last
parameter γ is related to the so-called threshold referred to in the introduction, which
turned out to be zero for our data and for all repetitions of the EMPM formula calibrations.
The required minimization was executed by a genetic algorithm followed by a Nelder–
Mead local search. As is well-known, the genetic algorithm points to the area within which
the minimum needs to be sought and the sequent local search more accurately yields the
location of the minimum [32].

The RF and GPR applications are completely independent, pure data-driven processes,
as already explained in Section 2.4. They were performed by means of the algorithms
provided by the Mathematica Computation System [33], with automatic selection of the
optimal hyperparameters.

For the nearest neighbor smoothing, the number of nearest neighbors was chosen
equal to k = 5.

3.2. Error Metrics

The error metrics included are RMSE, Mean Discrepancy Ratio (MDR) and coefficient
of determination (R2).

The discrepancy ratio for individual measured–calculated quantities is defined as

dri = mGci/mGmi, i = 1, 2, . . . ,N (27)

where N is the number of measurements.
The Mean Discrepancy Ratio (MDR) is

MDR =
1
N

N

∑
i=1

dri (28)

As already stated in Section 2.5, the process of training and test set formation was
repeated 100 times within a bootstrapping scheme, each time obtaining a different set of
the adjustment parameters α, β and γ and corresponding values of RMSE. Tables 2 and
3 give, for each case, the mean value of RMSE over the 100 repetitions, along with the
associated standard deviation. The same tables also show the mean values and standard
deviations for the 100 repetitions of RMSE, MDR and R2.

Table 2. Mean and standard deviation of error metrics for raw data and for the out-of-the-bag dataset
from bootstrap resampling. RMSE units: kg/(s·m).

Mean SD

RDGP
Raw Data
Original
Formula

RMSE 0.05646 0.00564

MDR 6.20336 1.44002

R2 0.16077 0.12808

RDEF
Raw Data
Enhanced
Formula

RMSE 0.01928 0.00217

MDR 3.06172 0.92239

R2 0.47922 0.08730



Water 2021, 13, 2817 11 of 18

Table 2. Cont.

RDRF
Raw Data
Random
Forests

RMSE 0.01832 0.00247

MDR 3.49139 1.49874

R2 0.54513 0.10054

RDGP
Raw Data
Gaussian
Processes

RMSE 0.01999 0.00280

MDR 3.36799 1.82963

R2 0.34135 0.10937

Table 3. Mean and standard deviation of error metrics for smoothed data and for the out-of-the-bag
dataset from bootstrap resampling. RMSE units: kg/(s·m).

Mean SD

SDOF RMSE 0.04159 0.006065

Smoothed Data MDR 2.37244 0.719034

Original Formula R2 −0.94236 0.235836

SDEF
Smoothed Data
Enhanced
Formula

RMSE 0.00926 0.001925

MDR 1.20260 0.27857

R2 0.48299 0.20773

SDRF
Smoothed Data
Random
Forests

RMSE 0.01030 0.002019

MDR 1.31873 0.344024

R2 0.40220 0.123037

SDGP
Smoothed Data
Gaussian
Processes

RMSE 0.01180 0.002842

MDR 1.27084 0.356768

R2 0.22199 0.172782

The comparisons among the employed algorithms will be based mainly on RMSE,
which also formed the basis of the objective function. R2 is a well-established index in
hydrologic modeling, being the same as the well-known Nash–Sutcliff Efficiency index
(NSE). However, serious reservations have been reported in the pertinent literature as to
its autonomous use for performance evaluation [34]. Various cases have been reported in
which a good model could have low R2 and a bad model high R2. Also, in the context of
sediment transport modeling, due to inherent difficulties and due to the noise in field data,
low R2 values would not be a surprise.

In the same context and for the same reasons, the discrepancy ratio, rather than R2,
has been a primary realistic index, since it estimates errors in terms of ratios rather than
differences between measured and computed values. Regarding discrepancy ratios in this
study, a qualitative comparison of the present results to analogous results of the literature
will be given in Section 3.4.

3.3. Results of Error Metrics and Related Comparisons

Table 2 covers the various cases based on raw data for EMPM vs. MPM and vs. RF and
GPR, while Table 3 covers the corresponding cases for smoothed data. The nomenclature
of the various cases is given on the leftmost columns of Tables 2 and 3.

As expected, the performance of the calibrated EMPM formula is definitely higher in
comparison to the original MPM formula. Indeed, it can be seen in Table 2 that, for Raw
Data and for the Enhanced MPM Formula (RDEF), the out-of-the-bag test set RMSE mean
value for the 100 bootstrapping repetitions is equal to 0.019278, while the corresponding
quantity for the Original Formula (RDOF) is equal to 0.056466.
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It can be observed from Tables 2 and 3 that the standard deviations, especially for
RMSE, are by an order of magnitude smaller than the mean values. Therefore, the mean
error metrics of the tables and, especially, the mean RMSE, are representative.

Although it may not be of particular use at present, indicative sets of parameters can
be given and, as such, those are chosen that closely produce the mean RMSE of RDEF and
SDEF, respectively. Specifically,

• for RDEF, kst = 10.7379, α = 0.2000, β = 1.1199, γ = 0 and
• for SDEF, kst = 30.00, α = 0.6519, β = 3.5374, γ = 0.

While RDEF is superior to RDOF, it is also competitive versus the machine learning
methods (RDRF and RDGP), as seen on Table 2. On the other hand, in the cases of smoothed
data (Table 3), EMPM (SDEF) outperforms the original formula MPM (SDOF), as well as
Random Forests (SDRF) and Gaussian Processes Regression (SDGP). These facts are seen
clearly by observing the respective RMSE’s in Tables 2 and 3, along with the corresponding
small standard deviations.

As discussed in Section 3.2, the values of R2 are not to be taken as a sole representative
measure of performance. In comparative terms, the R2 value for RDEF from Table 2 is
0.47962, while for RDOF it is 0.169077; i.e., R2 is about three times greater for the enhanced
versus the original MPM formula.

The same relative improvement in performance applies to RMSE, and the conclusions
drawn from Table 2 can be visualized in Figure 2, which shows the corresponding boxplots.

Similar comparisons can be made for the other cases of Tables 2 and 3, but the general
status of the results is further indicated by the comparison of discrepancy ratios obtained
in this study versus analogous quantities of the pertinent literature, as described in the
next section.
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3.4. Discrepancy Ratio Comparisons

In the context of sediment transport modeling, an established indicator is the discrep-
ancy ratio. It would, therefore, be appropriate to consider characteristic results of this
ratio in the pertinent literature and compare them to those of the present study. Indeed, in
References [15,16], three indices, D1, D2 and D3, appear in relation to discrepancy ratios:

Let dri’s be the ratios defined in Equation (27). Then

1. D1 is defined as the percentage of dri’s such that 0.5 ≤ dri ≤ 2.
2. D2 is defined as the percentage of dri’s such that 0.25 ≤ dri ≤ 4.
3. D3 is defined as the percentage of dri’s such that 0.1 ≤ dri ≤ 10.
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In [15], a characteristic set (D1, D2, D3) is equal to (3%, 7%, 9%), especially for the
MPM formula resulting from 6319 values of a field dataset regarding sand and gravel bed
streams in USA. In [16], D1 = 3%, especially for the MPM formula applied to Ebro River
(Spain) with the gravel bed.

Indicative computed corresponding values in this study are as follows:

1. Raw data, original formula: (D1, D2, D3) = (32%, 45%, 60%).
2. Raw data, enhanced formula: (D1, D2, D3) = (55%, 81%, 97%).

The above results are not directly comparable to those of [15,16] due to different
datasets and validation schemes. However, they render a good indication of a better fitting
and of the improvement brought about by the enhanced formula. Discrepancy ratio results
in this study are even better for the smoothed data.

3.5. Examination of Possible Overfitting

In order to detect any cases of overfitting, Table 5 lists the RMSE mean values of the
bootstrapped training sets versus those of the corresponding out-of-the-bag test sets. The
latter are also given in Tables 2 and 3. It is immediately seen that there is no question
of overfitting in the EMPM formula (RDEF and SDEF), while there is an indication of
overfitting in the GPR (RDGP and SDGP) due to larger differences between the RMSE
mean values of training and test sets. Regarding RF, there is clearly no overfitting in RDRF.
In the case of the smoothed data (SDRF), overfitting to a lesser degree versus SDGP is
indicated in Table 4.

Overfitting would not be expected of the EMPM formula, and this fact is verified in
the above Table 4, but overfitting is very often not easily avoidable in machine learning
methods. The best behavior in this regard was exhibited by RF.

Table 4. RMSE mean values of bootstrap training and out-of-the-bag test sets. RMSE units: kg/(s·m).

Training Set Test Set

RDOF 0.05427 0.05646
RDEF 0.01785 0.01928
RDRF 0.01367 0.01833
RDGP 0.00690 0.01999
SDOF 0.04476 0.04159
SDEF 0.01037 0.00926
SDRF 0.00696 0.01030
SDGP 0.00191 0.01180

3.6. Statistical Comparisons

Besides the computation results shown in Tables 2 and 3 and in Figure 2, statistical
comparisons between the methods used are also in order.

The comparison of the algorithms was based on the work of Demšar [35] and García
et al. [36] on the use of non-parametric methods for the evaluation of results of machine
learning algorithms, because parametric hypothesis testing methods (pairwise t-test and
ANOVA) were not deemed suitable due to the nature of the algorithms. The Friedman
test [37] was performed in order to determine whether an algorithm has a systematically
better or worse performance. The obtained p-values (both < 2.2 × 10−18) indicated that the
null hypothesis of all the algorithms performing the same could safely be rejected. Then,
post-hoc tests followed for all possible pairs of algorithms using the Wilcoxon signed rank
test [38]. Because of the multiple pairwise tests, the p-values that resulted were adjusted
using the Benjamini and Hochberg method [39], which controls the false discovery rate
(Tables 5 and 6). Table 5 shows the adjusted p-values below the main diagonal and at the
upper diagonal positions, showing the estimated differences between methods. Table 6
shows the corresponding quantities for smoothed data. Indeed, the p-values indicate
statistical differences, and it is noted that the enhanced formula not only shows better
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performance compared to the original formula, but also compared to the machine learning
methods.

Table 5. To the right of the diagonal stand the estimated differences of RMSE between models
for raw data. To the left of the diagonal stand the adjusted p-values for the H0 (null hypothesis):
difference = 0.

RDOF RDGP RDEF RDRF

RDOF - 0.0363 0.0377 0.0381
RDGP 7.9 × 10−18 - 0.0014 0.0017
RDEF 7.9 × 10−18 0.02 - 0.0003
RDRF 7.9 × 10−18 4.3 × 10−5 0.01 -

Table 6. To the right of the diagonal stand the estimated differences of RMSE between models for
smoothed data. To the left of the diagonal stand the adjusted p-values for the H0 (null hypothesis):
difference = 0.

SDOF SDGP SDRF SDEF

SDOF - 0.0303 0.0313 0.0323
SDGP 7.9 × 10−18 - 0.0010 0.0020
SDRF 7.9 × 10−18 8.2 × 10−4 - 0.0010
SDEF 7.9 × 10−18 7.6 × 10−9 5.3·10−4 -

3.7. Indicative Scatter Plots

Figure 3 shows indicative scatter plots of predicted versus measured values for a
random out-of-the-bag dataset for observed bed load measurement values (kg/(s·m)),
and Figure 4 shows corresponding plots for smoothed data. It can visually be verified
that the enhanced formula and both machine learning methods exhibit superior perfor-
mance compared to the initial MPM formula, consistent with the mean error metrics of
Tables 2 and 3.
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4. Conclusions

The advent of machine learning methods has also contributed to progress in the area
of sediment transport modeling. Purely data-driven methods that appeared in the literature
were found to outperform well-known physically based and semi-empirical equations.
In an effort to enhance the performance of such equations, the Meyer–Peter and Müller
bed load transport formula is extended in the present paper by the addition of suitable
adjustment parameters, for the purpose of reinforcing its predictive abilities.

The resulting Enhanced Meyer–Peter and Müller formula presented a definitely im-
proved performance in comparison to the original formula, one which is also competitive
to purely data-driven techniques and even superior in the case of smoothed data. As a
characteristic data-driven technique, the Random Forests learning scheme was chosen, due
to its advantages in terms of robustness against outliers and overfitting, considering the
noise contained in the field data of this study. A completely different machine learning
method, Gaussian Processes Regression, was also tried and gave similar results, but was
found to overfit on the training data.

For the purpose of countering noise effects, data smoothing is important and needs to
be further considered for problems involving sediment transport field data, such as the
present one. A nearest neighbor data smoothing process is presented and combined with
nonlinear regression, a scheme different from the well-known nearest neighbor regression
of the literature. Under smoothing, the enhanced MPM formula shows better performance,
even compared to the machine learning methods.

The methods presented in this paper call for further applications in other natural
streams with values of the variables beyond the range of boundary values given in the
present article, as well as in modeling with laboratory data. Additionally, further research
would be useful in the direction of hybrids involving both machine learning and sediment
transport formulas.
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Appendix A

Appendix A.1. Derivation of Equation (6)

In Equation (1), the shear stresses τo and τo,cr are replaced by their values from the
two first Equations (2):

mGc =
8ρF

g(ρF − ρw)
√

ρw

(
ρwgIrRs − 0.047ρ′ρwgdm

)3/2
=

8ρFρw
√

g
ρF − ρw

(
IrRs − 0.047ρ′dm

)3/2 (A1)

Both sides of Equation (A1) are divided by ρw
√

ρ′gd50d50 (d50: median grain size):

mGc

ρw
√

ρ′gd50d50
=

8 ρF
ρw

ρ
′3/2d3/2

50

(
IrRs − 0.047ρ′dm

)3/2 (A2)

or, by taking into account the fourth of Equations (2) and (7):

m∗Gc = 8
ρF
ρw

[

(
kst

kr
)

3
2

IRs

ρ′d50
− 0.047

dm

d50

]3/2
(A3)

However, the following relationships are valid: ρF
ρw

= 1 + ρ′ and, by taking into
account Equations (8) and (9):

IRs

ρ′d50
=

Re∗
2

Re2
p50

(A4)

On the basis of Equations (A4) and (A3), it becomes:

m∗Gc = 8
(
1 + ρ′

)
[

(
kst

kr

) 3
2 Re∗

2

Re2
p50
− 0.047

dm

d50
]

3/2

(A5)

Appendix A.2. Derivation of Equation (9)

The shear Reynolds number (or sediment Reynolds number) Re* is mathematically
defined as follows:

Re∗ =
u ∗ d50

ν
(A6)

u∗: bed shear velocity (m/s)
d50: median grain diameter (m)
ν: kinematic viscosity of water (m2/s).
The definition of the shear Reynolds number is analogous to that of the classical

Reynolds number Re:

Re =
umh

ν
(A7)

um: mean flow velocity (m/s)
h: flow depth (m).
The bed shear velocity u* (m/s) is mathematically defined as follows:

u∗ =
√

τo

ρw
=

√
ρwgRI

ρw
=
√

gRI (A8)
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τo: bed shear stress (N/m2)
ρw: water density (kg/m3)
g: gravitational acceleration (m/s2)
R: hydraulic radius (m)
I: energy line slope.
In Equation (A8), the hydraulic radius R regarding the whole cross section is replaced

by the hydraulic radius Rs regarding the specific part of the cross section which affects the
bed load transport:

u∗ =
√

gRs I (A9)

So, Equation (A6) becomes:

Re∗ =
√

gRs Id50

ν
(A10)
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