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Abstract: Precipitation is a key variable in the hydrological cycle and essential input data in rainfall-
runoff modeling. Rain gauge data are considered as one of the best data sources of precipitation but
before further use, the data must be spatially interpolated. The process of interpolation is particularly
challenging over mountainous areas due to complex orography and a usually sparse network of
rain gauges. This paper investigates two deterministic interpolation methods (inverse distance
weighting (IDW), and first-degree polynomial) and their impact on the outputs of semi-distributed
rainfall-runoff modeling in a mountainous catchment. The performed analysis considers the aspect of
interpolation grid size, which is often neglected in other than fully-distributed modeling. The impact
of the inverse distance power (IDP) value in the IDW interpolation was also analyzed. It has been
found that the best simulation results were obtained using a grid size smaller or equal to 750 m and
the first-degree polynomial as an interpolation method. The results indicate that the IDP value in the
IDW method has more impact on the simulation results than the grid size. Evaluation of the results
was done using the Kling-Gupta efficiency (KGE), which is considered to be an alternative to the
Nash-Sutcliffe efficiency (NSE). It was found that KGE generally tends to provide higher and less
varied values than NSE which makes it less useful for the evaluation of the results.

Keywords: grid resolution; HEC-HMS; inverse distance weighting; polynomial interpolation; precip-
itation interpolation

1. Introduction

Precipitation is one of the major driving forces in the hydrological cycle that affects
hydrological processes [1,2]. Nowadays, precipitation data are mainly acquired from rain
gauges, weather radars, and satellites, while the first two are considered as the best data
sources for catchment modeling [3]. Even though there are measurement alternatives
to rain gauges, the data acquired at in-situ measurements are still frequently used in
many hydrological applications as they provide reliable and measured (not estimated)
point information on the precipitation. However, before further use, the rain gauge data
must be spatially interpolated, which might significantly affect the accuracy of the spatial
precipitation field [4]. The process of obtaining a reliable interpolated precipitation field is
particularly challenging in mountainous environments. The spatial patterns of precipitation
over these areas are mainly affected by the topography of the area and wind direction,
which significantly affects runoff modeling in the catchment [5]. Moreover, mountainous
areas often face the problem of sparse rain gauge networks, which limits the accessibility
of the data and affects the interpolation accuracy [6].

The amount of precipitation measured by the rain gauge provides local information on
the precipitation, not its areal variability [7]. In hydrological applications, it is necessary to
acquire the areal height of precipitation. Therefore, the rain gauge data is subject to spatial
interpolation to reproduce its spatial variability. One of the main problems with spatial
interpolation of rain gauge data is the small number of measurement points [8], which is
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often insufficient to correctly reproduce areal precipitation, although the rainfall values
measured at a given point are correct [7]. An equal measurement of the precipitation height
is expected within a distance of a few meters from each other, while at several hundred
meters, this convergence is significantly reduced [9].

Gridded datasets based on in-situ observations are mainly affected by station density
and interpolation methodology [10]. As for interpolation methodology, two aspects are
crucial: the choice of the method and the resolution of the interpolation grid. Spatial inter-
polation techniques can be divided into deterministic and probabilistic methods. The first
ones are based on deterministic interpolation algorithms, as a result of which a continu-
ous or discontinuous precipitation field is created. The latter are based on algorithms in
which it is assumed that the point information from measurement has a deterministic and
a spatially correlated random component. Among the deterministic methods, the most
commonly used techniques include inverse distance weighting (IDW), polynomial inter-
polation, and Thiessen polygons [2,11,12]. As for the geostatistical methods that are the
most used, the techniques are ordinary kriging and co-kriging [13]. When the amount of
available rain gauges is very limited, the geostatistical methods will not be effective [14].

In many previous studies (e.g., [6,10,15,16]) assessments of interpolation methods were
done in terms of statistical analysis like cross-validation or minimization of mean absolute
error (MAE) or root mean square error (RMSE). However, when it comes to hydrological
modeling, these statistical aspects of precipitation data are important, but their reliable
values do not guarantee accurate discharge simulations using the rainfall-runoff model.

It’s frequently assumed that fully-distributed models are the best for investigation
of the spatial variables (like precipitation) as they allow to provide input data in the grid
cells and do not average values over larger areas like lumped and semi-distributed models
do [2]. However, the semi-distributed hydrological models are also sensitive to the spa-
tial distribution of variables. That was the subject of an investigation by Cheng et al. [1],
where the authors analyzed the impact of three interpolation methods (Thiessen polygons,
IDW, and co-kriging) and applied it to a semi-distributed model. Nonetheless, they omitted
the aspects of grid resolution impact on interpolation outputs, as well as the impact of
inverse distance power (IDP) value for IDW method. In another paper by Chen et al. [4],
three interpolation methods were also analyzed (regression-based scheme, IDW, and mul-
tiple linear method) and applied to a semi-distributed model. However, in their study,
the authors set up the grid resolution to 500× 500 m without any investigation. The impact
of the IDP value in the IDW method for the purpose of hydrological modeling is also not
sufficiently analyzed. There are some papers (e.g., [17–19]) that investigated the effect of
the IDP value on precipitation of the interpolation outputs, but the data were not applied to
the hydrological model. Most frequently, the IDP value is set as equal to two, which seems
to be a fine potency for hydrogeology applications [20,21]. As for hydrological applications,
the IDP is also often assumed as two, but there is no strong evidence that it is the most
optimal value.

For hydrological modeling, there is a great need to interpolate precipitation data even
when the number of measuring stations is too small to prevent the use of any geostatistical
method. Taking into account that the grid size aspects are mostly neglected when interpo-
lating precipitation, the main objective of this paper is to investigate both the impact of
grid resolution and deterministic interpolation technique and evaluate them via rainfall-
runoff simulations using the Hydrologic Engineering Center-Hydrologic Modelling System
(HEC-HMS) semi-distributed hydrological model over a sparsely gauged mountainous
catchment. Also, for the inverse distance weighting method, the impact of the IDP value
on the hydrological simulation results was investigated. The simulations were performed
using two interpolation methods (inverse distance weighting and first-degree polynomial
interpolation) and 6 grid sizes (ranging from 250 m to 5000 m). The impact of IDP value in
IDW interpolation and its impact on discharge simulation was also subject to investigation.
As the study area, a sparsely rain-gauged mountainous catchment in southern Poland was
chosen which frequently faces flooding events. The simulation results were evaluated using
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Nash-Sutcliffe efficiency (NSE), Kling-Gupta efficiency (KGE), and percent bias metrics.
The KGE criterion is often considered as an alternative to NSE, and this paper tries to judge
which of these two allows for better evaluation of the modeling results.

2. Materials and Methods
2.1. Description of Study Area

The Skawa catchment is located in southern Poland and borders with the Czech
Republic. Its area is equal to 1600 km2 and is entirely located in the Outer Carpathians.
The catchment can be divided into two parts, upper- and lower-one [22], where the upper
part is more exposed to the risk of flooding. Within the river basin, the elevation varies from
435 to 1038 m a.s.l. To the southwest of the catchment is the Babia Góra massif—the highest
peak of the Polish part of the Carpathian Mountains. The highest rainfall is observed in the
Babia Góra region and the lowest in the lower part of the catchment. Most of the catchment
area is dominated by a warm temperate (up to approx. 700 m a.s.l.) or a cold temperate
cold (at altitudes 700–1100 m a.s.l.). There are four rain gauges in the catchment area,
of which one is directly located in the investigated study area. The rain gauges are not well
distributed over the entire study area, which makes the areal estimation of precipitation
based on them more challenging.

In this study, all analyses were limited to the upper part of the Skawa River (area of
240.4 km2), which is particularly at risk of flooding [23]. This part of the catchment consists
of 6 sub-catchments. The upper Skawa catchment area is characterized by a dense water
network with dominant short streams with large slopes, resulting from the mountainous
nature of the Skawa river [22]. The area of the catchment is dominated by low permeable
soils, which is one of the most major factors contributing to the formation of flash floods
caused by excessive rainfall [24,25]. Discharge data for the catchment are available at the
gauging station in Osielec, which is located downstream.

Figure 1 presents major characteristics of the area in terms of elevation, locations of
rain gauges, and gauging station, as well as division into sub-catchments.
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The Upper Skawa catchment can be classified as a relatively small mountainous
catchment with a quick time of response. The average of the time to peak of the catchment
is around 2.5 h [26].

2.2. Data Collection and Processing

The precipitation data measured with rain gauges were obtained from the telemetric
rain gauge network which is operated by the national hydrological and meteorological
service—the Institute of Meteorology and Water Management National Research Institute.
Precipitation on the rain gauges was measured in 10-min time-step intervals and for the
purpose of this work was aggregated to 1-h intervals. All of the measurements undergo
quality control by verifying their range according to climatological values, as well as spatio-
temporal consistency [27]. There were four rain gauges located on-site or close to the study
area (Table 1).

Table 1. Characteristics of the rainfall stations used in the study.

Rain Gauge Station Station Code Acronym Longitude Latitude Altitude [m a.s.l]

Maków Podhalański 249190190 RG-1 19◦40′36.59”49◦ 49◦43′51.29” 367

Markowe Szczawiny 249190390 RG-2 19◦30′58.55” 49◦35′17.05” 1184

Spytkowice Górne 249190460 RG-3 19◦50′0.57” 49◦34′38.78” 525

Zawoja 249190350 RG-4 19◦34′1” 49◦40′1” 604

The discharge data, at hourly time-step, came from the gauging station in Osielec
(Figure 1) and were also provided by the Institute of Meteorology and Water Management
National Research Institute.

Both precipitation and discharge data were obtained for the years between 2014 and
2019. During this period, there were several flash flood events resulting from excessive
rainfall and they were subject to further investigation. Four events from 2014–2016 were
selected for calibration of the hydrological model and another four events from 2017–2019
were chosen for its validation. That was the maximum of available precipitation events
over the analyzed period.

Slope information, which was required in the hydrological model, was acquired from
the Digital Elevation Model (DEM) of 100 m resolution that was provided by the Head
Office of Geodesy and Cartography in Poland. As for the land-use data, the CORINE
Land Cover Project CLC2012 v.18.5.1 was used. Complex information on the land-cover
delimitation over the study area can be found in the paper by Gilewski and Nawalany [28].

All the data processing and statistical analysis were performed using R software.

2.3. Hydrological Modeling and Assesment
2.3.1. Selection of the Model

The increasing computer power enables the creation of more and more complex
hydrological models considering a range of processes related to the dynamics of water
movement and its accumulation in the catchment area. Fully distributed models allow to
incorporate information on the spatial variability of input data, such as, e.g., rainfall or
land-use. They usually require the availability of input data characterized by a high degree
of quality (reliability), which, given the high resolution of the described variables and
hydrological parameters, is a serious scientific and technical challenge. The computational
time and calibration process of models with distributed parameters are longer and more
complicated than for lumped or semi-distributed models [29].

In parallel to the development of models of high complexity, there are many works and
research on the simpler models (lumped or semi-distributed) [30,31]. Simplified models are
often used for preliminary analyses since they do not require high computing power and
are characterized by a significantly shorter simulation time. One of the frequently discussed
topics in the literature is an attempt to answer the question: are models with distributed
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parameters better than simplified models since they allow for more detailed modeling of
hydrological processes in the catchment area? Answers that can be found in the literature
(e.g., [32–34]) indicate that simulations performed with semi- and fully-distributed models
give similar results.

For the purpose of this study, hydrological rainfall-runoff modeling was performed us-
ing the HEC-HMS (Hydrologic Engineering Center-Hydrologic Modelling System) version
4.2.1. This is a freeware software developed by the US Army Corps of Engineers. It enables
modelling continuous and even-based outflows. Depending on the adopted parameters,
the model can be either lumped or semi-distributed. Precipitation and discharge data were
acquired into the hydrological model via HEC-DSSVue version 2.0 software.

The main components of the HEC-HMS software are the catchment model and meteo-
rological model. Table 2 presents the parameters and methods used for modeling in this
paper. They were selected in such a way as to be adequate for the event-based simulations
in the model with semi-distributed parameters.

Table 2. Methods applied in the Hydrologic Engineering Center-Hydrologic Modelling System (HEC-HMS) hydrological
model.

Catchment Model Meteorological Model

Parameter Method Parameter Method

Rainfall losses SCS Curve Number Precipitation

Specified hyetographs for each of
the data sources of precipitation

Transformation of
effective precipitation Snyder Unit Hydrograph

Baseflow Recession baseflow

Routing Muskingum-Cunge

As for the meteorological component, in total, 14 different data sources of precipitation
were used:

• precipitation fields interpolated using the IDW interpolation method (IDP = 2.0) for
6 different grid sizes (250, 500, 750, 1000, 2500, and 5000 m);

• precipitation fields interpolated using the IDW interpolation method and different
IDP values (0.5, 2.0 and 5.0) for 2 grid sizes (250 and 2500 m);

• precipitation fields interpolated using the first-degree polynomial interpolation method
for 6 different grid sizes (250, 500, 750, 1000, 2500, and 5000 m).

2.3.2. Model Assessment

Assessments of the calibration and validation results from the hydrological model
were conducted separately for each of the meteorological models, as the spatial distribution
of precipitation has a significant impact on the estimation of model parameters. During the
calibration process, the parameters for the rainfall loss method (initial abstraction and
curve number) and transformation of effective precipitation (standard lag and peaking
coefficient) were calibrated. The simulated model flow, at hourly time-steps, was compared
to the observed flow at the gauging station Osielec. As an objective function during the
calibration process, the peak-weighted RMSE metric was applied.

The assessment criteria were chosen based on the literature to perform a multi-aspect
analysis of the model simulation results. It must be noticed that a comprehensive analysis
of the results includes not only evaluation of the performance metrics, but also graphical
evaluation of the results. For the purpose of this study, the following metrics were used to
assess the performance of the modeled discharge in relation to the observed flow:

• Nash-Sutcliffe efficiency (NSE)—frequently used metric to determine the relative
magnitude of the residual variance in relation to the measured data variance [35].
The NSE values range from −1 to 1. The closer to 1, the more accurate the model is.
If NSE value = 0, it means that the model predictions are as accurate as the mean value
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from the observed data. Values < 0 indicate that the mean value from observed data is
a better predictor than the model results. The NSE is defined as:

NSE = 1− ∑n
i=1(Qobs −Qsim)

2

∑n
i=1
(
Qobs −Qobs

)2 (1)

where Qsim and Qobs are consecutively simulated and observed river discharge, Qobs
represents the mean of observed values, and n stands for the number of observations.

• Kling-Gupta efficiency (KGE)—developed by Gupta et al. [36] is one of the alternatives
to the NSE criterion [37], which is based on its decomposition (correlation, variability,
and mean bias). Similarly, like NSE, the KGE value equal to 1 indicates a perfect
agreement between model results and observation data, and values <0 means that
the mean of observation data serves as a better predictor than the model outputs.
The KGE is expressed as follows:

KGE = 1−
√
(r− 1)2 + (α− 1)2 + (β− 1)2 (2)

where r is the linear correlation between the observed and simulated river flow, α is a
measure of the flow variability error, and β represents a bias.

• Percent bias (PBIAS)—this metric is used to assess the model performance regarding
the tendency of the simulated flow to be over- or underestimated [26]. If the value of
PBIAS is greater than 20%, then it is considered to be unacceptable [38]. The formula
for PBIAS is expressed as follows:

PBIAS =
∑n

i=1(Qsim −Qobs)

∑n
i=1 Qobs

(3)

where Qsim and Qobs are consecutively simulated and observed river discharge.

2.4. Spatial Interpolation of Precipitation
2.4.1. Interpolation Grid Resolutions

The spatial resolution of the precipitation field is one of the most important sources
of uncertainty in the gridded data [10]. However, when it comes to semi-distributed
hydrological modeling, this aspect is often neglected. Most of the time, only the interpo-
lation method is investigated, but grid resolution is treated as fixed, like in the paper by
Tobin et al. [39] where the authors were using 500 m resolution grid and investigated three
interpolation methods (Inverse Distance Weighting, Ordinary Kriging and Kriging with
External Drift). In this paper, six different grid sizes were analyzed (Figure 2).

Considering the complex topography of the study area, it was decided that the initial
resolution of the grid size would be set to 250 m. Such resolution is fair enough to represent
the spatial variability of precipitation. Then, the grid sizes were gradually increased up to
5000 m, which, after investigation, seems to be the lowest acceptable resolution that could
still be enough to represent spatial variability. These grids were used to create precipitation
fields using the inverse distance weighting and polynomial interpolation methods.

2.4.2. Inverse Distance Weighting

The Inverse Distance Weighting (IDW) interpolation method was developed by Shep-
ard in 1968 [40]. This method has been used for decades, and despite the passage of time
and the development of more sophisticated interpolation methods, it is still widely used
for spatial interpolation of point precipitation data [1,41]. The main advantage of this
method is its simplicity in implementation and satisfactory interpolation results confirmed
over the years in various works. The general concept behind this method is to attribute
the value over an unsampled location as a weighted average of the known values located
around [42]. In the case of the IDW method, the functions of the inverse distance are used
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where the weights are defined by the inverse of the distance and normalized, so their sum
equals one [12].
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The amount of precipitation at a location not covered by the measurement (P̂0) is
determined according to the formula [4,21]:

P̂0 =
∑n

i
Pi

Dp
0i

∑n
i

1
Dp

oi

(4)

where Pi—rainfall amount measured at the rain gauge, D0i—distance between the location
of the estimated part of the precipitation field and the rain gauge i, n—number of rain
gauges used to estimate the precipitation amount at the location 0, p—power exponent
responsible for assigning significance weights to individual rain gauges.

The outputs of IDW interpolation depend on two factors: density of the rain gauges
network, which impacts the distance between the rain gauges and the estimated part of the
precipitation field, and also the assumed value of the power parameter (p). To minimize
the errors related to the distance problem, the density of the rain gauge network should
be as high as possible. However, most researchers acquire the data from already existing
measuring networks and have no real impact on the station’s density. The IDW method
assumes that the mapped variable decreases in influence with increasing distance from
the sampling locations. The influence depends on the power parameter (p), which is
always a positive, real number, and usually assumed as equal to 2 [43] without further
investigation. The general indication for mountainous areas is to assume the p-value as
either 1, 2, or 3 [44]. After investigation of different values of the p parameter for the study
area for further analysis, three values were chosen 0.5, 2, and 5.

The mentioned-above values represent a wide enough range to verify its impact on
the precipitation estimates. From the conducted analysis, it turned out that the values
greater than 5 seem to over-generalize the interpolation results when using them over an
area of a small catchment.
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Some studies show that by including the elevation weighting in the IDW method, bet-
ter results can be obtained in the regions where the topographic impact on the precipitation
is significant [45]. On the other hand, there are studies that indicate that the appropriate
choice of the power parameter value is more important than including the elevation as
explanatory data [11]. Therefore, when applying the rainfall data into a semi-distributed
model, it was decided not to include this parameter, as it would be more reliable to investi-
gate it in a fully-distributed model that takes into account spatially distributed information
on the elevation.

2.4.3. Polynomial Interpolation

Spatial interpolation with the use of polynomial interpolation consists of matching
the equation coefficients describing the spatial variability of precipitation so that the
approximation error is as low as possible [46]. The most commonly used are first- and
second-degree polynomials expressed successively as [14,46]:

P̂0 = a1·X + a2·Y + a3 (5)

P̂0 = a1·X + a2·Y + a3·X2 + a4·Y2 + a5·X·Y + a6 (6)

where: P̂0—location not covered by the measurement, X and Y—geographical coordinates
of locations with unknown precipitation height, a1–a6—regression function coefficients.

The least-square method is commonly used to determine the regression coefficients
found in Equations (5) and (6). Polynomial interpolation allows accurate estimation of
values at nodal points, whereas between them it can lead to the generation of values that
have no physical justification [46]. Examples of the use of precipitation fields created by
the means of polynomial interpolation can be found in numerous works [47,48]. When the
number of rain gauge location is small, like in the case of the study area, the second-
degree polynomial interpolation leads to large errors and unrealistic results [14]. Therefore,
the first-degree interpolation was used in this work.

3. Results and Discussion
3.1. Impact of the Grid Resolution on the IDW Method

Figure 3 presents the comparison of observed and simulated discharge for the calibra-
tion events from 2014–2016. All of the simulations were performed at hourly time steps.
The results of the evaluation criteria are shown in Table 3.

Figure 4 shows the comparison of observed and simulated discharge for the validation
events from 2017–2019. All of the simulations were performed at hourly time steps.
The results of the evaluation criteria are presented in Table 4.

Considering both the calibration and validation results, it can be noticed that in most
of the cases the least satisfactory results were obtained when using 750 m and 1000 m
interpolation grid. Results for the grids 250 m and 500 m are similar. Very good results
were observed when using 2500 m resolution grid, and in most of the cases, they are much
better than the grid of lower resolution—5000 m. Taking into consideration the following
results, only the grids of 250 m and 2500 m were chosen for further investigation regarding
the impact of IDP value on interpolation results.

Figure A1, presented in Appendix A, provides exemplary visualizations of precipita-
tion fields applied in the shown above hydrological modeling.
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Figure 3. Comparison of observed and simulated hydrographs using different grid sizes and inverse distance weighting
(IDW) (inverse distance power (IDP) = 2.0) as an interpolation method for the calibration events (a) Event 1: May 2014,
(b) Event 2: May 2015, (c) Event 3: July 2016, (d) Event 4: October 2016.

Table 3. The results of the evaluation criteria for the calibration events using different grids sizes and
IDW (IDP = 2.0) as an interpolation method.

Event
Nash-Sutcliffe Efficiency (NSE) Kling-Gupta Efficiency (KGE)

Grid Resolution [m] Grid Resolution [m]

250 500 750 1000 2500 5000 250 500 750 1000 2500 5000

Event 1 0.61 0.56 0.58 0.56 0.60 0.56 0.79 0.64 0.73 0.74 0.80 0.76
Event 2 0.65 0.65 0.64 0.65 0.60 0.59 0.69 0.64 0.62 0.69 0.60 0.67
Event 3 0.52 0.50 0.47 0.47 0.57 0.59 0.55 0.54 0.53 0.53 0.56 0.61
Event 4 0.75 0.80 0.73 0.72 0.77 0.8 0.85 0.88 0.86 0.85 0.88 0.89

Percent bias (PBIAS)

Grid resolution [m]

Event 1 2.6 −14.8 −5 −3.5 2.6 1.3
Event 2 3.3 12.4 5.8 1.5 14.6 12.2
Event 3 33.4 26 23.2 31.9 27.5 28.3
Event 4 −3.9 −3.3 −3.2 −5.9 −2.7 −4.2
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Table 4. The results of the evaluation criteria for the validation events using different grids sizes and
IDW (IDP = 2.0) as an interpolation method.

Event
NSE KGE

Grid Resolution [m] Grid Resolution [m]

250 500 750 1000 2500 5000 250 500 750 1000 2500 5000

Event 1 0.56 0.6 0.65 0.72 0.67 0.46 0.67 0.67 0.67 0.73 0.7 0.62
Event 2 0.64 0.65 0.66 0.64 0.64 0.65 0.8 0.81 0.81 0.8 0.8 0.81
Event 3a 0.84 0.72 0.69 0.78 0.79 0.83 0.87 0.77 0.77 0.82 0.79 0.82
Event 3b 0.93 0.93 0.93 0.93 0.93 0.92 0.95 0.95 0.95 0.95 0.95 0.95

PBIAS

Grid Resolution [m]

Event 1 −30.4 −32.3 −32.6 −25.6 −29.7 −35.2
Event 2 6.5 5.9 6.3 6 10.6 8.8
Event 3a 4.2 0.5 −0.2 −2 0.2 0.4
Event 3b 1 −0.6 0.1 0.1 1.6 −1.7
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3.2. Impact of the IDP Value on the IDW Method

The next step, after analyzing the impact of grid size on the interpolation outputs,
was an investigation of the impact of the value of IDP on the IDW interpolation results.
As mentioned in Section 2.4.2, three values of the p parameter were chosen for the analysis
0.5, 2, and 5. All simulations were performed at hourly time-steps. Figure 5 presents the
comparison of observed and simulated discharge for the calibration events from 2014–2016.
All of the simulations were performed at hourly time steps. The results of evaluation
criteria for the calibration events are shown in Table 5.

Figure 6 shows the comparison of observed and simulated discharge for the validation
events from 2017–2019. All of the simulations were performed at hourly time steps.
The results of the evaluation criteria are presented in Table 6.

Analyzing the calibration results we can observe that the best results were obtained
for the highest value of IDP (equal to 5.0) and the worst for the smallest one (equal to 0.5).
The results for traditionally applied IDP value, equal to 2.0, are somewhere in between the
other two. As for the validation, the best results were obtained when using precipitation
field interpolated with IDP equal to 0.5, but it must be highlighted that the differences in
comparison with the other two investigated IDP values are not significant. In two cases
out of two, different values of IDP than 2.0 generated better results.

Figure A2, presented in Appendix A, provides exemplary visualizations of precipita-
tion fields applied in the shown above hydrological modeling.
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July 2016, (d) Event 4: October 2016.
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Table 5. The results of the evaluation criteria for the calibration events using two grid sizes (250 m
and 2500 m) and three IDW (IDP = 0.5, 2.0, 5.0) as an interpolation method.

Event
NSE KGE

Grid Resolution [m] Grid Resolution [m]

250 2500 250 2500

IDP 0.5 2.0 5.0 0.5 2.0 5.0 0.5 2.0 5.0 0.5 2.0 5.0

Event 1 0.52 0.61 0.65 0.54 0.60 0.63 0.56 0.79 0.81 0.60 0.80 0.80
Event 2 0.64 0.65 0.63 0.55 0.60 0.60 0.66 0.69 0.70 0.61 0.60 0.65
Event 3 0.38 0.52 0.53 0.38 0.57 0.54 0.30 0.55 0.58 0.37 0.56 0.57
Event 4 0.69 0.75 0.79 0.72 0.77 0.79 0.84 0.85 0.89 0.82 0.88 0.89

Event
PBIAS

Grid Resolution [m]

250 250

IDP 0.5 0.5 0.5 0.5 0.5 0.5

Event 1 −23.0 −23.0 −23.0 −23.0 −23.0 −23.0
Event 2 1.2 1.2 1.2 1.2 1.2 1.2
Event 3 2.0 2.0 2.0 2.0 2.0 2.0

Event 4 −
6.9

−
6.9

−
6.9

−
6.9

−
6.9

−
6.9
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Figure 6. Comparison of observed and simulated hydrographs using two grid sizes (250 m and 2500 m) and three IDW
(IDP = 0.5, 2.0, 5.0) as an interpolation method for the validation events (a) Event 1: April 2017, (b) Event 2: July 2018,
(c) Event 3a: May 2019, (d) Event 3b: May 2019.
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Table 6. The results of the evaluation criteria for the validation events using two grid sizes (250 m
and 2500 m) and three IDW (IDP = 0.5, 2.0, 5.0) as an interpolation method.

Event
NSE KGE

Grid Resolution [m] Grid Resolution [m]

250 2500 250 2500

IDP 0.5 2.0 5.0 0.5 2.0 5.0 0.5 2.0 5.0 0.5 2.0 5.0

Event 1 0.75 0.56 0.62 0.60 0.67 0.63 0.73 0.67 0.65 0.66 0.70 0.69
Event 2 0.68 0.64 0.62 0.68 0.64 0.61 0.83 0.80 0.79 0.83 0.80 0.77
Event 3a 0.81 0.84 0.86 0.83 0.79 0.85 0.77 0.87 0.84 0.81 0.79 0.84
Event 3b 0.92 0.93 0.90 0.92 0.93 0.93 0.96 0.95 0.92 0.96 0.95 0.96

Event
PBIAS

Grid Resolution [m]

250 250

IDP 0.5 0.5 0.5 0.5 0.5 0.5

Event 1 −26.2 −26.2 −26.2 −26.2 −26.2 −26.2
Event 2 3.7 3.7 3.7 3.7 3.7 3.7
Event 3a −2.1 −2.1 −2.1 −2.1 −2.1 −2.1
Event 3b −1.1 −1.1 −1.1 −1.1 −1.1 −1.1

3.3. Impact of the Grid Resolution on the Polynomial Interpolation

As argued in Section 2.4.3, the first-degree polynomial interpolation was performed to
produce precipitation fields. Similarly, like for the IDW method, the impact of grid resolu-
tion in the interpolation results was investigated. All simulations were performed at hourly
time-steps. Figure 7 presents the comparison of observed and simulated discharge for the
calibration events from 2014–2016. The results of evaluation criteria for the calibration
events are shown in Table 7.

Figure 8 Reference source not found. shows the comparison of observed and simulated
discharge for the validation events from 2017–2019. All of the simulations were performed
at hourly time steps. The results of evaluation criteria are presented in Table 8.

The results for the calibration phase are similar between the different interpolation
grids. However, it can be noticed that higher grid resolutions (500 m and 750 m) slightly
outperform the lower ones (1000 m, 2500 m, and 5000 m). The same pattern can be found
for the validation of the hydrological model. For this phase in most of the cases, the best
results were obtained when the grid resolution ranged from 250 m to 750 m.

Figure A3, presented in Appendix A, provides exemplary visualizations of precipita-
tion fields applied in the shown above hydrological modeling.
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Figure 7. Comparison of observed and simulated hydrographs using different grid sizes and first-degree polynomial as
an interpolation method for the calibration events (a) Event 1: May 2014, (b) Event 2: May 2015, (c) Event 3: July 2016,
(d) Event 4: October 2016.

Table 7. The results of the evaluation criteria for the validation events using different grids sizes and
first-degree polynomial as an interpolation method.

Event
NSE KGE

Grid Resolution [m] Grid Resolution [m]

250 500 750 1000 2500 5000 250 500 750 1000 2500 5000

Event 1 0.47 0.52 0.48 0.50 0.48 0.48 0.72 0.73 0.72 0.74 0.72 0.72
Event 2 0.74 0.75 0.75 0.71 0.63 0.63 0.70 0.81 0.75 0.75 0.73 0.73
Event 3 0.48 0.56 0.53 0.52 0.50 0.50 0.56 0.56 0.58 0.55 0.57 0.57
Event 4 0.78 0.78 0.73 0.78 0.75 0.75 0.88 0.89 0.85 0.87 0.87 0.87

Event
PBIAS

Grid Resolution [m]

Event 1 11.06 4.0 12.3 9.2 12.0 12.0
Event 2 −0.2 2.9 9.9 7.8 3.3 3.3
Event 3 21.7 20.3 29.0 23.1 29.2 29.2
Event 4 −6.3 −0.3 −8.7 −0.8 −3.4 −3.4
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Figure 8. Comparison of observed and simulated hydrographs using different grid sizes and first-degree polynomial as
an interpolation method for the validation events (a) Event 1: April 2017, (b) Event 2: July 2018, (c) Event 3a: May 2019,
(d) Event 3b: May 2019.

Table 8. The results of the evaluation criteria for the validation events using different grids sizes and
first-degree polynomial as an interpolation method.

Event
NSE KGE

Grid Resolution [m] Grid Resolution [m]

250 500 750 1000 2000 5000 250 500 750 1000 2500 5000

Event 1 0.61 0.54 0.68 0.52 0.57 0.57 0.67 0.66 0.70 0.64 0.65 0.65
Event 2 0.72 0.79 0.79 0.74 0.74 0.74 0.78 0.85 0.85 0.83 0.82 0.82
Event 3a 0.38 0.41 0.37 0.38 0.40 0.40 0.65 0.66 0.64 0.66 0.65 0.65
Event 3b 0.92 0.89 0.89 0.91 0.90 0.90 0.91 0.91 0.91 0.91 0.88 0.88

Event
PBIAS

Grid Resolution [m]

Event 1 −32.7 −32.9 −30.0 −34.4 −34.0 −34.0
Event 2 −18.3 −11.0 −11.6 −12.5 −14.4 −14.4
Event 3a 19.1 19.6 20.0 17.6 19.4 19.4
Event 3b 1.7 0.5 25.3 0.9 −2.8 −2.8
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4. Summary and Conclusions

This paper presents a comprehensive investigation of the impact of deterministic
interpolation methods of precipitation on rainfall-runoff modeling in a small mountainous
catchment characterized by a quick time of response. When the number of rainfall stations
is limited and too small to prevent the use of any geostatistical method, the deterministic
methods are the only option. However, spatial interpolation of precipitation over a sparsely
gauged mountainous catchment is particularly challenging. The performance of spatial
interpolation of precipitation obtained using the inverse distance weighting and first-degree
polynomial interpolation method was evaluated via the semi-distributed rainfall-runoff
model. Furthermore, the impact of the grid resolution during the interpolation process was
investigated for 6 grid sizes (ranging from 250 m to 5000 m). The impact of the IDP value
in the IDW interpolation was also analyzed.

When using a semi-distributed hydrological model, the aspect of the grid resolution
used for the preparation of precipitation data is often neglected. This study shows that
for different interpolation methods, the grid resolutions have a significant impact on the
outputs of hydrological modeling.

The following conclusions can be drawn from the analysis outcomes:

1. When analyzing Figures 3–8, it must be noticed that the curves for various sizes of the
grid and different IDP values for the IDW method are very correlated when compared
to the curve of the observed flow. Therefore, the choice of a different grid size (or IDP
for the IDW method) does not change much the picture with respect to the observed
discharge. However, when looking at the data more precisely with statistical analysis,
some differences can be detected.

2. The impact of the grid resolution is more visible for the IDW method than for the first-
degree polynomial interpolation. As for the IDW method, the maximum difference
for the NSE criterion is 0.26 for both, calibration, and validation phases. For the
first-degree polynomial method, the maximum differences for the NSE are 0.12 and
0.16, respectively. As the IDW method is frequently used in hydrological applications,
the appropriate choice of the interpolation grid is of particular importance.

3. Among the analyzed grid resolutions, the best results for the IDW method were
obtained for the grids of 250 m and 2500 m (average values of the NSE were 0.62
and 0.65 for the calibration and 0.74 and 0.76 for the validation respectively). For the
first-degree polynomial method, higher grid resolutions (smaller or equal to 750 m)
outperformed the lower ones (greater or equal to 1000 m). The mean value of the NSE
for the calibration phase for grids up to 750 m was 0.63 and 0.67 for validation. As for
the lower resolution grids, the results were 0.60 and 0.65 consecutively.

4. The applied value of the IDP in the IDW method has a significant impact on the
outputs of hydrological modeling. In most of the cases, more accurate results were
obtained using different values of IDP than traditionally applied value equal to 2.0.
Therefore, the choice of the appropriate IDP value when using a semi-distributed
hydrological model cannot be neglected and should be taken into account.

5. The IDP value in the IDW interpolation method has more impact on the simulation
results than the grid size. That can be clearly seen when comparing the results
presented in Table 6.

6. Within the analyzed deterministic interpolation methods, slightly better results were
obtained for the first-degree interpolation method than for the IDW interpolation con-
sidering the results of the evaluation criteria presented in Tables 3–8. Tobin et al. [39]
reported that the IDW method tends to significantly underestimate rainfall volume,
but this study shows that when using the right grid size and appropriate IDP value,
this method can also be effective. It should also be noted (Figure A3) that the first-
degree polynomial method can lead to significant underestimation of precipitation
over relatively large areas (horizontal), especially when using low-resolution grids.

7. For small mountainous catchments, the best data source on the precipitation field
would be rain gauge data interpolated using the first-degree interpolation method
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and grid size smaller or equal to 750 m. This method, unlike the IDW, is more
straightforward in application, and does not require subjective investigation of the
method’s parameters (the IDP value in the IDW interpolation method).

8. Kling-Gupta efficiency (KGE), which is considered as one of the alternatives to the
Nash-Sutcliffe efficiency (NSE), generally tends to provide higher and less varied
values, which makes it less useful for the evaluation of the results.

For future works, it will be interesting to investigate whether incorporating other
environmental variables or covariates into the precipitation modeling process will lead to
better simulation results when using a semi-distributed hydrological model. Apart from
that, it would be worth considering other factors during the interpolation process, such as
the density of meteorological stations or drainage area. Better simulation results might be
obtained when performing validation of the precipitation field before its application into
the hydrological model.
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Appendix A

The appendix contains visualizations of the precipitation fields obtained using the
investigated interpolation methods (inverse distance weighting, and first-degree polyno-
mial). The data used for the visualizations are the 1-h precipitation accumulation for 4 July
2014, 18:00. At that time, all of the rain gauges available close to the study area registered
measurement of precipitation greater than 0 mm. Figure A1 refers to Section 3.1, Figure A2
refers to Section 3.2, and Figure A3 refers to Section 3.3.
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