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Abstract: Urban hydrology has so far lacked a suitable model for a precise long-term determination
of evapotranspiration (ET) addressing shading and vegetation-specific dynamics. The proposed
model “SWMM-UrbanEVA” is fully integrated into US EPA’s Stormwater Management Model
(SWMM) and consists of two submodules. Submodule 1, “Shading”, considers the reduction in
potential ET due to shading effects. Local variabilities of shading impacts can be addressed for
both pervious and impervious catchments. Submodule 2, “Evapotranspiration”, allows the spatio-
temporal differentiated ET simulation of vegetation and maps dependencies on vegetation, soil, and
moisture conditions which are necessary for realistically modeling vegetation’s water balance. The
model is tested for parameter sensitivities, validity, and plausibility of model behaviour and shows
good model performance for both submodules. Depending on location and vegetation, remarkable
improvements in total volume errors Vol (from Vol = 0.59 to −0.04% for coniferous) and modeling
long-term dynamics, measured by the Nash–Sutcliffe model efficiency (NSE) (from NSE = 0.47 to
0.87 for coniferous) can be observed. The most sensitive model inputs to total ET are the shading
factor KS and the crop factor KC. Both must be derived very carefully to minimize volume errors.
Another focus must be set on the soil parameters since they define the soil volume available for
ET. Process-oriented differentiation between ET fluxes interception evaporation, transpiration, and
soil evaporation, using the leaf area index, behaves realistically but shows a lack in volume errors.
Further investigations on process dynamics, validation, and parametrization are recommended.

Keywords: evapotranspiration; stormwater management model; SWMM; SWMM-UrbanEVA; hy-
drologic modeling; blue green infrastructure

1. Introduction

The megatrends of urbanization, global warming, and demographic change increas-
ingly confront cities with new challenges. The water and energy balance is affected by
major changes: A reduction in groundwater recharge and ET can be observed, while runoff
volume and runoff peaks are increasing and occur strongly accelerated [1]. The hydro-
logical regime, as well as the morphology and ecology of water bodies, are significantly
damaged. The reduced ET also has a decisive impact on the urban climate [2]. Due to
the direct relationship between water and energy balance, the lack of cooling ET leads to
higher temperatures in urban areas (urban heat island, [3]).

Sustainable adaptation strategies such as decentralized blue-green infrastructures
(BGI, [4]) should address these problems. Numerous studies have already been carried
out on water quality and quantity issues (e.g., [5–7]) and cooling effects (e.g., [8–10]).
Moreover, besides hydrological effect, multiple other benefits of the vegetated systems
are mentioned such as higher biodiversity and improved livability [11–13]. A precise
and long-term determination of the temporal dynamics for all water balance components
is important for estimating their impact on the overall hydrologic regime [14,15]. In
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this context, various studies highlight the significance of ET for urban water and energy
balance [1,16]. Feng et al. [17], for example, state that ET in dry periods is important for the
restoration of water retention capacity, while the properties of the BGI (e.g., field capacity)
influence the retention effect at rainy weather periods. To understand these relationships
and evaluate the performance of BGI, a realistic estimation of ET is essential [18–21].

Simplified water balance models (e.g., [16,22,23]) provide good orientation in early
planning phases but can only take into account the variability of urban surfaces in a
simplified way. For more detailed investigations, a precise knowledge of local interactions
is important. Physically based models providing this, such as [24,25], are very complex and
cannot be used efficiently for urban planning purposes. In contrast to that, the commonly
used urban drainage infrastructure models (e.g., US EPA SWMM, [26]) oversimplify ET
processes, so that the complex relationships of the soil-plant-atmosphere system cannot
be modeled sufficiently [18,27,28]. Since they ignore ET dependencies on available soil
water, existing models often overestimate actual ET rates [17,21,29]. They also do not allow
for including plant-specific characteristics, their temporal and local variability as well as
aspects of the energy budget resulting from shading [30].

Some approaches have been set up for modeling plant specific ET in SWMM. The
correction factor for potential ET rates used by [5] links to reduced ET due to water stress
during dry periods. A similar coefficient in combination with plant specific calculation of
Penman Monteith is established by [18]. Showing remarkable improvements to original
SWMM and underlining the great potential of optimizing ET modeling in urban runoff
models, both approaches manipulate potential ET rates and are not fully integrated into
the SWMM-model structure. By introducing monthly soil recovery and depression storage
patterns, SWMM itself offers an opportunity of modeling changes in water capability
and vegetative variation for subcatchments [26]. However, since the depression storage
pattern is only integrated at subcatchment scale, an applicable solution for the low impact
development (LID) module used for investigating BGI solutions is still missing.

In summary, all solutions given in current literature (i) are too complex to be used
efficiently for urban planning purposes, (ii) oversimplify ET modeling which leads to
distinct volume errors, or (iii) are not fully integrated into model structures that can be
used for investigations on both, the field and the catchment scale.

Therefore, the first aim of this study is to present a partial model for ET within
the framework of SWMM (US EPA) with a specific focus on urban green. Considering
energy aspects, the spatial influence of shading should be integrated. For modeling
water balance different vegetation structures, approaches for the complex relationships of
the soil-plant-atmosphere system are considered, so that dynamic modeling of different
vegetation elements is possible giving a higher temporal and spatial resolution. By means
of precipitation partitioning (interception, transpiration, (soil) evaporation) important
vegetative relationships are mapped to derive dependencies on soil water regime and plant
physiology. The extension should follow common and well-studied approaches and use
internationally accepted input variables.

Secondly, the paper is about to indicate the model’s advances and limits to prove
it for further use. Parameter tests aim to enhance good model knowledge and to give
recommendations for parameterization. Applying the model for different conditions
should validate model performance and clarify usability for urban planning purposes.

2. Materials and Methods
2.1. Model Description
2.1.1. Model Development

The developed model “SWMM-UrbanEVA” consists of two submodules that both
act independently of each other. Submodule 1 (SM1) models shading impacts on ET
at subcatchment scale while submodule 2 (SM2) is the main module modeling ET pro-
cesses within vegetation elements. The approaches presented here only provide the final
model selection. During model development numerous physical and empirical model-
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ing approaches in dependence of soil characteristics and vegetation dynamics have been
investigated for SM2 [31]. To evaluate the plausibility and applicability, all approaches
were combined and compared with each other regarding to system behaviour. The model
outputs were analyzed for water balance, fraction of ET fluxes and annual variations and
were validated with measurements and a range of literature data.

2.1.2. Submodule 1: Shading

SM1 (Figure 1) addresses the reduction in potential ET due to shading effects from sur-
rounding buildings or large vegetation. To consider the influence on both impervious and
pervious areas, SM1 is integrated into SWMM’s subcatchment module which is the main
control section for all considered catchments. Each catchment (pervious or impervious)
can be addressed individually. The benefit of this SWMM-UrbanEVA approach is that the
time series of a single reference climate station, from where the heterogeneous conditions
in the entire model area can be mapped, is sufficient. Individual climate measurements at
the subcatchments are not required. The reference station should necessarily be located in
or near the model area and should have no or only temporarily slight shading effects.
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The main model input variable to SWMM-UrbanEVA is the grass reference evapora-
tion ET0 regarding to the Food and Agriculture Organization (FAO) [32]. It is calculated
with climate data (radiation, temperature, humidity, and wind speed) of a reference station
(ref, Figure 1a), at least measured with an hourly timestep. In the following it is called
ET0,re f (mm·h−1).

For each subcatchment, ET0,re f is reduced to the location- and time-specific potential
evapotranspiration ET0,Ks using the day-specific (day of year, doy) shading factor KS,doy (−).
The authors define the shading factor KS, which describes the decrease in ET0 between the
reference station and the considered location due to shading.

ET0,Ks = ET0,re f ·KS,doy (1)

According to [30,33], ET performance is primarily influenced by the incoming short-
wave radiation. The site-specific availability of this short-wave radiation can be calculated
with shadowing-impact-analysis of common GIS tools (Figure 1b). Furthermore, [30]
describe a linear relationship f (∆rad) between shading and reduction in ET0 (Figure 1c).

∆ET0 = f (∆rad) (2)

If possible, the functional relationship f (∆rad) should be calculated using site-specific
data. If this is not possible, the proceedings of [30] can be used.

With the help of this relationship, the reduction in the available short-wave radiation
from the reference station to the considered location (∆rad) can be converted into the
shading factor KS (−, Figure 1d).

KS = 1 + ∆ET0 (3)

In order to model the annual variability of KS, the calculation of KS is carried out
for three days in the year: KS,winter at winter solstice (21 December), KS,spring at equinox
(20 March) and KS,summer at summer solstice (21 June). It is assumed that the value for
autumn can be summarized with the one for spring [30]. To get a reliable value, mean ∆rad
for a period around those dates is calculated. For KS,winter a period 7 November–2 Febru-
ary is analyzed, KS,spring is calculated for 6 February–6 May and 6 August–6 November,
whereas for KS,summer a period 7 May–5 August is taken into account [30]. Intermediate
values for KS are interpolated time-linearly so that a day-specific shading factor KS,doy is
determined for each time step (Figure 1e).

2.1.3. Submodule 2: Evapotranspiration

SM2 is the main module of SWMM-UrbanEVA that addresses the vegetative ET
processes. It is integrated into the Low Impact Development (LID) module which consists of
three layers (surface, soil, storage) and can model soil moisture-dependent interactions [34].
The existing three-layer system is retained. In addition, a so-called vegetation layer is
integrated (Figure 2) for which various plant-specific properties can be defined. The ET
components are not fed from all three layers (as before) but are assigned to the different
layers depending on the process. Thus, the interception evaporation EI takes place out of
the vegetation layer. Transpiration ET and (soil-) evaporation ES are interacting processes
which are both dependent on the soil moisture and are therefore fed out of the soil layer.
Evaporation from free water surfaces EW is allocated in the surface layer.
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Figure 2. Definition of the vegetation layer and the ET components within the existing LID-soil model.
(P = Precipitation, KC = crop factor, ET0,Ks = shading impacted FAO-grass reference evaporation,
ESTI,p = plant specific potential ET, EI,p = pot. interception, ET,p = pot. transpiration, ES,p = pot.
soil evaporation, EW,p = pot. evaporation of free water surface, EW,a = actual evaporation of free
water surface, EI,a = actual interception, ET,a = actual transpiration, ES,a = actual soil evaporation)—
modified after [34].

Definition of Vegetation-Specific Parameters
The vegetation layer can be parameterized individually for each LID. Thus, vegetation

properties can be modeled for each hydrotope. The plant-specific parameters integrated
into SWMM-UrbanEVA are defined as follows:

Leaf area index (LAI): The leaf area index LAI (- or m2·m−2) describes the leaf area
per covered area [35]. It influences the level of interception, radiation reduction, as well as
water and carbon gas exchange, and is therefore an important parameter for ET modeling.
LAI can be determined directly or indirectly. Literature values can be found at various
databases (e.g., [36–38]).

Growth factor (g f ): The LAI changes during a growing season. The authors define
the growth factor g f (-) which describes this vegetative variation over the year and is
multiplied by the LAI corresponding to the day of year (doy).

LAIdoy = LAI·g fdoy (4)

The factor is lowest during winter month, while it reaches its maximum between June
and September. If known, vegetation specific values can be used (e.g., Table S1, No. 1–6). If
no further specification is given, a general scheme can be provided (e.g., Table S1, No. 7).

Soil covered fraction (SCF): The soil covered fraction SCF(-) describes the amount
of the soil that is covered (by vegetation). In SWMM-UrbanEVA the SCF indicates the
energetic decoupling of evaporation from transpiration and interception evaporation. To
calculate the SCF, the model implements an approach by [39–41], which goes back to [42]
and proposes a calculation as a function of the LAI.

SCF = 1− 0, 7LAIdoy (5)

Therefore, SCF increases with increasing LAI. Nearly no soil is uncovered anymore
from LAI = 10 and higher. The functional relationship is plotted in Figure S2.

Leaf storage coefficient (SL): The leaf storage coefficient SL (mm·h−1) describes the
water retention capacity of vegetation. The higher the value, the more precipitation
intercepts. Various values can be obtained in the literature [24,43–48]. Regarding to [31],
SL can be fixed to 0.29 (mm·h−1).
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Interception capacity (Smax): The interception capacity Smax (mm·h−1) can be defined
as “the maximum amount of water remaining on the plant at the end of a precipitation
event, without evaporation and after stopping the dripping” [36]. It is dependent on the
surface condition and the density of the vegetation. Therefore, there is a direct relationship
to the LAI. The approach according to [49] combines the leaf storage coefficients SL with
the LAI.

Smax = SL·LAIdoy (6)

Crop factor (KC): Using ET0 (mm·h−1) as an internationally widely used input variable
introduces potential ET for the reference crop of a height of 0.12 m, well-watered and
under optimal environmental conditions [32]. For modeling various vegetation types the
crop factor KC (-) is implemented into the calculation as a multiplicator to ET0,Ks. KC is
dependent on the climatic conditions and plant characteristics and should be calculated
individually, according to [32], with

KC =
ETC
ET0

(7)

ETC is the crop evapotranspiration in mm·h−1 under standard conditions and should be
calculated using the Penman–Monteith equation [50] in the standardized format of the
American Society of Civil Engineers (ASCE) [51].

ETC =
0.408∆(Rn − G) + γ Cn

T+273 ·(es − ea)

∆ + γ·
(

1 + rs
ra

) (8)

in which ∆ = slope of saturation vapor pressure curve (kPa·◦C−1), Rn = net radiation
(MJ·m−2·day−1), G = soil heat flux (MJ·m−2·day−1), γ = psychrometric constant (kPa·◦C−1),
T = air temperature at 2 m height (◦C), (es− ea) = saturation vapor pressure deficit (kPa), rs =
(bulk) surface or canopy resistance (s·m−1) and ra = (bulk) aerodynamic resistance (s·m−1).

Cn =
3600ε

1.01·R·ra
(9)

in which Cn = numerator parameter that changes with the reference type and the wind
speed (K·mm·m·s2·Mg−1·h−1), ε = ratio of molecular weights of water vapor versus dry
air = 0.622 and R = specific gas constant = 0.287 (kJ·kg−1·K−1).

In regards to [52,53], ET is sensitive both to climatic parameters and plant-specific
resistances (aerodynamic and surface resistance ra and rs). The resistances can be calculated
as supposed by [32].

ra =
ln
[

zm−d
zom

]
ln
[

zh−d
zoh

]
k2uz

(10)

in which zm = height of wind measurements (m), d = zero plane displacement height
(m), zom = roughness length governing momentum transfer (m), zh = height of humidity
measurements (m), zoh = roughness length governing heat and vapor transfer (m), k = von
Karman’s constant = 0.41 (-), uz = wind speed at zm above ground surface (m·s−1).

In addition,
rs =

rl
LAIactive

(11)

in which rl is the bulk stomatal resistance of a well-illuminated leaf (s·m−1). Values for
various species can be found in, e.g., [54] or [55]. LAIactive (- or m2·m−2) is the sunlit,
ET-active LAI. For grouped vegetation such as forests or grass, [32] assume that just the
upper half of the vegetation is evaporation-active.

LAIactive, grouped = LAI·0.5 (12)
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Since in urban areas also stand-alone vegetation can be found (e.g., street trees), for
those cases a fully active LAI is considered.

LAIactive, standalone = LAI (13)

Alternatively values for rs can be found in the literature (e.g., [51,56,57]). Among cli-
mate data, further parameters that should be changed individually are crop height, albedo
and the height of humidity and wind measurements. With poor data conditions KC can also
be taken from literature (e.g., [32,58]). Exemplary calculations for KC are summarized in
Table S3. It should be noted that given KC-values have to be investigated for potential (not
actual) ET under reference conditions (well-watered, optimal environmental conditions).

Potential and Actual (vegetation-Specific) Evapotranspiration (ESTI,p and ESTI,a)

Multiplied by KC, ET0 (under the influence of shading ET0,Ks) is converted to the
vegetation-specific potential evapotranspiration ESTI,p (mm·h−1) [32].

ESTI,p = ET0,Ks·KC (14)

The authors then define actual evapotranspiration rate ESTI,a (mm·h−1) as the sum of
interception evaporation, transpiration, (soil) evaporation and evaporation from free water
surfaces.

ESTI,a = ET = EI,a + ET,a + ES,a + EW,a (15)

Interception (I)

The interception is incorporated into the model as a separate storage element without
any interaction to runoff or infiltration processes. The calculation is integrated into the
simulation process continuously and is performed for each time step. First, the potential
interception height I (mm·h−1) is calculated according to [49].

I = Smax·
(

1− 1
1 + SCF·P

Smax

)
(16)

The benefit of this widely used approach is that the interception height is reduced
depending on the precipitation intensity P (mm·h−1). The interception height converges to
the limit value Smax, and is thus affected by (i) the precipitation level itself in the case of low
precipitation intensities and (ii) the interception capacity in the case of high precipitation
intensities.

The actual interception height SI,act (mm·h−1) is calculated depending on the inter-
ception capacity Smax and the remaining interception level of the last timestep (SI, i−1).

SI = SI, i−1 + I (17)

SI,act =

{
SI f or SI ≤ Smax

Smax f or SI > Smax
(18)

The remaining precipitation (Pnet, mm·h−1) is then fed to the following infiltration
and runoff processes.

Pnet = P·(1− SCF) + (P− SI,act)·SCF (19)

Interception Evaporation (EI)

As mentioned before, the vegetation-related processes interception evaporation and
transpiration are energetically decoupled from (soil) evaporation. To calculate the poten-
tial interception level EI,p (mm·h−1), the potential evapotranspiration ESTI,p is therefore
reduced by applying SCF [46].

EI,p = SCF·ESTI,p (20)
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To further differentiate between interception evaporation and transpiration, an assign-
ment is made via the water-wetted leaf area Ab (-) according to [59,60].

EI,p = Ab·EI,p (21)

in which Ab is defined according to [48] or [61].

Ab =

(
SI,act

Smax

) 2
3

(22)

The actual interception evaporation EI,a (mm·h−1) finally results from the minimum
of the level of interception storage and the potential interception evaporation rate.

EI,a = min
(
SI,act, EI,p

)
(23)

Soil Evaporation (ES)

Since it is assumed that the evaporation fraction under the vegetation is negligible [24],
the (soil) evaporation is projected onto 1− SCF.

ES,p = (1− SCF)·ESTI,p (24)

In regard to [62], the proportion of actual to potential evaporation is calculated as
a function of soil moisture. In addition it is assumed that the potential evaporation rate
ES,p (mm·h−1) is already met before the field capacity is reached [25]. For this reason,
“aWCthreshold” (-) is introduced, which describes the point of reaching the potential
evaporation rate as proportion of the available water capacity. In accordance to [25,41], it is
set to 0.6.

For calculating the evaporation, the relative soil moisture Wrel (-) according to the use
of [63,64] is required, which describes the proportion of the available soil water within the
available water capacity (aWC).

Wrel =
θ − θWP

θFC − θWP
(25)

in which θ = actual soil moisture (-), θWP = soil moisture at wilting point (-), θFC = soil
moisture at field capacity (-).

The actual evaporation ES,a (mm·h−1) is then calculated in accordance to [31,62]:

es =

{ (
Wrel

aWCthreshold

)0.5
f or Wrel < aWCthreshold

1 f or Wrel ≥ aWCthreshold
(26)

ES,p = es· ES,p (27)

ES,a = min((θ − θWP)·
D
∆t

, ES,p) (28)

in which D = water level in the soil layer (mm) and ∆t = timestep.

Transpiration (ET)

Equivalent to the interception evaporation, the potential transpiration rate ET,p (mm·h−1)
is projected onto SCF [46]. As the actual interception evaporation EI,a (mm·h−1) is inte-
grated into the model as an upstream process ET,p is calculated like:

ET,p = SCF·ESTI,p − EI,a (29)
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The interaction between interception evaporation and transpiration is again intro-
duced according to [59,60] by using Ab.

ET,p = (1− Ab)·ET,p (30)

Since the process of transpiration is fed from the soil’s water budget, the calculation
of the actual transpiration height ET,a is done in dependence of the available soil water
((θ − θWP) ·D).

ET,a = min((θ − θWP)·
D
∆t

, ET,p) (31)

Since stomata resistances get very high at water stress and, therefore, ET,a is reduced
significantly, soil evaporation is prioritized if soil water is limiting.

Evaporation While Ponding (Free Water Surfaces) (EW)

Evaporation from free water surfaces is relevant, e.g., for infiltration systems and
occurs when water is ponded on the surface and the vegetation is therefore partly covered
with water. In order to model this, the input parameter “EvapPond” is integrated into the
model. The following two cases are defined by the authors:

No evaporation while ponding (EvapPond = 0): This case is chosen for low vegetation
that is expected to be covered if ponding occurs (e.g., grass in infiltration trenches). All ET
processes are stopped, except evaporation from the free water surface.

EI,a = 0 (32)

ET,a = 0 (33)

ES,a = 0 (34)

EW,p = ESTI,p (35)

EW,a = min
(hpond

∆t
, EW,p

)
(36)

in which EW,p is the potential evaporation rate from water surface and hpond is the height
of ponded water at the surface (mm).

Evaporation while ponding (EvapPond = 1): This case is chosen for high vegetation
that is not expected to be covered if ponding occurs (e.g., trees, shrubs, hedges). Only soil
evaporation is stopped while interception evaporation and transpiration continue. The
total actual evaporation (EI,a + ET,a + ES,a + EW,a) may exceed ESTI,p, since evaporation
from the water surface takes place up to the rate of ESTI,p. It is projected onto the uncovered
fraction.

EI,a = min
(
SI,act, EI,p

)
(37)

ET,a = min((θ − θWP)·
D
∆t

, ET,p) (38)

ES,a = 0 (39)

EW,p = (1− SCF)· ESTI,p (40)

EW,a = min
(hpond

∆t
, EW,p

)
(41)

2.1.4. Software Implementation

For the software implementation the source code of SWMM 5.1.014 (United States
Environmental Protection Agency US EPA, Washington, DC, USA) was used. The modified
source code is freely available (https://git.fh-muenster.de/bh642456/swmm-urbaneva).
The implementation is divided into three sections (i) input variables, (ii) calculation, and
(iii) result output.

https://git.fh-muenster.de/bh642456/swmm-urbaneva
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Within the input file structure of SWMM for SM1 the parameters (KS,winter, KS,spring,
KS,summer) were added to the subcatchment section. For SM2, the biocell LID was extended
with a vegetation layer with 6 parameters: (i) LAI, (ii) crop factor, (iii) pattern of growth
factor (reference to pattern section), (iv) SL value, (v) aWCthreshold, and (vi) evaporation
while ponding setting. SL can be fixed to 0.29 and aWCthreshold to 0.6, respectively.

For the SWMM-UrbanEVA calculation the SWMM source files ‘objects.h’, ‘subcatch.c’,
‘lid.h’, ‘lid.c’, ‘lidproc.c’ were modified. The calculation for SM1 is integrated into a new
function ‘getNetEvap’ in file ‘subcatch.c’, and for SM2 into files ‘lid.c’ and ‘lidproc.c’. The
main SWMM-UrbanEVA calculations are integrated into the ‘biocellfluxRates’ function.
The two main functions were added to the lidproc.c: (i) getEvapRatesIntercep and (ii)
getInterceptionRate.

SWMM-UrbanEVA results are added to the SWMM report file section ‘LID summary’
and to the LID report file (timeseries).

2.2. Study Area and Data

The model was developed, calibrated and validated using measured data from and
around Münster, Germany.

For SM1 climate measurements in Münster were investigated. At three locations
(“Geo”, “Leo”, “Lincoln”), the evaporation-relevant parameters radiation, temperature,
humidity, and wind speed have been measured since 2014 (2016). “Geo” is located at
a building of “Westfälische Universität Münster” [65]. Starting in 2014-01, climate data
are collected at a height of 15 m above the roof, with ∆t = 10 min and free from shad-
ing effects. Therefore, in the following location “Geo” is also called “reference station”
(ref). Location “Leo” (measurement since 2016-08) and “Lincoln” (measurement since
2016-10) are positioned next to hydrological measurements of BGI [66]. Climate data are
collected with ∆t = 1 min, at a height of 2 m and are influenced by shading. The eval-
uations of rainfall and ET0 (Table 1 and Figure S4) show an annual average of about
650–700 mm for precipitation and about 525–650 mm ET0, whereas the reference station
“Geo” has the lowest precipitation but the highest ET0. The reduction in ET0 due to
shading effects at locations “Leo” and “Lincoln” can also be observed within the mean
monthly totals (Figure S4).

Table 1. Mean annual totals for precipitation and ET0 of the locations under consideration. The years
in brackets indicate the analyzed periods.

Parameter Unit
St. Arnold Geo Leo Lincoln

(1966–2008) (2017–2018) (2017–2018) (2017–2018)

Precipitation mm·a−1 793 596 691 647
ET0 mm·a−1 460 648 490 524

For model development of SM2 measured data of the full scale lysimeter St. Arnold,
which is located 30 km north west of Münster, were used. The lysimeter consists of three
non-weighable lysimetrical basins, each with dimensions of 20 m × 20 m × 3.50 m, no
groundwater contact, and representing three forms of vegetation (grassland, coniferous,
and deciduous trees). Starting in 1965, infiltration rates of the different vegetation forms,
as well as climate data, have been collected until today on a daily basis [67]. Due to
sandy soil, no surface runoff occurs in St. Arnold [68]. The lysimeter has a long-term
average of 793 mm precipitation and 460 mm ET0 per year which means that the amount
of precipitation is higher than in Münster, while ET0 is a bit lower.

Further model investigations for simulating urban BGI have been made for two green
roofs in Münster. At location “Leo”, monitoring data from 10 green roof test beds with
an area of 3 m2 each have been collected since 2016. For this study, one green roof test
bed with a substrate layer of 15 cm depth was chosen. It has an underlying drainage
mat of 2.5 cm and a vegetation cover of selected sedum species and herbs. In order to
model and analyze the hydrological processes, in addition to the climate data runoff, soil
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moisture, and precipitation are recorded. Rainfall is monitored with ∆t = 1 min, exfiltration
is measured volumetrically with an accuracy of ∆h = 0.1 mm and ∆t = 5 min [66].

A second extensive green roof (called “FHZ”) which is located next to “Geo” was
chosen for further model validation. The area of 80 m2 consists of a substrate layer of 6 cm
depth and a drainage mat of 3 cm. Volumetric exfiltration measurements with ∆t = 5 min
started in 2015.

To ensure good data quality, during measurements, periods of measurement errors
were monitored and excluded from analysis. All remaining data have been checked
properly before being used for this study. If necessary (e.g., outliers, gaps, plausibility), the
data was corrected or excluded from further investigations.

2.3. Model Sensitivity Analysis, Calibration, and Validation
2.3.1. Set Up and Goodness-of-Fit Criteria

Various tests were carried out to prove model validity and to indicate the model’s
advances and limits. The investigations were structured in three main steps (Table 2):
First, the validity for modeling ET reduction due to shading (SM1) was examined (STEP 1,
Sections 2.3.2 and 3.1). STEP 2 (Sections 2.3.3 and 3.2) focused on sensitivities, model
performance and behaviour of SM2. Finally, after testing general applicability of SWMM-
UrbanEVA, further investigation was carried out on running SWMM-UrbanEVA for urban
BGI, since those elements play an essential role in developing sustainable transformation
strategies (STEP 3, Sections 2.3.4 and 3.3).

Table 2. Overview study set up.

Parameter STEP 1:
Shading (SM1)

STEP 2:
ET Vegetation (SM2)

STEP 3
BGI (SM1 + SM2)

Sensitivity Calibration

Location Münster
(“Leo” and “Lincoln”) St. Arnold Münster

(“Leo” and “FHZ”)

Reference
station “Geo” St. Arnold (no shading) “Geo”

Measurement ET0,loc
“Leo” and “Lincoln”

infiltration
grassland/coniferous

exfiltration green roofs
“Leo” and “FHZ”

Timestep 5 min daily 5 min

Methods - LHS SCEUA SCEUA

Period 2017 1989/1999 1989/1999,
1989, . . . , 1999

2017-01/2017-03;
2017-04/2017-06;

2017-02-21/2017-02-27;
2017-03-07/2017-03-17

Varied input
parameters

KS,spring, KS,summer, KS,winter,
(see Table 4)

all LID +
SWMM-UrbanEVA

variables,
(see Table 5)

KC, SoDepth, Por, WP,
c_sl

(see Table 7)

KC, Por, WP, c_sl,
FCoef, FEx

(see Table 7)

Evaluated result
parameters

ET0,Ks
“Leo” and “Lincoln” ET, EI,a, ET,a, ES,a infiltration grass./ conif. exfiltration green roofs

“Leo” and “FHZ”

Goodness-of-fit NSE, mNSE, Vol

Both, sensitivity analysis and calibration were done by KALIMOD, a software tool
which is an interface between simulation models and optimization algorithms [69,70].

The sensitivity analysis, like that recently applied by, e.g., [71–73], aimed to identify
the influence of the parameters on the model results and to consider the interaction of the
parameters with each other. It was carried out globally with Latin Hypercube Sampling
(LHS) [74]. In contrast to Monte Carlo simulation, it was expected that a smaller number
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of simulations will have to be performed [75]. According to [76], 100 simulations per
parameter were made.

For evaluating the correlation between the model parameters and the model results,
the Pearson correlation coefficient cor [77] was chosen.

cor =
cov (X, Y)

σXσY
(42)

in which cov is the covariance, σX is the standard deviation of X and σY is the standard de-
viation of Y. cor can take values between −1 and +1, where ±1 indicates direct correlation,
whereas 0 describes a missing correlation between two variables.

The Shuffled-Complex-Evolution Method University of Arizona (SCEUA) was chosen
for calibration as it is considered to be effective and robust [78], as well as it can be
successfully used for the automatic calibration of rainfall-runoff-models [79]. The stopping
criterium was set to an improvement of the best point by less than 1% over the last five
loops.

For both sensitivity analysis and calibration, three criteria were selected to evaluate
the goodness-of-fit (Table 3). The Nash–Sutcliffe model efficiency coefficient (NSE) [80] is
commonly used for evaluating the performance of long-term simulations (Equation (43)).
It can take values between −∞ and 1. A value of 0 means that the expected value of the
measured data provides a prediction or simulation that is as good as the model itself [81].
For this study, NSE > 0.8 is assessed as “Very Good”, 0.70 < NSE ≤ 0.80 is “Good”,
0.45 < NSE ≤ 0.70 is “Satisfactory” while all smaller values are rated as “Not Satisfactory”.

Since NSE is particularly sensitive to peak deviations, the modified Nash–Sutcliffe
model efficiency coefficient (mNSE) (Equation (44)), in which the residuals are not squared,
is also used. It can be assumed that results for mNSE are slightly smaller than NSE, as the
timeseries peaks are not squared [82].

Because the long-term effects and their mass balances are very important for ET
processes, the volume error (Vol), which quantifies the volumetric deviation for the period
under consideration, is also chosen as third criterion (Equation (45)).

Table 3. Goodness-of-fit criteria under consideration.

Goodness-of-Fit Criterion Formula Equation No.

Nash-Sutcliffe model efficiency NSE = 1− ∑n
i=1(Qm,i−Qo,i)

2

∑n
i=1(Qo,i−Qo)

2
(43)

Modified Nash-Sutcliffe model efficiency mNSE = 1− ∑n
i=1|Qm,i−Qo,i |

∑n
i=1|Qo,i−Qo|

(44)

Volume Error Vol = ∑n
i=1 Qo,i

∑n
i=1 Qm,i

− 1 (45)

Qm = modelled result; Qo = observed result.

2.3.2. Submodule 1: Shading

The validity of the shading factor KS was examined for 2017 using the two locations
“Leo” and “Lincoln” with “Geo” as reference station. To evaluate the model accuracy, ET0
was calculated according to [32] from measured data of the local microclimate (ET0,loc) on
the one hand and by using local KS factors (ET0,Ks) multiplied with ET0,re f on the other
hand.

For the two locations, the transfer functions ∆ET0(∆rad), according to Equation (2),
were set up (Figure 3). This was possible because measurements were available on site. In
contrast to [30], for both locations a remarkable spread of the parameter pairs around the
transfer function can be observed. The fact must be considered when thinking of model
uncertainties. If no measured data would have been available, the functional relationship
of [30] could have been used alternatively.

To derive KS, the next step was to calculate ∆rad for the periods winter, spring and
autumn, and summer defined in Section 2.1.2. The calculation was carried out analyzing
the differences between measured radiation on site and at the reference station (Table 4
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(i)). In the last step the KS-values (Table 4 (ii)) were calculated using the transfer function
∆ET0(∆rad) (Figure 3).
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Parameter Unit
Leo Lincoln

Spring Summer Winter Spring Summer Winter

(i) ∆rad - −0.15 −0.12 −0.25 −0.13 −0.07 −0.12
(ii) KS - 0.75 0.78 0.66 0.78 0.84 0.79

2.3.3. Submodule 2: Evapotranspiration

For sensitivity analysis and calibration of SM2, the time series of measured infiltration
of St. Arnold with a length of 10 years (01.01.1989–01.01.1999) and daily time step was used
for the simulations (Section 2.2). ET0 was calculated on a daily timestep using climate data
of St. Arnold as well. Since the large-scale lysimeter reacts very slowly, annual balance
periods (1989, 1990 . . . ) as well as the total period (1989–1999) were chosen as evaluation
periods.

Because SM2 is implemented within the low-impact development module (LID)
of SWMM, the sensitivity analysis was limited to the LID parameters. Since SWMM-
UrbanEVA adds a new layer to the LID module that interacts with the existing layers, all
LID parameters, as well as all newly added SWMM-UrbanEVA parameters, are examined
for model sensitivity. An overview of model parameters and their ranges used for the
sensitivity analysis can be found in Table 5. For all simulations, KS is set to 1. ET only occurs
during dry times. The analysis is performed for the model results evapotranspiration,
interception evaporation, transpiration, and (soil) evaporation, whereby only the infiltration
can be added as a measurement.

The calibration was carried out for the two vegetation types “grassland” and “conif-
erous “. Only those parameters were selected which were identified as sensitive before
(Table 7). To compare SWMM-UrbanEVA with the existing model approach, the calibration
was also performed for the current SWMM-version (SWMM-current).

Aiming to improve ET modeling, besides parameter tests it is also important to analyze
modeled process dynamics for long-term simulations. Therefore, a focus was also set to ET
fluxes and their interaction for realistically modeling the soil-plant-atmosphere system. The
model behaviour was checked for plausibility with time series, as well as with considering
the change of ET components for different LAI. Moreover, ET partitioning was validated
with literature values ([83–86]).
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Table 5. LID parameter ranges for sensitivity analysis and model calibration. (grey = fixed parameter,
black = varied parameter).

Parameter Unit Min Max Reference

ve
ge

ta
ti

on

crop factor Kc - 1 3 [32]
leaf area index LAI - 1 16 [36]

leaf storage
coefficient SL - 0 1 -

aWCthreshold aWC-th - 0 1 -
su

rf
ac

e surface storage SuStor mm 1 10 site specific
surface roughness SuManN s·m−1/3 0.001 0.8 [87]

surface slope SuSlope % 0 6 site specific

so
il

soil depth SoDepth mm 1 2000 site specific
porosity Por - 0.22 0.65 [88]

field capacity FC - 0.21 0.21 [88]
wilting point WP - 0 0.20 [88]
conductivity cond mm·h−1 0.25 360 [87]

conductivity slope c_sl - 1 100 [34]
suction head SucH mm 49 320 [34]

st
or

ag
e storage height StHeight mm 1 5000 site specific

void ratio VoidR - 0 1 [88]
seepage rate SR mm·h−1 0.25 360 [87]

2.3.4. Blue Green Infrastructure

A calibration was conducted exemplarily for the two green roofs “Leo” and “FHZ”.
Both green roofs have been calibrated for a six-month period between 2017-01 and 2017-06
using the measured exfiltration (Section 2.2). The calibration intervals were set to two
quarterly sections (2017-01 to 2017-03; 2017-04 to 2017-06) as well as two rainfall events
(2017-02-21 to 2017-02-27; 2017-03-07 to 2017-03-17). To evaluate the goodness-of-fit, NSE,
mNSE, and Vol were chosen as optimization criteria again.

In addition to the model parameters selected for St. Arnold (Section 3.2.2), the drainage
coefficient and the drainage exponent were also calibrated, since they significantly influence
the runoff formation process. As before, for the validation of SM1, “Geo” was used as
reference station for ET0 calculation. Due to the influence of shading, green roof “Leo” was
calculated using the KS values shown in Table 4. Since the influence of shading for green
roof “FHZ” is negligible, all KS values were set to 1 and therefore only SM2 was used.

For evaluation of model behaviour besides the calibration interval, two validation
periods (2017-07 to 2017-09; 2017-10 to 2017-12) were chosen.

3. Results
3.1. Submodule 1: Shading

In order to evaluate validity of SM1, first ET0,loc and ET0,Ks are compared on a daily
basis for 2017. The mean values of ET0,Ks is 1.28 ± 1.11 mm·d−1 and 1.27 ± 1.15 mm·d−1

for Lincoln. Both are close to the respective values from local data with mean ET0,loc being
1.36 ± 1.18 mm·d−1 for Leo and 1.37 ± 1.18 mm·d−1 for Lincoln. The parity plot (Figure 4)
illustrates the goodness-of-fit for nearly the whole range of values. The linear fit has a
gradient of ± 1 for both locations while the coefficients of determination are R2 = 0.96
for Leo and R2 = 0.98 for Lincoln. Regarding to Section 2.3.1, the evaluation of NSE and
mNSE confirms the very good performance of SM1 for the period under consideration
with NSE = 0.96 and mNSE = 0.84 for Leo and NSE = 0.98 and mNSE = 0.88 for Lincoln.
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Figure 4. Parity plots with 1:1 reference line comparing daily ET0,Ks and ET0,loc in 2017 for (a) Leo
and (b) Lincoln.

Having a look at monthly totals (Table 6) provides a better impression of the perfor-
mance of SM1 during the year. For Leo, the absolute deviations are between −4.9 mm and
+4.6 mm, while relative deviations are between −13.0 and +153.2%. For Lincoln, values
between −4.5 mm (−12.1%) and +3.0 mm (+54.4%) can be observed. The remarkably high
relative deviations in June 2017 are the result of small absolute deviations with very low
monthly totals. The effect does not occur in the following months. For both locations, SM1
underestimates ET0 during spring while ET0 is overestimated during fall.

Table 6. Comparison of ET0 out of local measurements (ET0,loc) with the KS-modified ET0 of the
reference station (ET0,Ks) for 2017.

Month
in

2017

Leo Lincoln

ET0,loc ET0,Ks Diff. ET0,loc ET0,Ks Diff.

(mm) (mm) (mm) (%) (mm) (mm) (mm) (%)

January 2.9 7.4 4.5 153.2 5.5 8.4 3.0 54.4
February 13.0 13.1 0.1 0.6 12.5 14.2 1.7 13.5
March 37.8 32.9 −4.9 −13.0 38.7 34.2 −4.5 −11.6
April 49.4 47.3 −2.2 −4.4 52.3 49.5 −2.7 −5.3
May 77.5 75.4 −2.1 −2.7 81.2 80.3 −0.9 −1.1
June 82.3 82.6 0.3 0.3 88.8 89.1 0.4 0.4
July 80.0 77.3 −2.8 −3.4 84.3 82.7 −1.6 −1.9

August 58.7 61.9 3.3 5.6 64.7 65.2 0.5 0.8
September 34.2 35.6 1.4 4.1 37.9 37.0 −0.8 −2.2
October 17.2 21.8 4.6 26.5 20.7 23.4 2.7 13.1
November 6.3 7.2 0.9 14.5 7.1 8.1 1.0 14.5
December 4.7 4.3 −0.5 −9.5 5.8 5.1 −0.7 −12.1

∑ 464 467 3 1 499 497 −2 −0.4

Except of an overestimation of 26.5% in Oct. 2017 at Leo, all other ET0,Ks values do
not differ from ET0,loc by more than 14%, which is acceptable. During summer only small
volume errors ≤5% can be observed. The annual totals for ET0,Ks deviate only slightly
from ET0,loc by +3 mm (+0.6%) for Leo and −2 mm (−0.4%), which means that the monthly
volume errors compensate each other during the year.

3.2. Submodule 2: Evapotranspiration
3.2.1. Sensitivity Analysis

Figure 5 shows the Pearson correlation coefficients cor, as well as the related scatter
plots. The plot lists total ET, all newly added SWMM-UrbanEVA input (KC, LAI, SL,
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aWCthreshold) and output (EI,a, ET,a, and ES,a) variables, as well as already existing LID
variables with |cor|> 0.05. Due to nearly no runoff at the lysimeter (Section 2.2), a
negligibly small model sensitivity to runoff and, therefore, an almost adverse behaviour
of infiltration and ET (ET = P − I) was observed in the data. Thus, runoff and infiltration
will not be discussed further and only ET is plotted. In addition, the sensitivity to the
ET components EI,a, ET,a, and ES,a is analyzed. Due to the direct correlation between
the depth of the soil layer and the soil parameters in describing the soil storage, the
sensitivity evaluation is done with the available water capacity volume (VolaWC = (FC −
WP) · SoDepth) and the air capacity volume (VolAC = (Por − FC) · SoDepth) instead of
each variable soil depth, porosity, field capacity and wilting point. Firstly, analyzing the
influence of ET components on ET, ET,a shows the most distinct sensitivity with cor = 0.86.
The relationship can be described most linearly. With cor = 0.49 for EI,a and cor = 0.32
for ES,a, the influence of the other two fluxes is less clear. The scatter plots confirm this,
observing a proportional relation, but with larger scattering.

Secondly, another focus must bet set to the correlations in between the ET fluxes. An
inverse relationship can be detected between ES,a and EI,a (cor = −0.47) which is due to the
energetic decoupling of the two processes. With increasing ES,a, ET,a decreases, since both
processes are fed from the soil storage, and ES,a is prioritized in case of low soil moisture
(Section 2.1.3). A similar relationship exists between EI,a and ET,a (cor = 0.27). Transpiration
initially increases with increasing interception evaporation. Since transpiration in the model
is the downstream process of the two energetically coupled processes, an inverse correlation
can be seen at high EI,a.

For setting up the model in a good manner, it is essential to understand the influence
of parameterization on model results and behaviour. KC (cor = 0.84) is the most influential
parameter on total ET. According to multiplication of ESTI,p by KC (Equation (14)) this
corresponds to the expectations and underlines the care with which KC should be deter-
mined. The distinct correlation is well observed again by the scatter plot. The remaining
SWMM-UrbanEVA variables LAI, SL, and aWCthreshold do not have any further influence
on total ET. In contrast, a significant influence on total ET can be observed in the volumes
of air capacity and available water capacity (cor = 0.27 for VolaWC and cor = 0.26 for VolAC)
since large soil volumes result in more ET due to high storage capacities. A slight correla-
tion is observed for the conductivity slope c_sl (cor = 0.08). As a constant regulating soil
regeneration, it influences the long-term balance of ET.

When evaluating the sensitivity of the model inputs onto the three ET components,
a rather different pattern is obtained. Significant correlations can again be observed for
KC. With cor = 0.51 for EI,a and cor = 0.62 for ET,a, the influence is higher than for ES,a
(cor = 0.28). A potential reason might be the calculation of ES,p via SCF (Equation (24))
which increases exponentially with increasing LAI. Consequently, LAI rather than KC
restricts the (soil) evaporation process (cor = −0.69). The scatter plot shows that small LAI
have maximum ES,a levels. With increasing LAI, they decrease exponentially. For EI,a and
ET,a a sensitivity to the leaf storage coefficient SL is observed (cor = 0.35 and cor = −0.31),
but none for ES,a. As SL is a plant-based parameter that is integrated into the calculation of
interception capacity, this goes back to the energetic decoupling of ES,a from plant-based
processes. Additionally, the influence of the soil storage on the ET components should be
noted. Only for the soil fed transpiration process, ET,a, can a correlation can be observed
(cor = 0.34 for VolAC and cor = 0.36 for VolaWC). The sensitivity for the second soil-fed
process, ES,a, is significantly lower (cor = 0.04 for VolAC and cor = 0.08 for VolaWC), since
overall the amount of soil water extracted is much smaller than for ET,a.
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Last, when analyzing the correlation in between the model parameters no further
correlations can be highlighted except of a positive correlation (cor = 0.43) between the two
soil storage components VolaWC and VolAC.

In summary, the results of the LHS-simulations clearly indicate sensitive parameters.
The crop factor KC and the soil characterizing variables (So_Depth, WP, FC and Por)
are most influential on total ET. A slight correlation can be observed for c_sl. The LAI,
introducing plant characteristics into SWMM-UrbanEVA, does not have an influence on
total ET, but is essential for modeling ET processes and interactions.

3.2.2. Model Calibration and Validation

The calibrations were configured based on the conclusions of the sensitivity analysis.
For the two vegetation types “grassland” and “coniferous”, the model parameters KC, soil
depth, porosity, wilting point, and conductivity slope were calibrated. Although the LAI is
essential for realistic process modeling, it does not influence total ET (Figure 5) and can
therefore not be calibrated within this study due to a lack of ET components measurements.
According to [36], it was set to LAI = 2 for grassland and LAI = 11 for coniferous.
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Having a look on the conducted calibration, the goodness-of-fit improved over gen-
erations of automatic optimization with SCEUA. The calibration were stopped after 969
(grassland) and 1375 (coniferous) simulations for SWMM-UrbanEVA, while the calibration
of current SWMM finished after 1163 (grassland) and 878 (coniferous) simulations. The
best-fit parameter sets of the calibration runs are summarized in Table 7. For both vegeta-
tion types the calibration results in a KC that meets the expectations according to exemplary
calculation (Table S3). Besides the increase in KC, an adjustment of soil volumes (factor 1.3
for VolAC and factor 5.1 for VolaWC) can be observed for changing vegetation. More clearly
this effect can be detected when calibrating the current SWMM version (SWMM-current).
As there is no other regulation mechanism in the model, the soil volumes are increased
even more significantly (factor 1.7 for VolAC and factor 7.3 for VolaWC).

To gain further knowledge about model parameterization of SWMM-UrbanEVA,
the scattering of the calibrated parameters, expressed by variation coefficients (VarC),
highlights uncertainties for parameterization (Table 8). VarC ranges between 4% (Por) and
67% (VolaWC) for grassland. The high maximum for VolaWC can be explained with the
high values of WP. As FC is fixed to 0.21 and therefore VolaWC is very small, this leads to
large relative variations resulting from small absolute deviations of SoDepth and WP. The
slightly higher value for KC (VarC = 16%) can be explained by the non-negligible sensitivity
of soil parameters (Section 3.2.1). Since they also influence ET, KC changes depending on
the soil parameters applied. For the remaining parameters VarC is small (<10%) so that no
significant uncertainty in parameter estimation can be identified.

For coniferous VarC is slightly higher with 8% (Por) to 24% (VolaWC). Since VolaWC
has a wider range in contrast to grassland, a maximum value for VarC as for grassland
cannot be observed here. Having a higher variation for VolAC (VarC = 21%) and VolaWC
(VarC = 24%), results in wider ranges for SoDepth, Por, and WP as well.

Evaluating the best-fit parameter sets of calibration runs for SWMM-UrbanEVA and
current SWMM, the results of the goodness-of-fit criteria (Figure 6) highlight (i) the model
performance for the two vegetation types and (ii) the differences between the two models.

For grassland, with NSE(1) = 0.74 and NSE(2),median = 0.71, SWMM-UrbanEVA shows
good adaption to timeseries dynamics. The modified Nash–Sutcliffe coefficients result in
mNSE(1) = 0.57 and mNSE(2),median = 0.56. The lower results for mNSE have been expected,
since mNSE is less sensitive to time series peak deviation (Section 2.3.1). On the other hand,
current SWMM’s time series adaption can only be rated as satisfactory with NSE(1) = 0.63
and NSE(2),median = 0.58 (mNSE(1) = 0.47 and mNSE(2),median = 0.41). In comparison, this
means an improvement of the NSE by 17% for the calibration period (1).

For coniferous, the results confirm this observation. While for SWMM-UrbanEVA
the model adaption is in a good range, but slightly lower than for grassland (NSE(1) =
NSE(2),median = 0.70), current SWMM has NSE(1) = 0.57 and NSE(2),median = 0.60. When
using SWMM-UrbanEVA this means an improvement of the NSE by 23% for the calibration
period (1). For SWMM-UrbanEVA the modified Nash–Sutcliffe coefficients are slightly
higher than for grassland (mNSE(1) = mNSE(2),median = 0.64), while they decrease for
current SWMM (mNSE(1) = 0.36 and mNSE(2),median = 0.41). Since mNSE, which is less
sensitive to peak deviation compared to NSE, decreases for current SWMM, it can be
assumed that current SWMM shows stronger peak deviations for coniferous.

Even more distinct model deficits for current SWMM can be observed when evaluating
the volume error. For grassland, SWMM-Urban underestimates infiltration by Vol(1) =
Vol(2),median = −7% whereas current SWMM shows an underestimation of Vol(1) = −24%
(Vol(2),median = −22%). When using SWMM-UrbanEVA, this means an improvement of the
Vol by 71% for calibration period (1). In contrast, the reduction in volume errors by SWMM-
UrbanEVA is even stronger for coniferous. Observing a volume error of only Vol(1) = 3%
(Vol(2),median = 4%) when modeling with SWMM-UrbanEVA, the results of current SWMM
show an unacceptable overestimation of infiltration by Vol(1) = 44% (Vol(2),median = 53%).
Therefore, the improvement by introducing SWMM-UrbanEVA is at 93%.
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Table 7. LID parameters obtained from model calibration. (grey = fixed parameter, black = varied parameter).

Parameter Unit
Full Scale Lysimeter St. Arnold Green Roofs

SWMM-UrbanEVA SWMM-Current
Grass Conif. Grass Conif. Leo FHZ

G
en

er
al area Area M2 400 400 400 400 3 80

width Width m 20 20 20 20 1 9
initial saturation InitSat - 0 0 0 0 0 0

slope Slope % 2 2 2 2 3 3

SM
1 shading factor spring KS,spring - 1 1 - - 0.75 1

shading fact. summer KS,summer - 1 1 - - 0.78 1
shading factor winter KS,winter - 1 1 - - 0.66 1

SM
2

ve
ge

ta
ti

on

crop factor Kc - 1.04 1.56 - - 1.80 1.14
leaf area index LAI - 2 11 - - 3 3

leaf storage coefficient SL % 0.29 0.29 - - 0.29 0.29
aWCthreshold aWC-th % 0.6 0.6 - - 0.6 60

gf scheme gf - Table S1, no. 7

su
rf

ac
e surface storage SuStor mm 2 2 2 2 20 20

surface roughness SuManN s·m−1/3 0.1 0.1 0.1 0.1 0.1 0.1
surface slope SuSlope % 1 1 1 1 3 3

so
il

soil depth SoDepth mm 1596 1639 1616 2331 150 60
porosity Por - 0.48 0.57 0.46 0.50 0.29 0.40

volume air capacity VolAC mm 431 590 404 676 14 10
field capacity FC - 0.21 0.21 0.21 0.21 0.20 0.23
wilting point WP - 0.18 0.10 0.19 0.11 0.10 0.07

volume avail. water cap. VolaWC mm 35 180 32 233 15 10
conductivity cond mm·h−1 250 250 250 250 61 27

conductivity slope c_sl - 40.6 28.4 36.5 34.8 63.8 37.6
suction head SucH mm 58 58 58 58 58 58

st
or

ag
e storage height StHeight mm 3000 3000 3000 3000 25 30
void ratio VoidR - 0.27 0.27 0.27 0.27 0.75 0.30

seepage rate SR mm·h−1 250 250 250 250 0 0

dr
ai

n flow coefficient FCoef 1·h−1 - - - - 53 43
flow exponent FEx - - - - - 0.9 0.2

offset Off mm - - - - 0 0
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Table 8. Mean (mean), standard deviation (SD) and variation coefficient (VarC) for last population of calibration-runs for
grassland and coniferous.

Parameter Unit
Grassland Coniferous

Mean SD VarC Mean SD VarC

crop factor Kc - 1.05 0.17 16% 1.57 0.19 15%
soil depth SoDepth mm 1463 146 10% 1555 268 17%
porosity Por - 0.50 0.02 4% 0.55 0.04 8%

volume air capacity VolAC mm 431 40 9% 545 113 21%
wilting point WP - 0.18 0.02 9% 0.10 0.02 21%

volume available water capacity VolaWC mm 29 20 67% 167 39.5 24%

However, besides evaluating the median results for yearly calibration periods (Figure 6),
another focus must be set to the minimum values: Observing NSE(2),min = 0.52 for grassland
or NSE(2),min = 0.38 for grassland leads to calibration periods with poor model adaption of
SWMM-UrbanEVA as well. Showing volume errors of up to |Vol(2),max| = 18% for grass-
land and |Vol(2),max| = 43% confirms this unsatisfactory model performance. Although
this still means a distinct improvement in contrast to current SWMM, this proves that
SWMM-UrbanEVA not always fits the measurements.
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Figure 7 shows measured and modelled infiltration in long-term simulation for the
best-fit parameter samples described above exemplarily for one year (1992) out of the
total calibration period. In addition to the continuous time series (bottom) the cumulative
infiltration heights (top) are calculated.

The evaluation of SWMM-UrbanEVA for grassland shows a slight underestimation
of the infiltration (Vol = −6%, −26 mm) and thus an overestimation of ET. The annual
hydrograph shows a good adaptation to the monitored infiltration rates. However, the
exfiltration starts too early, while for rapid increase in infiltration (e.g., March 1992) the
system reacts too slowly which leads to underestimation of peaks volume. Due to this
contradictory behaviour, only slight volume errors in the annual total can be observed.
Giving reasons for this behaviour, on the one hand, a slight weakness in modeling detention
and exfiltration processes, as stated by [28,89], can be noted. On the other hand, with an
area of 400 m2 the size of the LID leads to slow model reactions to peak changes. The
evaluation of performance criteria (Table 9) confirms the good performance of the model.

Similar observations can be made for current SWMM. The hydrograph is almost iden-
tical with SWMM-UrbanEVA, whereby current SWMM calculates slightly lower infiltration.
Thus, with Vol = −14% (−61 mm) the volume error for the evaluated period is larger, but
still acceptable for SWMM. NSE and mNSE only differ slightly from SWMM-UrbanEVA.
Current SWMM even shows a better performance for mNSE which can be explained with
the squaring of the measurement peak in March 1992 in calculation of NSE.

The observations are also confirmed by the parity plot (Figure 8). The mean daily
measured infiltration for grassland is 1.18 ± 1.42 mm·d−1, 1.11 ± 1.08 mm·d−1 modeled
by SWMM-UrbanEVA and 1.02 ± 0.99 mm·d−1 by current SWMM. Thus, the linear fit
for SWMM-UrbanEVA largely corresponds to the 1:1 reference line, while the linear fit of
current SWMM is slightly higher.

For coniferous, completely different results can be observed. As the ET rates of
a coniferous forest are significantly higher, the measured infiltration is lower. SWMM-
UrbanEVA shows a good adaptation to these measurements. In the yearly sum the volume
error of SWMM-UrbanEVA is only Vol = −4% (−7 mm). The NSE of 0.87 confirms the
very adaption to timeseries dynamics.

In contrast, for current SWMM strong deficits can be observed. The system is not able
to map the high ET rates, so that too high infiltration heights are calculated for the entire
year. The annual total shows an unacceptable volume error of Vol = 59% (116 mm). This
behaviour can also be found in the evaluation of the daily infiltration heights (Figure 8).
While the mean value of the daily measured infiltration heights is 0.53 ± 0.64 mm·d−1,
SWMM-UrbanEVA gets to 0.52 ± 0.61 mm·d−1 and current SWMM to 0.86 ± 0.82 mm·d−1

on average, which equals a deviation of 62%. This leads to NSE = 0.47 which is poorly
satisfactory.

For low infiltration rates SWMM-UrbanEVA tends to overestimate infiltration (under-
estimate ET) while an underestimation can be observed for high infiltration rates for both
vegetation types. No similar trend can be clearly detected for current SWMM.
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SWMM-UrbanEVA SWMM-Current

Grassland Coniferous Grassland Coniferous
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Vol - −0.06 −0.14 −0.04 0.59
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In summary, this section’s observations show a distinct improvement in contrast to
current SWMM when introducing SWMM-UrbanEVA. While volume errors can be reduced
massively by up to 93% for coniferous, the model shows a good model performance
(NSE = 0.75). Best-fit parameter sets meet the expectation. Parameterization uncertainties
of KC and soil characteristics must be considered.

3.2.3. Analysis of the Modeled Process Dynamics

To better understand model behaviour, Figure 9 plots time series simulated by SWMM-
UrbanEVA of model various input and output variables for a one-week period. The
simulation is done using monitored data of St. Arnold with KS = 1, KC = 1, LAI = 2, and
WP = 0.15. ESTI,p has a daily time step which explains the daily changes in the time series.
It stops during rainfall events and, therefore, also the ET components stop. As soon as
interception storage is filled and rain has stopped, EI,a starts. The interception storage
level decreases with ongoing EI,a until the storage is emptied. As interacting process
via water wetted leaf surface Ab (Equation (30)), ET,a shows a contrary behaviour. With
decreasing Ab (=decreasing Int_Level), ET,a increases until it transpires at maximum rate
at Int_Level = 0. As soil fed process it stops as soon as no water is available in the soil
layer (SM = WP = 0.15). The same behaviour can be observed for ES,a whereas this process
is modeled as a function of SM (Equation (27)). The smaller SM becomes, the lower the
evaporation rate.

Figure 10 shows the proportion of ET components in total ET. The plotted values
summarize the simulated parameter samples of sensitivity analysis (Section 3.2.1) grouped
by LAI. Some effects already described in Section 3.2.1 can also be confirmed here.
Generally, the fraction of EI,a increases as the LAI rises. Thus, for LAI = 2 a ratio of
EI,a,median/ET = 0.15 can be observed, while for LAI = 16 it is EI,a,median/ET = 0.61. An op-
posite behaviour can be detected for ES,a. The fraction decreases from ES,a,median/ET = 0.43
(LAI = 2) to ES,a,median/ET = 0.02 (LAI = 16). These effects can be explained by the
energetic decoupling of plant-bound and unbound processes via the SCF. The higher
the LAI, the smaller the uncovered fraction (1 − SCF, Equation (5)) from which (soil)
evaporation occurs.

As already stated in Figure 5, ET,a shows a different behaviour. With a small LAI = 2,
transpiration has a ratio ET,a,median/ET = 0.42. This value increases to ET,a,median/ET = 0.48
for LAI = 6 and then decreases again until only ET,a,median/ET = 0.37 is reached at LAI = 16.
Again, this observation can be explained by the correlations to EI,a and ES,a. ET,a, as a
downstream process of EI,a, is therefore limited by the potential rate for plant-bound fluxes
remaining afterwards. Due to the increasing interception capacity, with rising LAI the
transpiration fractions decrease. In addition, there is the limitation of ET,a at low soil
moisture since ES,a is set as a prioritized process.

The comparison of the component fractions with reference values (Table 10) allows
further model validation. To cover a wide range of LAI, the comparison is done for
grassland (LAI = 2), pine (LAI = 8), and spruce (LAI = 12). For EI,a, the three species
show different trends. With an absolute deviation of −10%, and a relative deviation of
−60%, grassland is clearly underestimated. In contrast, too much interception evaporation
is modeled for pine and spruce (+4 and +6%). The comparison for transpiration fluxes
shows too little transpiration for all three species (−8, −5, and −4% absolute deviation)
while the relative deviations are between −19% for grassland and −7% for pine. If the
values of EI,a and ET,a are summed up, with an absolute deviation of −18%, grassland is
still significantly underestimated which leads to an error for +18% for ES,a (72% relative
deviation). In contrast, comparing the sum of EI,a and ET,a for pine and spruce gives
absolute deviations of only −1 and +2% and, therefore, errors of +1 and −2% for ES,a.
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Table 10. ET partitioning validation for different species. (frac. = fraction of ET, abs. dev. = absolute deviation,
rel. dev. = relative deviation).

Species LAI

Literature SWMM-UrbanEVA

EI,a/ET ET,a/ET ES,a/ET EI,a/ET ET,a/ET ES,a/ET

Frac. Frac. Frac. Frac. Abs.
Dev.

Rel.
Dev Frac. Abs.

Dev.
Rel.
Dev Frac. Abs.

Dev.
Rel.
Dev

(-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)

grassland 2 0.25 1 0.50 1 0.25 1 0.15 −0.10 −0.60 0.42 −0.08 −0.19 0.43 0.18 0.72
pine 8 0.45 2. 0.47 2 0.08 2 0.49 0.04 0.09 0.42 −0.05 −0.07 0.09 0.01 0.13

spruce 12 0.50 3 0.44 3 0.06 3 0.56 0.06 0.12 0.40 −0.04 −0.10 0.04 −0.02 −0.33
1 reference: [83]; 2 reference: [83–86]; 3 reference: [84].
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3.3. Blue Green Infrastructure

For both green roofs the best-fit parameter sets of the calibration runs (Table 7) are
within a realistic range. Only for “Leo” with KC being 1.8, the expectations according to
exemplary calculations (Table S3) are exceeded, whereas for “FHZ” with KC = 1.14 the
expectations are largely met.

Figure 11 plots measured and modeled exfiltration for the two green roofs within
the calibration period (a) as well as the validation periods (b) and (c). The corresponding
goodness-of-fit results are shown in Table 11. For both locations only one model was
calibrated. The calibrated LID configurations were then transferred to the other models of
the location, to show the differences between the models having the same LID parameteri-
zation. At “Leo“, the fully calibrated model is SWMM-UrbanEVA SM1+2 while models
SM2 and current SWMM were set up with transmission of the calibrated parameter set of
SM1+2. Due to no shading at “FHZ” the calibrated model is SWMM-UrbanEVA SM2 with
parameterization transfer to current SWMM.

For location “Leo”, the calibration (a) of SWMM-UrbanEVA SM1+2 shows a very
good adaption to measured exfiltration (NSE = 0.84). The volume deviation of Vol = 1%
is very small. Good model adaption for SM1 + 2 can also be observed during the two
validation periods (b) with NSE = 0.85 and (c) with NSE = 0.71. The slight underestimation
of exfiltration by −6% can be evaluated as very small. The balance for the whole year 2017
(total of periods (a), (b), and (c)) shows a good model performance (NSE = 0.79) and a
volume error of −2%.

Significant differences can be determined for the other two model set ups (SM2 and
current SWMM), for which the LID parameter set of the calibration of SM1+2 was used.
For SM2 a significant underestimation of exfiltration and, therefore, an overestimation
of ET can be observed in all periods (−26% < Vol < −11%). For the whole year 2017 the
total volume error is Vol = −17%, which is not acceptable. In contrast, current SWMM
overestimates green roof exfiltration for all evaluation periods (6% < Vol < 25%). NSE and
mNSE for models SM2 and current SWMM only show minor changes compared to SM1+2
which can be explained by the similar LID parameterization set ups and, therefore, similar
process dynamics behaviour.
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Table 11. Performance criteria of the different models for the green roofs “Leo” and “FHZ”. The analysis was done with a
daily timestep.

Model
(a) Calibration

(2017-01 and 2017-06)
(b) Validation 1

(2017-07 and 2017-09)
(c) Validation 2

(2017-10 and 2017-12) 2017

NSE mNSE Vol NSE mNSE Vol NSE mNSE Vol NSE mNSE Vol

Le
o

UE
SM1+2 0.84 0.71 0.01 0.85 0.72 −0.06 0.71 0.61 −0.01 0.79 0.69 −0.02

UE SM2 0.82 0.69 −0.24 0.82 0.70 −0.21 0.72 0.62 −0.11 0.78 0.68 −0.17
current 0.79 0.65 0.25 0.83 0.73 0.21 0.70 0.60 0.06 0.77 0.67 0.15

FH
Z

UE
SM1+2 - - - - - - - - - - - -

UE SM2 0.95 0.81 −0.08 0.88 0.78 0.18 0.81 0.78 −0.03 0.89 0.81 0.00
current 0.90 0.74 −0.28 0.89 0.79 −0.13 0.80 0.74 −0.15 0.87 0.78 −0.18

For green roof “FHZ”, a very good model adaption (NSE = 0.95) can be observed for
the calibration period. The volume error of −8% mainly goes back to the peak underes-
timation in February 2017. During the first validation period (b) too much exfiltration is
modelled by SM2 (Vol = 18%), while for the second validation period (c) the model nearly
completely fits the measurement data (Vol = −3%). With NSE being 0.88 for period (b) and
0.81 for period (c) the model again shows a very good performance. For whole 2017 this
leads to NSE = 0.89 and (Vol = ±0%).

In contrast to green roof “Leo”, the current SWMM-version for “FHZ” shows a
distinct underestimation of exfiltration for all periods (−28% < Vol < −13%). The contrary
behaviour can be explained by the differences in KC. While for “Leo” KC is high and
thereby ET is increased, the current model is not able to compensate this with the given
soil characteristics. ET is underestimated (exfiltration is overestimated). In contrast, for
“FHZ” on the one hand KC is much smaller so that less ET must be compensated by current
SWMM. On the other hand, the missing reduction in ET fluxes depending on the soil
moisture, that only SWMM-UrbanEVA provides, can lead to higher ET rates of current
SWMM at same conditions. Due to higher ET fluxes, the soil storage at current SWMM is
emptier for most of the times which leads to increased soil storage capacities and, therefore,
smaller exfiltration volumes. As seen in Figure 11, this observation can be particularly
made during summer and early autumn months when ET as the leading process mainly
influences the LID’s water balance. In contrast, during winter months ET is minimum, the
water balance is mainly influenced by detention and exfiltration processes and, therefore,
the difference between SM2 and current SWMM is negligible.

To sum up this section’s findings, for both locations SWMM-UrbanEVA could be
calibrated and validated with good model performance. The reduction in volume errors in
contrast to current SWMM was up to 18% for total 2017. The high calibrated KC at “Leo”
could not be explained without further analysis.

4. Discussion

The results presented in this study provide a good overview of how to model the
water balance of urban vegetation and give perspectives for further work.

For SM1, the equivalence of the calculation approaches for ET0,loc and ET0,Ks can be
concluded for both locations on daily values which confirms very good model performance
for the period under consideration (Section 3.1). When analyzing monthly sums, the
contrary behaviour of spring and autumn period (Table 6) results from averaging ∆rad
for spring and autumn period when calculating KS,spring (Section 2.1.2). This observation
contradicts the findings of [30], who assume summarizable shading impact during spring
and autumn.

The remarkable spread of the parameter pairs around the transfer function ∆ET0(∆rad)
(Figure 3) is another difference to [30] that needs further investigation. It cannot explain
the previously mentioned seasonal deviations of ET0, but indicates that conditions of this
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study might be different to those applied in [30], e.g., data quality or seasonal dynamics
in 2017. A long-term evaluation of climate data is needed to identify reasons for these
observations and evaluate model applicability of SWMM-UrbanEVA. Another perspective
to minimize model uncertainties could be the integration of a forth KS-value for autumn
period (KS,autumn) instead of averaging spring and autumn period.

According to these findings, it is obvious that non-negligible uncertainties are intro-
duced to the model with SM1. The uncertainty is mainly determined by the quality of
the transfer function ∆ET0(∆rad). For this reason, the transfer function must be set up
very carefully. If possible, it is recommended to use local data measured in or next to the
catchment. All data must be checked properly before (e.g., outliers, gaps, plausibility). No
shading influence should be given for the reference station. The measurement data should
be of good quality. Periods of poor quality should be detected and excluded from analysis.
If no local data is available or the catchment area is too big the transfer function of [30] can
be used. However, this would lead to higher uncertainties. As a further aspect to reduce
model uncertainties it is recommended that the determination of ∆rad should be matched
to the simulation period. For short term simulations it should be defined period-specific
whereas for long-term simulations it is recommended to use long-term averages.

Given the results for SM1, it is also important to point out that with setting up SM1
only one component of urban energy balance and its influence on ET is integrated. Other
energy aspects, such as the influence of heat fluxes in urban street canyons have not yet
been considered. Further research on influence and interactions of heat fluxes at different
urban hydrotopes (e.g., buildings, pavements, streets, standalone vegetation) must be
conducted. Model approaches such as [90] should be taken into account.

SM2 introduces process-oriented modeling of the soil-plant-atmosphere system and can
address important interactions, depending on the vegetation. The results indicate that ET
quantity as well as the dynamics are modeled with a good performance (Sections 3.2 and 3.3)
which leads to good applicability of the model for vegetation in general. These finding sup-
port those of [73], who used SWMM-UrbanEVA for long-term modeling of an agricultural
and urban river catchment.

Within the current SWMM version missing ET is compensated by increasing the
soil storage volume to a multiple (Table 7) and neglecting the process dynamics. The
assumption is also confirmed for BGI (Figure 11) since unacceptable volume errors can be
observed when using current SWMM without modifying soil storage characteristics. Using
SWMM-UrbanEVA, changes in vegetation and ET are regulated by varying available water
capacity as well, but to a smaller extent. In contrast to current SWMM, the goodness-of-fit
proves that good adaption to timeseries dynamics is kept. Therefore, the regulation could
be associated with increased root water depth at high vegetation and indicates that it might
be useful to parameterize the soil layer depending on the soil volume that can be reached
by plants. Further research is needed on this topic. On top of that, given the scattering of
KC at higher variation of soil characteristics (Table 8), the need for deeper investigation of
parameter interactions is highlighted.

The sensitivity analysis (Section 3.2.1) indicates that the crop factor KC and the soil
characteristics (So_Depth, WP, FC, Por and c_sl) are most influential on total ET. Hence, they
must be chosen carefully The LAI does not have an influence on total ET but is essential for
modeling ET components and interacting processes. Therefore, SWMM-UrbanEVA’s newly
added variables SL and aWCthreshold can be fixed to SL = 0.29 and aWCthreshold = 0.6.

When determining KC, just like KS it must be derived with great precision. It is
recommended to calculate it vegetation specific using the approach of [51]. If KC is taken
from literature it is very important ensure that the given KC-values are investigated for
potential (not actual) ET under reference conditions (well-watered, optimal environmental
conditions).

The calibration of KC for vegetation types “grassland” and “coniferous” (Table 7) met
the expectation according to exemplary calculations (Table S3), which again confirms good
applicability of SM2 to vegetation in general. In contrast, calibrated KC for green roof “Leo”
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exceeded the expectations (Section 3.3). It indicates that the processes within the small 3m2

test bed cannot be completely modeled by SWMM. This is due to the weakness in modeling
detention and exfiltration processes and compensation is found within KC. The deficit in
modeling short-term process dynamics of BGI would fit the findings of [28,89]. It implies
that for a good parameterization of vegetated devices such as BGI further investigations
are necessary to understand the physical properties (e.g., detention, storage, infiltration,
percolation) more precisely and to differentiate them from the processes relevant for ET.
Moreover, since this study only analyzes green roofs, a wider range of BGI should also
be considered. Additionally, the influence of urban energy balance on BGI should not be
neglected and must be investigated separately.

The LAI allows process-oriented ET modeling by determining the energetic decoupling
of plant-bound from soil-bound evaporation fluxes. The results (Sections 3.2.1 and 3.2.3)
indicate that the model behaviour is realistic so that the interactions within the soil-plant-
atmosphere system can be mapped in a satisfactory manner. Due to a lack of measurement
data, only qualitative evaluations on component modeling were possible. Hence, it should
be mentioned that further validation is needed on ET fluxes and consequently also on the
parameterization of the LAI. Such research should also lead to deeper understanding of
resulting process dynamics within the LID that significantly influences water balances.

The good model performances for the calibrated models (Sections 3.2.2 and 3.3) prove
good model applicability for urban planning purposes. However, observing poor model
performances for some calibration periods (Figure 6), highlights that the model does not
fit to all process dynamics. Therefore, the calibration must be configured very careful,
depending on later use and the aim of the model. Analyzing long-term balances, the
calibration period should fit this. Timesteps could be enlarged, volume errors are very
important. In contrast, a calibration for short-term dynamics should focus on single events
and detailed process dynamics.

Despite some needs for further research, to sum up, all these findings lead to the
following statements for future use of the model:

1. SWMM-UrbanEVA models ET with good performance. By introducing process-
oriented ET-modeling, long-term water balances can be improved significantly in
contrast to current SWMM. Being fully integrated into SWMM, the model enables
good applicability for urban planning purposes.

2. SM1 allows the integration of local variability of shading effects on both, pervious
and impervious catchments which has not been possible before within urban rainfall
runoff models. It only addresses one aspect of urban energy balance. The submodule’s
performance depends on the quality of KS-values.

3. SM2 is well applicable for vegetation in general. When modeling BGI and urban
heat infected vegetation, SWMM-UrbanEVA still implies distinct improvements, but
shows needs for further research.

4. For model parameterization the shading factor KS and the crop factor KC must be
considered as most influential variables. Further sensitive model inputs are the soil
characteristics. The LAI controls ET flux interactions.

5. A proper model calibration is essential for good model performance. The calibra-
tion’s set up should be chosen carefully according to later model use (e.g., period,
goodness-of-fit, timestep).

5. Conclusions

The model SWMM-UrbanEVA has been developed to (i) consider the reduction in ET
due to shading effects, (ii) allow to model ET for different vegetation structures and (iii)
address the processes within the soil-plant-atmosphere system more precisely.

The process-oriented ET modeling approach of SWMM-UrbanEVA was found to
provide a significant advantage when reducing volume errors in long-term water balances.
Meanwhile, short-term process dynamics (runoff, detention, percolation) could be main-
tained. The significant differences between the results of SWMM-UrbanEVA and those of
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current SWMM highlight the importance of such issues for precise ET modeling within
urban runoff models.

Good model performance was proven for water balance modeling of vegetation in
general. Modeling of BGI was analyzed exemplarily for green roofs. The results show a
distinct improvement compared to current SWMM. However, more precise understanding
of physical properties as well as their impact on and differentiation from evaporation
relevant processed is needed. Additionally, investigating impacts of urban energy balance
could be of interest. Besides current measurements of climate data (precipitation, radiation,
temperature, humidity, and wind speed) and exfiltration as well as soil moisture, this
would require catchment-specific data on urban heat fluxes and evapotranspiration fluxes
by direct measurements. Moreover, urban climate modeling could support more detailed
understanding of process dynamics and interactions.

Further perspectives for improvements and research are (i) parameterization of SM1
regarding data quality and uncertainty of KS, (ii) the integration of a fourth KS value
(KS,autumn), (iii) parameterization of SM2 regarding KC, LAI and soil characteristics, also
addressing parameter interactions, (iv) further model validation for additional vegetation
types and BGI and (v) investigations on process dynamics and parameterization of ET
fluxes.

To conclude, being fully integrated within the commonly used urban runoff model
SWMM (US EPA), the presented model allows simple but accurate application. Its practical
applicability as well as its significant improvement when compared to current SWMM,
demonstrate the great potential of SWMM-UrbanEVA for investigating the hydrological
effects of BGI on both, the field and the catchment scale. Combined with the prospects of a
deeper understanding of cooling effects depending on ET, this could also link to further
opportunities in conceptualizing climate-friendly allocation of BGI within the urban street
canyons.

Supplementary Materials: SWMM-UrbanEVA is available online at https://git.fh-muenster.de/bh6
42456/swmm-urbaneva. The following additional materials are available online at xxx: Table S1:
Exemplary growth factors gf (-) for different species; Figure S2: Change of the SCF as a function
of the LAI; Table S3: Exemplary KC values for different types of BGI and the parameters used for
calculation; Figure S4: Mean monthly totals for precipitation (top) and ET0 (bottom) of the locations
under consideration.
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