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Abstract: Large ensembles of climate models are increasingly available either as ensembles of
opportunity or perturbed physics ensembles, providing a wealth of additional data that is potentially
useful for improving adaptation strategies to climate change. In this work, we propose a framework
to evaluate the predictive capacity of 11 multi-model ensemble methods (MMEs), including random
forest (RF), to estimate reference evapotranspiration (ET0) using 10 AR5 models for the scenarios
RCP4.5 and RCP8.5. The study was carried out in the Segura Hydrographic Demarcation (SE of Spain),
a typical Mediterranean semiarid area. ET0 was estimated in the historical scenario (1970–2000) using
a spatially calibrated Hargreaves model. MMEs obtained better results than any individual model
for reproducing daily ET0. In validation, RF resulted more accurate than other MMEs (Kling–Gupta
efficiency (KGE) M = 0.903, SD = 0.034 for KGE and M = 3.17, SD = 2.97 for absolute percent bias).
A statistically significant positive trend was observed along the 21st century for RCP8.5, but this
trend stabilizes in the middle of the century for RCP4.5. The observed spatial pattern shows a larger
ET0 increase in headwaters and a smaller increase in the coast.

Keywords: random forest regression; reference evapotranspiration; multi-model ensembles; Climate
Change; fifth assessment report; random forest regression kriging; Kling–Gupta efficiency

1. Introduction

Concerns about anthropogenic Climate Change (CC) have increased in the last decades.
It has been studied by many researchers and institutions, such as the Intergovernmental
Panel on Climate Change (IPCC). Despite the uncertainties, the warming of the climate
system is unequivocal, and many of the changes observed in climate variables since the
1950s are unprecedented in recent centuries. Data on land and ocean surface temperatures
show an average warming of 0.85 ◦C over the period 1880–2012, with each of the last three
decades being successively warmer than any previous decade since 1850 [1]. The Fifth
IPCC Report stresses that temperature rising will continue throughout the 21st century at a
global scale together with a precipitation decrease in the mid-latitudes [1].

Climate projections depending on different scenarios have been generated to know
the foreseeable CC and its environmental impacts, and also to implement adaptation
measures. The coupled ocean–atmosphere general circulation models (AOGCM) are the
basic tool for making these projections. However, their low spatial resolution (>100 km)
prevents them from being used to study CC impact and adaptation at a regional scale.
To solve this problem, regionalization or downscaling techniques, which can be statistical
or dynamic, have been used. These techniques adapt global projections to regional or
local characteristics, which are highly influenced by orography, land–water contrast and
land use, among other variables. The CORDEX [2] project, and its regional portals such
as EuroCORDEX, and the ENSEMBLES [3] project in Europe are prominent examples.
In Spain, within the framework of the Climatic Change National Adaptation Plan (PNACC),
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various regionalizations have been developed with the aim of obtaining high-resolution
series. The project ESCENA produced a monthly dynamic downscaling with a spatial
resolution of 25 km, and ESTCENA does statistical downscaling based on weather stations
data [4]. The Spanish State Agency of Meteorology (AEMET) has produced daily series [5]
based on scenarios defined in the Fifth Assessment Report of the IPCC (IPCC-AR5) [6].
More information and links to access these data are described in AEMET [7].

One of the major limitations of using CC data projections is the uncertainties that
affect all steps in their generation process, including those related with the data used
and those derived from uncontrolled local factors in the regionalizations [5,8]. In Spain,
Amblar Francés et al. [5] found that, when generating regionalized precipitation series,
uncertainties associated with the models and the regionalization are more important than
those associated with emissions, while it is the opposite with temperatures, which also
have a better fit with the historical reference series. Even so, the use of these sources of
information is the best way to understand the impact of CC on water resources and to
develop adaptation strategies.

As Devineni et al. [9] point out, errors resulting from climate forecasting are primarily
of two types: (1) uncertainty in initial and boundary conditions and (2) model error [10].
Multi-model ensemble (MME) methods (also called forecast combinations, multi-model
forecasts, or multi-model ensemble projections) may reduce both errors. The advantage
of combining several estimations from different models is that they convey different
representations of physical processes and models. This way, it is possible to reduce the
implicit uncertainty of the models by combining the results of several of them [11].

Traditionally, MMEs projections have weighted equally all regionalized projections,
with the Simple Average combination (SA) being the most used for its simplicity. In recent
years, various methods have been proposed to weight differently each of the projections
in the final series. This weighting is based on the accuracy of the used climate models in
instrumental or reference periods. The Reliability Ensemble Averaging (REA) method [12]
and its variants, such as those proposed in [13–15], or the Bayesian Model Averaging
(BMA) [16,17] use this approach.

Machine Learning (ML) has been recently introduced, due to the increasing computa-
tional power and the development of powerful algorithms, as a suitable generic framework
to tackle a wide range of problems related to CC [18,19]. In the specific case of MMEs, multi-
model projections of various variables, such as temperatures or precipitation, are being
obtained using different machine learning algorithms such as Random Forest (RF), Support
Vector Machines (SVM) and its generalization for regression problems (SVR), neural net-
works (ANN), K-Nearest Neighbor (KNN), or Relevance Vector Machines (RVM) [20–23].
In these studies, the forecasts obtained through SA are compared with those obtained
through machine learning methods, obtaining the later better results in all cases. How-
ever, Wang et al. [20] conclude that the results obtained vary depending on the variable
analyzed; better results are obtained with temperatures, while for precipitation, due to its
greater variability, the results are worse.

In the specific case of potential evapotranspiration (ETP) and reference evapotranspi-
ration (ET0), the regionalized projections of CC, together with those of precipitation, are the
starting point for studies aimed at the management of water resource systems. This type of
studies are essential to evaluate potential changes in water resources in semi-arid areas [24].
Having ET0 series in semi-arid areas is important as evapotranspiration consumes a high
percentage of the scarce precipitation [25].

This study have two main objectives. First, to propose a methodology for obtaining
robust ET0 daily series to complement the Spanish National Climate Change Adaptation
Plan (PNACC) data and the regionalized projections generated in its third report [5] for
the IPCC-AR5 data [6]. To do this, we propose to estimate and compare the regionalized
projections of 16 global models and 11 MMEs whose accuracy usually depends on the ana-
lyzed variable. Second, the application of such methodology to the Segura Hydrographic
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Demarcation (DHS) as a case study, with the aim of evaluating the temporal and spatial
impact of CC on the ET0 in a semi-arid Mediterranean region.

To tackle both objectives, we propose a framework centered on the use of Random
Forest (RF) as a machine learning algorithm, both as a daily series ensemble technique,
and as part of a Random Forest Regression Kriging (RK) interpolation model (RFRK). Its
accuracy will be evaluated and compared with that of the other models and other widely
used ensemble methods.

For this purpose, we obtained multi-model projections of ET0 for the 21st century and
two emission scenarios Representative Concentration Pathway 4.5 (RCP4.5) and RCP8.5 [6].
To estimate ET0, the maximum and minimum daily temperature variables and the Har-
greaves method were used and calibrated according to the methodology proposed in
Gomariz-Castillo et al. [26]. Once obtained the series for each regionalized model (16 for
each emission scenario) we made ensembles using two machine learning algorithms,
two geometric ensembles, four regression based ensembles, and three simple ensemble,
evaluating the performance of all of them in validation. After that, the best of them (RF
resulted significantly more accurate than the others) was used to interpolate the values
of ET0 using easily obtained auxiliary variables that can act as proxies of those afore-
mentioned variables involved in the evapotranspiration process, but not included in the
Hargreaves model.

2. Reference Evapotranspiration

The FAO Penman–Monteith equation [27] is usually recommended for estimating
ETP and ET0; however, it requires data on solar radiation, air temperature, atmospheric
humidity, and wind speed. Nowadays, EuroCORDEX has data series for these variables,
with a spatial resolution of about 12.5 km. Leaving aside the substantial resolution differ-
ence, there are other problems that must be solved: (a) some studies, such as Boe et al. [28],
suggest that the current EuroCORDEX ensemble does not capture the upper part of the
climate change uncertainty range, as it simulates a much smaller increase in shortwave
radiation reaching Earth surface therefore smaller temperature and ET0 values, and (b)
because of the spatial resolution, the effect of local factors may not be taken into account.
Consequently, to obtain future projections of ET0, regionalization techniques such as the
Statistical Downscaling Method (SDSM) [28,29] or the Delta method [30] must be used. For
example, Izquierdo-Miñano et al. [31] study the fit of EuroCORDEX in the DHS for relative
humidity and the daily maximum and minimum temperature and perform a statistical
downscaling based on random forest because high biases were detected in all of them.

The alternative is to use approximations of ET0 that only require input variables
available in the projections. Hargreaves method [32,33] is a temperature-based method
that only requires maximum and minimum temperature data. Despite this, it is one of
the models that best approximate the real ET0 [34–36]. In this way, it is possible to use
downscaling to produce regionalized series, such as those used in this study [7].

However, it underestimates ET0 in dry or high regions and overestimates it in low
areas [37]; moreover, in semi-arid areas, such as the DHS, it generally underestimate ET0
in the cold months and overestimate it in the warm months [38]. Among the variables
whose non-inclusion in the Hargreaves model could reduce its accuracy are radiation [39],
the ratio of atmospheric pressure to sea level pressure [40], precipitation [37], wind, and
the regional T/∆T ratio. To solve this problem, Hargreaves’ method is usually calibrated
to approximate the ET0 estimations obtained with the Penman–Monteith equation FAO.
After comparing various calibration procedures, Gomariz-Castillo et al. [26] proposed a
simple regression equation for its simplicity and goodness of fit to observed data. Both
parameters are then interpolated using Random Forest Regression Kriging (RKRF); in this
way, it is possible to extrapolate the calibration parameters to each weather station used
in this study. The modified equation for the estimation of ET0 (mm day−1), in a given
regionalized model i and weather station, can be defined as

ET0it = b0est + b1est × ET0Hit (1)
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where ET0ti is a ET0 (mm day−1) at day t in a given i regional model. b0est and b1est are the
interpolated parameters for a given weather station obtained in Gomariz-Castillo et al. [26],
and ET0Hit (mm day−1) is the ET0 estimated from the Hargreaves equation for a weather
station and regionalized model data. ET0Hit can be obtained from the following expression,

ET0Hit = 0.0023× Rat,est ×
√

TMXit − TMNit ×
(

TMXit + TMNit
2

+ CT

)
(2)

TMXit and TMNit (◦C day−1) are the daily maximum and minimum temperature at
day t in a regionalized model i, respectively; CT is an empirical coefficient whose value is
17.8; and Rat,est is an extraterrestrial radiation (mm day−1) considered for a given day t
and latitude for weather station est [41].

Although the impact of climate change on ET0 has been less studied than on other
variables, in the last decade some studies have been developed about the spatial-temporal
variation of predicted ET0 along the 21st century in several areas of the planet, using
different regionalization techniques [28–30,42,43]. The previous works are generally based
on the regionalized projections obtained for the model that best fit the reference period
(generally the last 30 years). However, Xing et al. [44] use MME projections based on a
Bayesian approach. In general, these works obtain positive and significant trends of the
ET0 during the 21st century, with important spatial differences in the magnitude of these
trends. Machine learning-based MMEs have not been used to forecast ET0 series.

The technical report produced by the Spanish Center for Public Works Studies and
Experimentation (CEDEX) [45] analyses the changes predicted for the 21st century in
precipitation, ET0, and total runoff, for three periods distributed throughout the 21st
century: 2011–2040, 2041–2070, and 2071–2100, using the period 1961–1990 as a historical
reference scenario. Six regionalized projections, obtained from different global models
and regionalization techniques, were used. The results refer to two emission scenarios
(RCP4.5 and RCP8.5) of the IPCC-AR5 [6]. In addition, Gimenez et al. [25] analyzed the
expected evolution of ET0 in different areas of the Iberian Peninsula for the first part of
the 21st century. In this work, MME projections of maximum and minimum temperatures
are obtained, based on different regional climate models from the ENSEMBLES [3] project,
using the modification of the REA method proposed by Gimenez et al. [15].

Regarding the spatial estimation of ETP and ET0, point estimates made from data
observed in weather stations can be useful for irrigation management, but are not represen-
tative of wide areas in heterogeneous regions [46]. Therefore, some studies have tried to
interpolate values of ET0 from regression models using different geographical variables as
predictors [26,47,48].

3. Materials and Methods
3.1. Study Area

The Segura Hydrographic Demarcation (DHS) (Figure 1) is located in the southeast
of the Iberian Peninsula. It has an emerged area of 19,025 km2 with a large orographic
variability, alternating mountain systems that exceed 2000 m.a.s.l. in altitude, with high
plateaus, valleys, and coastal depressions [49].

The spatial distribution of temperature is strongly influenced by the orography, with an
increase in the average annual temperature from the Northwest mountains (10 ◦C) to the
coast (18 ◦C). The annual temperature regime presents a winter minimum in the months
of December and January, while the maximums correspond to the months of July and
August [24].

The average annual rainfall in the period 1980/81–2011/12 was 375 mm [24], making
it one of the driest regions in continental Europe. The mountain ranges located in the
Northwest average annual rainfall slightly higher than 1100 mm. Precipitation drops
drastically in a northwest–southeast direction, with average annual precipitation values
around 200 mm in the Southwestern coast. Gomariz-Castillo et al. [26] obtained for the
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period 2003–2014 an average ET0 of 1258 mm × year−1, ranging in most of the DHS
between 1200 mm and 1300 mm without a clear spatial pattern.

The climate shows great spatial contrasts and a great interannual variability, with rel-
atively frequent torrential events, interannual droughts, heavy frosts, and maximum
temperatures that locally can surpass 40 ◦C. Its location and spatial heterogeneity makes it
an ideal case study to evaluate the impact of CC in strongly anthropized semi-arid areas of
the Mediterranean.

Figure 1. Study area including the 48 weather stations of the AEMET network used in this study.

The combination of factors favorable to agriculture (high solar radiation and mild tem-
peratures) allowed the development throughout the twentieth century of a very productive
agriculture comparing with the rest of Spain [50]. However, due to the aridity of the DHS
and the high water deficit 400 hm3/year agriculture is highly dependent on irrigation,
which has required a large degree of regulation [51], the transfer of water from neighboring
areas (the most important being the Tagus–Segura transfer [52]) and the overexploitation
of aquifers [45,53]. This overexploitation, together with the decrease in snowfall, due to the
increase in temperature related to CC, has meant that 46% of the springs existing in 1916 in
the Segura basin have now disappeared [54].

The IPCC-AR5 RCP4.5 scenario [7] estimates a stabilization of temperature increases
for the second half of the 21st century, around 1.5 ◦C with respect to the reference period
1961–1990. On the other hand, the RCP8.5 scenario estimates a significant increase in
global temperatures of around 3 to 5 ◦C at the end of the 21st century with respect to the
period 1961–1990. As a result, in addition to the increase in the ET0, significant reductions
in precipitation are expected, together with an increase in adverse phenomena such as
floods and the intensification of droughts, which will cause significant alterations in water
availability both in the DHS and in inter-basin transfers [55].
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3.2. Data Sources

Three CC scenarios were used: HISTORICAL, ET0 for the period 1970–2000, and the
IPCC-AR5 [6] RCP4.5 and RCP8.5 scenarios for the period 2020–2099. It is thus possible to
compare the CC impact on the variable studied with respect to the first scenario. RCP4.5
and RCP8.5 cover time series of emissions and concentrations of the full range of green-
house gases (GHGs), aerosols and chemically active gases, as well as land use and land
cover [6]. RCP4.5 is an intermediate emissions scenario, which estimates a stabilization of
GHG emissions from 2050; RCP8.5 is a high GHG emissions scenario, which considers a
significant increase throughout the 21st century.

We tried to maximize reproducibility implementing the process described in the
methodology in R-CRAN [56], an Open Source program for data analysis that can handle
and analyze large volumes of information, and that has a large number of packages
available to different types of the calculations. Therefore, it can be applied to one or more
time series (one or more weather stations) and for different datasets. The Open Data series
of the AEMET [7], regionalized for the Iberian Peninsula with more than 2500 weather
stations, are used as a starting point.

AEMET regionalized projections of 16 models (Table 1) were used to estimate daily
ET0 and to generate the ensembles. Such projections were carried out within the framework
of the PNACC, whose objective was, among others, to generate daily series of maximum
and minimum temperatures and precipitation, considering local factors in such estima-
tion. To this end, they generated daily series associated with the network of AEMET
weather stations based on a regionalization using the statistical method of analogs from
the global models participating in the IPCC-AR5 [6] and the project Coordinated Regional
Downscaling EXperiment (CORDEX) [2]. The analogs method we used to obtain the series
is described in [5]. It is based on the search for historical synoptic situations similar to
the days that are regionalized. Its advantage is that, when using time patterns, it keeps
the spatial covariance structure of local time, and does not make assumptions about the
shape of the probability distribution of the variables. Amblar Francés et al. [5] carry out
such regionalization using the following process: (a) to obtain a synoptic classification
of atmospheric situations, estimating their similarity using Euclidean distance, and (b)
to use as temperature at 2 m, temperatures at three pressure levels (850, 700, and 500
hPa), the zonal and meridian components of the wind at sea level, the pressure at sea
level, the temperature at 2 m of the previous day, the specific humidity at 700 hPa and the
insolation as predictors.

Table 1. Individual global climate models used in this study, named according to the CMIP5 (Coupled Model Intercomparison) project.
Marks indicate the availability of the model in each of the studied scenarios. Last column indicate which models were used for the
multi-model ensembles (MMEs) in this study.

Regionalized Model HISTORICAL Scenario RCP4.5 Scenario RCP8.5 Scenario Model Used for Ensemble

ACCESS1 _0 [57] x x x x
ACCESS1_3 [57] x x
bcc_csm1_1 [58] x x x x
bcc_csm1_1_m [58] x x
BNU_ESM [59] x x x x
CMCC_CESM [60] x x
CMCC_CM [61] x x
CMCC_CMS [62] x
CNRM_CM5 [63] x x x x
inmcm4 [64] x x x x
IPSL_CM5A_MR [65] x x
MIROC_ESM [66] x x x x
MIROC5 [66] x x x x
MPI_ESM_LR [67] x x x x
MPI_ESM_MR [67] x x x x
MRI_CGCM3 [68] x x x x
TOTAL 16 12 13 10
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To apply the study to the DHS, maximum and minimum temperature data associated
to 48 weather stations of the AEMET network have been used (Figure 1). The emission sce-
narios selected in this work are those defined in the IPCC-AR5 for intermediate emissions
(Representative Concentration Pathway 4.5-RCP4.5) and high emissions (RCP8.5) [6] for
the period 2020–2099.

As can be seen in Table 1, 16 regionalized models are available, although this number is
not the same for RCP4.5 and RCP8.5; therefore, to simplify the process, the 16 regionalized
models have been evaluated with respect to the observed data, but the MMEs have been
generated for the 10 regionalized models available in both RCP scenarios (10 in total).

A third historical scenario is also included with daily data for the period 1961–2000
(HISTORICAL scenario). This scenario includes the series of the previous regionalized
models and a series of observed data for that period, used to evaluate goodness of fit and
to generate the MME models. For this purpose we used data from the data set Iberia01 [69]
that has daily rainfall and temperature series for the Iberian Peninsula obtained from
the interpolation of 3486 weather stations (including the weather stations used in this
study). The advantage of this type of data over the observed data is that anomalous values
and inhomogeneities are removed and the data are spatially distributed in a grid with a
resolution of about 12 km.

The series of ET0 were estimated from the maximum and minimum daily temperature
data associated to each of the 16 models. A total of 16 regionalized models (Table 1) ×
3 scenarios (HISTORICAL, RCP4.5, and RCP8.5) × 48 stations (Figure 1) = 2304 ET0 daily
temporal series. In addition 48 data series were estimated from historical weather station
data series (1961–2000). The Hargreaves equation was used for this estimation.

To train and validate the MMEs, the ET0 series of the HISTORICAL scenario was
divided into a training dataset (1 January 1961 to 31 August 1987) and a test dataset (1
September 1987 to 31 December 2000). As the main objective of this study is the estimation
of the future series, the last period was selected for validation. The ET0 series estimated
from the daily maximum and minimum temperature obtained in Spain02v5 was used as
reference series.

3.3. Multi-Model Ensemble

Eleven MME methods to combine forecasts of individual regionalized models were
analyzed: three simple ensembles, four regression-based ensembles, two geometric-based
ensembles, and two machine learning (ML) based ensembles. Simple ensembles, regression-
based ensembles, and geometric-based ensembles are implemented in the R package
GeomComb [70]. Bayesian Model Averaging (BMA) analysis in the R package BMS [71].
Random Forest (RF) and Support Vector Regression (SVR) in the R packages Random
Forest [72] and kernlab [73], respectively. The parameter calibration of the last two methods
was carried out using the R package caret [74]. Detailed descriptions of the algorithms are
available in the previous references.

The simple ensembles used were Simple Average forecast combination (SA), Median
forecast combination (MED), more robust to outliers than SA [75], and Trimmed Average
forecast combination (TA). This last method uses a trim factor to eliminate a percentage of
the extreme data on both sides of the distribution, being less sensitive to sampling outliers
and asymetric distributions than SA [76]. In this study, the trim factor has been estimated
by minimizing the RMSE of the predictions with respect to the training data-set.

Regression-based ensembles and geometric-based ensembles are also linear combina-
tions of the members of the ensemble but the weights are optimal in terms of a risk function.
Ordinary Least Squares (OLS) regression, first used to build ensembles in Granger and
Ramanathan [77], uses ordinary least squares to estimate both the weights and an intercept:

ŷt = b0 +
N

∑
i=1

fit × wOLS
i (3)
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where fit is the value of the ensemble member or predictor i at time t; b0 is the intercept,
which acts as a bias correction; and wOLS

i is the weight assigned to predictor i. Constrained
Least Squares (CLS) forecast combination [77] is conceptually similar to OLS (Equation (3)),
but subject to ∑N

i=1 wCLS
i = 1 and b0 = 0. It s main advantage over OLS is that CLS produces

better estimations when the predictors are highly correlated but, having no b0, it does
not correct bias. Least Absolute Deviation (LAD) [78] is another lineal regression-based
method (equal to Equation (3)) but wLAD(N)

i are estimated by minimizing absolute errors
instead of squared errors, as in OLS, for this reason it is more robust if outliers are present.

Bayesian Model Averaging (BMA) [79,80] produces a weighted average of probability
density functions (PDFs), combining the models while calibrating the weights from the
training data set. In this method, the weights are estimated using the posterior proba-
bility of each of the individual members. It is a relatively new approach with two main
advantages [80,81]: (a) the estimation of weights based on a statistical a priori analysis may
ensure objectivity and (b) the idea of assigning higher weights to forecasts that provide
unique information is consistent with the recommendation of combining forecasts that
incorporate diverse information [76]. This is because systematic and random errors of
individual forecasts are more likely to cancel out in the ensemble if the individual forecasts
convey different information. Hinne et al. [82] provides a detailed description of its general
framework and practical utility, and Wang et al. [20] applies it to CC scenarios.

Standard eigenvector (EIG1) and bias-correct eigenvector (EGI2) proposed in Hsiao
and Wan [83] are the two geometric ensembles included in this study. Both estimate the
linear combination weights from the sample mean squared prediction error (MSPE) matrix.
The main difference among them is that EIG2 uses the centered MSPE matrix [70]; therefore,
EIG2 is more advisable if any of the components of the combination is skewed.

Random Forest (RF) and Support Vector Regression (SVR) are the two machine learn-
ing approaches tested in this study. Both algorithms are fully explained in Hastie et al. [84]
or Kuhn and Johnson [74] and its application to MMEs with CMIP5 data problem is
presented in Wang et al. [20].

RF is a nonparametric algorithm that builds an ensemble of decision trees [85]. Each
tree is calibrated using a bootstrapped subsample of cases, and the features to perform
each split in the trees are selected from a random subsample of the whole feature set. When
all trees have been trained, without pruning, each new case is analyzed by all trees and
the final prediction is obtained averaging the results. RF uses two parameters: number of
regression trees (ntree) to grow, and number of features randomly sampled in each split
(mtry). Once the model is trained, the prediction can be obtained as

ŷt =
1
M

M

∑
m=1

Tm( ft) (4)

where M is the number of trees, Tm denotes single decision tree, and ft is a vector
of predictors.

In this study, ntree = 1000, as higher values do not generally produce any improve-
ment [72,84] and mtry has been calibrated using cross validation without repetition and
minimizing RMSE. To do this, while saving computing time due to the high number of
observations and variables, a cross-validation based on a partition of the training time
series by decades in three blocks was carried out. The resulting RMSE values for each block
were calculated, and finally the mtry value that minimized the average RMSE was selected.

RF importance was estimated using a model-based approach, more related to the
actual model performance than the traditional methods, that takes into account the correla-
tion structure between the predictors [74]. The metric used is based on the estimation of
MSE on the out-of-bag data for each tree, and then the same computed after permuting a
variable. The differences are averaged and normalized by the standard error. Once done,
the values obtained have been rescaled to percentages in order to compare the results be-
tween the various estimated models. In this way, it is possible to evaluate the contribution
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of each series to the final ensemble and to determinate which of them are more important
in the forecast.

SVR [86] is an extension of Support Vector Machines (SVM) for regression problems.
Instead of minimizing the sum of squared errors, it selects points, the so-called support
vectors, whose residual absolute values |e| are larger than a threshold ε. These points will
contribute linearly, instead of quadratically, to the objective error function to be minimized.
The problem is then solved as a quadratic optimization problem. A regularization param-
eter C penalizes large residuals. SVR is generalized to nonlinear regression problems by
including in the formulation the so-called kernel functions. In this way, the prediction of
ET0 can be obtained from the following general formulation,

ŷt = b0 +
N

∑
i=1

(αi − α∗i )K(xk, x) (5)

where K(Xn, X) is the kernel function. In this study a radial basis function (RBF) was used
as kernel function.

SVR with the RBF kernel requires setting two parameters: C, the cost parameter, and γ,
a parameter of the RBF kernel function that controls the degree of nonlinearity of the model.
To reduce the computational cost, γ has been estimated automatically from the training
data, following the methodology in Caputo et al. [87], as advised by authors such as Kuhn
and Johnson [74]; after that, C has been calibrated from cross-validation, following the
same procedure as for RF. Values of γ close to 0 produce similar results to the linear model
(they reduce the degree of nonlinearity). A large C produces a more flexible but also more
likely to overfit [74].

3.4. Evaluation and Comparison of Individual Regional Models and Multi-Model Ensembles

Three statistics were used to estimate error validation: R-squared (R2), bias percentage
(PBIAS), to measure the mean tendency of a model to overestimate or infra-estimate
ET0, and Kling–Gupta efficiency (KGE) that summarizes several aspects of the model
performance in fitting reference data.

R2 can be interpreted as the proportion of the variance of the reference variable
reproduced by the simulation. It is defined as

R2 =

n
∑

i=1
(re fi − simi)

2

n
∑

i=1

(
re fi − re f

)2 (6)

where simi and re fi are the ET0 (mm day−1) simulated by a specific model and the refer-
ence value, respectively, on a given day, and re f is the arithmetic mean of the reference
values. Although it is the most widely used fitting statistic, it is very sensitivity to extreme
values [88] and insensitive to constant biases (additive or multiplicative).

PBIAS (bias percentage) measures the average tendency of the simulated data to be
larger or smaller than their reference values [89]. It is defined as

PBIAS =

n
∑

i=1
(re fi − simi)

n
∑

i=1
(simi)

× 100 (7)

Positive values indicate underestimation bias and negative values indicate overesti-
mation bias [89].

KGE [90] is increasingly being used in calibration and validation studies due to its
advantages over other metrics: it normalizes model performance into an interpretable scale
and addresses deficiencies of other metrics (as the Nash–Sutcliffe efficiency and R2) due to
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its formulation [90], summarizes correlation, bias and variability. In this study, we used the
modified version proposed in Kling et al. [91] that ensures the no correlation of bias and
variability ratios:

KGE = 1−

√√√√(r− 1)2 +

(
CVsim
CVre f

− 1

)2

+

(
µsim
µre f
− 1

)2

(8)

where r is the lineal correlation between simulated and reference values; CVsim and CVre f
are the coefficients of variation in simulated values and reference values (variability ratio in
equation), respectively; and µsim and µre f are the mean in simulated values and reference
values (bias ratio in equation). Its interpretation is similar to R2, KGE ranges from -Inf to 1;
KGE = 1 indicates perfect agreement between simulations and observations [90].

Two one-way ANOVA tests were performed on the three goodness of fit statistics
estimated with the test data-set to identify any statistically significant differences in the in-
dividual regionalized models and MMEs. The mean values of each statistic were compared
using the observations in the 48 weather stations:

• ANOVA 1. Its objective is to evaluate performance between the different series and
forecast methods (Series factor). This variable factor consists of k = 27 classes (16 re-
gionalized models, 3 simple ensembles, 2 geometric-based ensembles, 4 regression-
based ensembles, and 2 machine learning ensembles) and n = k · 48 stations = 1296 ob-
servations.

• ANOVA 2. In addition, to better interpret the results, a second analysis was designed,
with the same data but grouping the series according to their type (regionalized
models, simple ensembles, regression-based ensembles, geometric ensembles, and
machine learning ensembles).

When the existence of an effect is discovered using ANOVA, the effects and signifi-
cance of differences between the different models are evaluated with multiple pair contrasts
based on a Tukey–Kramer contrast. Such contrasts allow to find homogeneous groups of
classes. To evaluate the statistical asssumptions of ANOVA models (normality and ho-
moscedasticity), we used the Kolmogorov–Smirnov test to evaluate normality and the Lev-
ene test [92] to evaluate homoscedasticity in the residuals. KS was not significant, but the
significance of the Levene contrasts revealed heteroscedasticity. In this case, the covariance
matrix of the estimated parameters is not robust enough, and the Tukey–Kramer contrast
is less reliable. To correct the heteroscedasticity we used a heteroscedasticity-consistent
covariance matrix of the parameters (HC3) [93] in ANOVA and the Tukey–Kramer contrast.

3.5. Temporal and Spatial Patterns of ET0

In addition to obtaining daily series of ET0, the spatio-temporal characterization of the
CC impact on ET0 has been carried out by an analysis of the yearly ET0 in the HISTORICAL
scenario and in the RF estimations in the RCP4.5 and RCP8.5 scenarios, as RF resulted to
be the most accurate method.

The temporal trend of the annual ET0 and its significance have been calculated for the
average series of all 48 weather stations included in the study. This trend has been estimated
using a robust regression based on the Theil–Sen estimator [94] and its significance with
Mann–Kendall trend test. These are non-parametric methods with great robustness if
statistical assumptions, such as time dependence, are not met [95]. The Theil–Sen estimator
is a generalized-based median method that fits a regression line by choosing the median
of the slopes of all lines through pairs of points as slope estimation (β1); the sign of β1
represents the direction of change and its value indicates the steepness of change [96].
Mann–Kendall monotonic trend test [97] is based on the correlation between the ranks of a
time series and their time order.

In order to analyze the spatial distribution of the expected changes of annual ET0,
average values of ET0 at annual scale were obtained for the 48 stations included in the study
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area for the period 1971–2000, used as reference period, and for the periods 2041–2070 and
2071–2100. These annual values were then interpolated for both periods using Regression
Kriging, a technique that combines a global regression model to establish the relation
between the dependent variable and different predictors with a local interpolation of its
residuals using, in this case, ordinary kriging. Due to the good results obtained in previous
works [26] Random Forest was used as the regression model.

Seven geographical variables were initially to be used as predictors for RF: (1) elevation
above sea level (m), using a DEM with resolution of 25 m (DTM25) [98]; (2) Euclidean
distance to the coast (m) (COASTDIST); (3) mean annual potential irradiation (W/m2 year1)
(POTI), obtained according to the methodology proposed in Hofierka and Suri [99]; the (4)
inverse and (5) logarithmic transformation of the elevation; and the (6) inverse and (7)
logarithmic transformation of distance to the coast. These variables can act as proxies for
some of the meteorological variables relevant in the calculation of ET0 but not included
in Hargreaves’ equation. For example, POTI is a proxy of the global radiation; DTM25
is a proxy of the ratio of atmospheric pressure to atmospheric pressure at sea level or of
wind magnitude, while COASTDIST acts as a proxy of the ratio T/DeltaT, humidity, or
cloudiness [26].

The multicollinearity between predictors was evaluated using the variance inflation
factor (VIF), eliminating in an iterative manner the variables with a threshold greater than
10, as proposed in Kutner et al. [100]. After performing the VIF, the logarithmic transfor-
mation of elevation and distance to the coast were eliminated due to high collinearity, so
the final number of variables used as predictors was 5.

Once the spatial distribution of the annual ET0 of the three scenarios was obtained,
the differences were evaluated for significance using ANOVA and a posteriori contrasts
described in Section 3.4.

3.6. Summarized Workflow

The conceptual scheme in Figure 2 summarizes the calculation process. A sample code
for a weather station is included as Supplementary Materials. It computes (a) the estimation
of ET0 from the daily maximum and minimum temperatures associated with the individual
regionalized models, (b) the validation of the individual regionalized models and the
multi-ensemble models, and (c) the predictions for the RCP scenarios. The processes and
code use are described in the file README.pdf, included in the Supplementary Materials.

Figure 2A shows the downloading and preprocessing steps, described in Section 3.2.
The maximum and minimum daily temperatures (TMX and TMN) of the weather stations
included in the study area are downloaded and processed for the three considered scenarios
and the 16 individual regionalized models; in addition, the observed data are downloaded
and processed. Then, for each station, scenario and model (including the observed data),
the ET0 is obtained using the Hargreaves calibrated equation (see Section 2).

Once all the series of ET0 are obtained, as summarized in Figure 2B, we start with the
estimation of the 11 MMEs in an iterative way for each station (48) in the HISTORICAL
scenario (see Section 3.3). For this purpose, 2/3 of the data series was used to fit the models
(train data, from 1961 to 1987), and 1/3 as test data (from 1988 to 2000). Additionally, for the
machine learning algorithms, a cross-validation is performed to obtain validation data
in each K iteration. Once the MMEs are estimated, they are validated and the validation
results compared (see Section 3.4) using one-way ANOVA and Tukey–Kramer post hoc
tests using HC3 heterocedasticity correction. After that, the method that best fits the
observed values is selected and the predicted series are generated from that method.

Finally, Figure 2C summarizes the characterization of the hypothetical impact of CC
on the temporal and spatial ET0 patterns in the study area. On the one hand, the Theil–Sen
and Mann–Kendal regression is used to analyze the ET0 trend (mm year−1) in the three
scenarios, obtaining the average annual increase in each of them.
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Figure 2. Workflow diagram.

For the spatial characterization, a spatial interpolation based on Random Forest Re-
gression Kriging of mean ET0 values (mm year−1) is carried out, comparing the differences
of the predicted values in the interpolation surface of the RCP4.5 and RCP8.5 scenarios
(for the annual mean values of the periods 2041–2070 and 2071–2099) with respect to the
reference HISTORICAL scenario (annual mean values of the period 1971–2000). To estimate
whether the differences are significant, the same methods are used as in the previous case.

4. Results and Discussion
4.1. Performance of Individual Models and Multi-Model Ensembles

The ANOVA analyses performed on the goodness-of-fit statistics of MMEs and re-
gionalized models show significant differences in the three analyzed statistics, both when
each series is considered separately (F(26, 1269), p < 0.0001 in all three cases) and when
the series are aggregated by type (F(4, 1291), p < 0.0001 in all three cases). Figure 3 shows
the value distribution of such statistics, and also the groupings obtained with the Tukey–
Kramer post hoc test. Tables A1 and A2 show their estimation both in calibration and
validation. In general, the regionalized individual models (green boxes in Figure 3) have a
good fit to the observed data. Figure 3 shows that R2 > 0.6 in all weather stations except for
one in BNU_ESM, although on average they underestimate ET0 (negative bias in Figure 3b)
except for bcc_csm1_1_m. This may be because the method we used to estimate ET0, take
into account maximum and minimum daily temperatures, which are accurately estimated
in their regionalization. Thus, Amblar Frances et al. [5] indicate, when carrying out the
regionalization for all Spain, that the cause of the good fit may be that when generating the
series, the uncertainty associated with the emissions predominates over those associated
with the models and processes of regionalization that were used.
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Figure 3. Distributions of (a) coefficient of determination (R2), (b) bias percentage (PBIAS), and (c) Kling–Gupta efficiency
(KGE) in validation by stations (N = 48 stations × 27 series = 1296 observations). Grouped by individual series (right)
and by the type of series (left). Significantly different groups (Tukey-–Kramer contrast using heteroscedasticity-consistent
covariance matrix of the parameters (HC3), alpha = 0.05) are represented by different letters. Post hoc contrasts for PBIAS
were calculated with absolute values.

An interesting pattern appears in the correlation coefficient R2 (Figure 3a): although
RF is the best, all MMEs methods are grouped as a (no significant differences are observed
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between them) including the simple ensembles MMEs; therefore, this statistic does not
discriminate adequately the performance of the different methods. Traditionally, this
statistic has been used to interpret the goodness of fit, but it may induce errors in the final
conclusions (Figure 3b,c). In this case, the problem is that R2 is insensitive to constant
deviations (bias) [88]. Therefore, KGE does a better estimation of the true performance of
the series, resulting in the machine learning and regression based ensembles, labeled by
the post hoc tests as a to b, as the most accurate estimation method. KGE is a better statistic
because it integrates the correlation, the variability and the bias (Equation (8)) [90,91].

In general, MMEs outperformed regionalized individual models, which is in agree-
ment with the rest of the literature on MMEs [20,101]. It is, however, noteworthy that
MMEs based on eigenvectors and CLS perform worse in PBIAS and KGE. For the three
goodness of fit statistics, machine learning-based ensembles are slightly better than the rest
of categories, both RF and SVM are included (Type of series factor) in post hoc group a in
KGE (significantly better than the others, M = 0.903, SD = 0.034) and PBIAS (M = 3.17,
SD = 2.97), although in this case regression based ensembles appear in the same post
hoc group ab (M = 3.98, SD = 3.77), being both significantly better than geometric based
ensembles and individual regionalized models.

RF is the best MME in KGE (post hoc group a; M = 0.915, SD = 0.031), significantly
better than the other MMEs, except LAD (post hoc group ab; M = 0.891, SD = 0.035),
while SVM is grouped in b, along with other ensembles algorithms. The performance of
RF in the other statistics is slightly higher than the others (M = 0.881, SD = 0.032 in R2,
M = 3.09 and SD = 3.00 in PBIAS). Besides, it can be seen in Figure 3b that average
PBIAS (M = 0.70, SD = 4.26) is close to 0, and its dispersion is the smallest. Figure 3c
shows a KGE outlier associated to weather station 7117; even in that case, RF is significantly
better than the rest of ensembles: KGE around 0.80 in BMA, OLS, SVR, and LAD, while
in RF KGE = 0.847. Although there are few studies where RF and SVM are used, for the
purpose of our work, we can highlight that our results are consistent with those obtained
in Wang et al. [20] for monthly temperatures with respect to the other two methods it used
(BMA and SA). In our study the RF performance is even better, significantly better than
SVM, BMA, or SA, even though we analyzed daily data.

Regression-based MMEs (orange color in Figure 3) also show a good performance.
In general, they are not significantly different from SVM; it is noteworthy that, although no
significant differences are observed in R2 and PBIAS with respect to other methods such as
geometric or simple ensembles, in KGE it is differentiated from the rest as b category. Its
good performance may be because ET0 estimated in this study is based on temperatures,
and as pointed out by authors such as Amblar Frances et al. [5], temperature fields are
usually smooth, and their statistical behavior is closer to normal than other variables, so
regression methods obtain more accurate results. Among the methods used, LAD obtains
slightly better performance probably because it is less sensitive to outliers and more stable,
when predictors are highly correlated, than regression based on least square estimations,
in which low fluctuations in the sample can cause large changes in the coefficients, pro-
ducing poor predictive performance [102]. The worst performing method is CLS, which
in the case of KGE is outside the b grouping of the post hoc tests. This is because it does
not include a parameter b0 acting as a correction of the systematic bias that occurs in the
individual regionalized models, as OLS does.

The Eigenvector-based MMEs have a much poorer fit to the observed data than the
rest of the MMEs. As pointed out in Hsiao and Wan [83], EIG2 is better than EIG1 due to
the high bias in regionalized models. In fact, unlike what happened in Hsiao and Wan [83],
EIG2 is significantly different to EIG1 in absolute PBIAS. In addition, this author points out
its usefulness over the models based on regression when the performance of the different
members are similar, but in our study there are significant differences among them.

Simple methods can be more robust than more complex techniques, due to their
simplicity (no need to estimate any parameter or weighting of the members included in the
analysis [75,103]) even with a small number of observations or underlying changes in the
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timeline [104]. That is the reason why they are included in the a post hoc group in Figure 3a.
However, PBIAS and KGE values are poorer because they produce large errors when the
predictors are biased [103]. Even so, it is interesting to use SA as a baseline with which
to compare the outputs of the other methods [105,106]. SA appears in the cd− ce groups
of the post hoc tests for KGE; in this case, all MMEs perform better than SA except EIG1.
MED and TA slightly better on average in KGE and PBIAS, although without significant
differences, probably due to their greater robustness against outliers [75].

Figure 4 shows, as an example, the prediction of ET0 (mm day−1) in weather station
7152, located in the center of the DHS. The figure shows a hypothetical year (a), estimated
from the average daily values or the test data, and the results for 1996 (b). Its goodness
of fit in validation is good and similar to the average values in Figure 3. It includes the
forecasts of the two best MMEs (RF and LAD) and SA as a reference series.
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(b) Annual daily ET0. Est: 7152, year: 1996

Figure 4. Daily ET0 (mm day−1) of a hypothetical year (a) and 1996 (b). Series in subfigure (a) represent mean values
of historical data and the best of the individual regionalized models, and the predictions of the two best MMEs and SA,
obtained using as input proxies the daily mean values of the individual regionalized models. In subfigure (b), no individual
regionalized model is included for better visualization. Goodness of fit statistics for the entire validation series are included
in the legend.

The multi-model ensemble methods RF and LAD follow the observed seasonal pattern.
In general, the models underestimate the reference series in the months with the highest
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temperature (and therefore the highest amount of energy) and tend to overestimate it in
the colder months. However, the percentage of bias of the whole RF (PBIAS = −0.55%)
and LAD (PBIAS = −0.6%) validation series are lower than the rest of the series: in SA
PBIAS = −1.2% and in inmcm4 percent bias is positive (PBIAS = 2.3%).

Figure 5 represents the importance of the individual models in the RF ensemble (a sum-
mary is included in Table A3); it shows a relatively high dispersion of relative importance,
reflecting differences in the behavior of different regionalized individual models depend-
ing on the location of weather stations, and therefore possible local effects. The results
highlight MIROC5, CNRM_CM5, and MPI_ESM_LR as the most important, with mean
relative importance values de 76.67%, 70.57%, y 68.86%, respectively. It is interesting that
none of the three stand out for their performance in Figure 3, except MIROC5 and only in
R2, moreover all three have a high negative bias. This behavior may indicate that there
are patterns in them that are not contemplated in the rest of the series, and therefore,
although are not highly accurate individually, they are useful in the forecasting ensemble.
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Figure 5. Ranking of relative Random Forest variable importance of MMEs. The importance is scaled (0 to 100) to compare
between MMEs and improve their interpretability.

4.2. Temporal and Spatial Trend of Climate Change Scenarios
4.2.1. Temporal Trend of Anual ET0

Annual time series during the period 2021–2099 (Figure 6) reveal a statistically sig-
nificant and positive ET0 trend (Mann–Kendall tests in Table 2) in both the HISTORICAL
scenario (ZMK = 3.773, p = 0.0002) and the two RCP scenarios (ZMK = 9.842 and 11.920,
p < 0.0001). For the RCP8.5 scenario, a significant increase (1.70 mm/year) is predicted
in the ET0 over the entire 21st century, according with the significant temperature in-
crease predicted for that scenario. For the RCP4.5 scenario, the projected increase of ET0
is considerably less than that of RCP8.5 (0.71 mm/year). This increase would be mainly
concentrated in the first half of the period, followed by an stabilization by the end of the
century, as can be seen in Figure 6.
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Table 2. The results of the Mann–Kendall test and Theil–Sen regression.

Scenarios S Z p-Value fi0 (mm year−1) fi1 (mm year−1)

HISTORICAL 223 3.773 0.0002 1194.467 1.45
RCP4.5 2370 9.842 >0.0001 1262.78 0.71
RCP8.5 2870 11.920 >0.0001 1255.79 1.70
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Figure 6. Evolution of the observed ET0 in the historical series and in the two climate change scenarios considered.
The linear trend models have been obtained using the Theil–Sen estimator and their significance was calculated using the
Mann–Kendal test.

Figure 7 shows the distribution of ET0 for the historical period and for the two periods
contemplated for the RCP4.5 and RCP8.5 scenarios. These distributions are shown at both
annual and seasonal scales, and also show the results of the posteriori contrast carried
out. The ANOVAs performed for the five situations show significant differences in all
cases (Annual: F(4, 235) = 19.687, p < 0.0001; Summer: F(4, 235) = 5.724, p < 0.0002;
Winter: F(4, 235) = 12.802, p < 0.0001; Autumn: F(4, 235) = 15.257, p < 0.0001; Spring:
F(4, 235) = 30.975, p < 0.0001). According to the values obtained for the F statistics in
the different seasons, the highest increments of ET0 are observed for spring, while the
lowest variation has been obtained for summer. Tomas-Burguera et al. [107] analyzed the
evolution of the ET0 in Spain for the period 1961–2014, and they also obtain the highest
increments of ET0 for the study area in spring. The results obtained in both works for that
season may have or may be already having repercussions in water resources availability,
these repercussions should be analyzed in future studies.

With regard to the ex-post contrast carried out to compare the ET0 distributions
obtained for the different periods and scenarios, in all the cases analyzed, with the exception
of some cases of summer, there are significant differences between the historical period
and the periods corresponding with the two climate change scenarios. In summer, only
the ET0 values obtained for the period 2071–2100 are significantly different from the
HISTORICAL scenario, another indication that summer is the season with lowest ET0
increases. In autumn, differences are not great, although enough for all the scenarios to be
significantly different from HISTORICAL; in this case, RCP8.5 for 2071–2099 is significantly
different from the rest of the scenarios.
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Figure 7. Distributions of (a) mean total annual ET0 and (b–e) mean total seasonal ET0 obtained for the time intervals (x axis)
considered in each climate change scenario (box classes). The values associated to each weather station are represented in
the boxes (N = 48 stations per box). Significantly different groups (Tukey–Kramer contrast, alpha = 0.05) are represented by
different letters.

On the other hand, for the RCP4.5 scenario no significant differences have been ob-
tained between both periods in any of the five situations analyzed, which is a consequence
of the stabilization of the increase in temperature and therefore of the ET0 foreseen for
that scenario. On the other hand, for the RCP8.5 scenario there are significant differences
between both periods for the annual scale as well as for spring and autumn, which agrees
with the important and continuous increase of temperature foreseen for the RCP8.5 scenario
throughout the 21st century. Furthermore, it should be noted that for the period 2041–2070
none of the five situations analyzed show significant differences between both scenarios.
On the other hand, for the period 2071–2100 significant differences have been obtained
between both scenarios both on an annual scale and for autumn and spring, which also
agrees with the evolution of the estimated temperature for both scenarios. Table A4 shows
the average, the standard deviation and the standard error of ET0 values for each of the
five cases analyzed, both on an annual and on a seasonal scale.

4.2.2. Spatial Distribution of Annual Variation in ET0

Figure 8 shows the spatial distribution of the ET0 estimated variation for the two
scenarios analyzed in the periods 2041–2070 and 2071–2100 with respect to the reference
period. The same spatial pattern exists for the four scenarios represented, with the largest
increases of ET0 in the basin headwaters (northwestern of the study area) and the smallest
increases in coastal areas.

For the RCP4.5 scenario, only in the northwest and north end of the study area,
an increase larger than 200 mm/year in both analyzed periods is observed. In the rest of
the basin the increase ranges between 50 and 200 mm/year. Moreover, for this scenario,
hardly any changes are observed between the two analyzed periods, which confirms what
was mentioned in previous sections. For the RCP8.5 scenario, the highest increases of
ET0 are estimated in a large area in the northwest of the DHS, especially for the period
2071–2100, with increases larger than 250 mm/year, while the increase exceeds 150 mm in
a large part of the DHS. In this case, changes are observed between both periods.
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Figure 8. Spatial distribution of the annual variation of the forecasted ET0 for the DHS for the two scenarios analyzed in the
periods 2041–2070 and 2071–2100 with respect to the reference period 1971–2000.

This spatial pattern could mean a decrease in the water resources available in the study
area, as most of them are produced in the northwest sector, due to a larger rainfall and per-
meability of the rocks. Moreover, the outstanding increase of ET0 observed in the northwest-
ern sector may produce an increase of the evaporation losses in the reservoirs, a reduction
of the channel runoff and a reduction of the aquifer recharges. Tomas-Burguera et al. [107]
also obtain the largest increases of ET0 for the period 1961–2014 in the northwest zone of
the study area, with a significant increase of 15–30 mm/decade.

Table 3 compares the average variation in ET0 estimated both in this work and in
CEDEX [45] for the DHS (as the difference in percentage between the HISTORICAL sce-
nario and the two climate change scenarios and the two periods analyzed in this study).
Although the methodology used is not the same in both cases, it shows the similarity
between both studies. The variation of estimated ET0 in this work is greater than the one
estimated in CEDEX [45], with the exception of scenario RCP8.5 for the period 2071–2100.
The differences between both studies may be due to the different methodologies used to
obtain the ET0 values, to the fact that the data shown for CEDEX [45] are a simple average
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of the ET0 variations obtained for six regionalized projections and to the difference in the
control periods used, although the influence of the latter would be minimal according to
what is observed in Figure 6.

Table 3. Comparison of the average variation (%) estimated in the present work and in CEDEX [45]
for the entire DHS for the 2 scenarios and the 2 periods used. The variations are referred to the
control periods 1961–2000 in CEDEX [45] and 1971–2000 in the case of the present study.

CEDEX This Study

Scenario/Impact Period 2041–2070 2071–2100 2041–2070 2071–2100

RCP4.5 6 8 10.7 11.2
RCP8.5 9 15 11.8 15.3

In summary, for the RCP4.5 scenario the estimated ET0 average increase with respect
to the period 1971–2000 is 10.7%, for the period 2041–2070, and 11.8% for the period 2071–
2100, while for the RCP8.5 scenario this increase is 11.2% for the period 2041–2070 and
15.3% for the period 2041–2070.

5. Conclusions

Multi-model ensemble methods generally outperform all or almost all individual
series. The observed fit in validation, especially considering that the forecasts are have been
carried out for a daily time step, justifies the use of this type of method and its usefulness
to characterize the climatic variables for different CC scenarios.

We conclude that machine learning MMEs are efficient and highly useful methods,
with ability to obtain better predictions, with high precision and better reproduction of
historical climatic variables. In our study, RF is salient because of two aspects: (a) its
accuracy is significantly better than the rest of individual regionalized series and multi-
model ensembles methods, also reducing the bias compared to the rest of the methods,
which generally underestimate ET0 in the warmer months and overestimate it in the
colder months, and (b) that RF conveys the different representations of physical processes
in individual models, reducing their implicit uncertainty. In addition, RF has several
advantages as a predictive model. It is robust to outliers and nonlinear data, produces an
estimation of variable importance that allows to weight or select variables, works efficiently
with large volumes of data, produces an unbiased estimation of generalization error and is
computationally lighter than other machine learning algorithms like SVM. For all these
reasons, RF can be useful when analyzing other climate variables, such as precipitation.

However, it is necessary to highlight the importance of using and comparing various
methods as model accuracy can differ between variables, climatic zones, or even periods.
This paper proposes a framework based on Open Source data analysis software to objec-
tively compare different models and select the most accurate. It can be used with different
datasets and study areas, and include other multi-model ensembles, such as REA, inverse
Rank, or other machine learning algorithms in futures studies.

Using alternative statistics to evaluate goodness of fit is also useful. Traditionally,
R2 has been used to evaluate correlation, and CC-oriented studies have given special
importance to bias. The main advantage of KGE decomposition is that it evaluates, in an
integrated way, three fundamental aspects: correlation, variability and bias. In this study,
KGE does a better discrimination of the performance of the different ensembles than R2.

ET0 trend reveals a statistically significant increase in the three analyzed scenarios,
although higher in RCP4.5, where it tends to stabilize towards the second part of the
century. This increase, more accentuated in spring, is also observed when carrying out
an intra-annual analysis. This trend can cause serious problems in this semi-arid area
because of its high water deficit and strong anthropic pressure. The problem might be even
exacerbated by the expected reduction in rainfall. The strong water demand by irrigated
crops, a large population density, and several touristic resorts increases precisely in the
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months with a larger increase in ET0. Moreover, the largest ET0 increases are expected in
the headwaters, the area where most of the DHS water resources are produced.
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the implemented functions.
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Appendix A

Table A1. Goodness of fit statistics in calibration for the different series. N = 1296 observations (nk = 48 weather stations by class).

Type of Serie Series Class R2 sd se PBIAS (abs.) sd se KGE sd se

Regionalized
individual model

ACCESS1_0 0.779 0.041 0.006 6.22 5.23 0.76 0.803 0.078 0.011
ACCESS1_3 0.795 0.043 0.006 4.83 5.10 0.74 0.802 0.076 0.011
bcc_csm1_1 0.757 0.046 0.007 6.79 5.24 0.76 0.784 0.075 0.011
bcc_csm1_1_m 0.785 0.044 0.006 5.56 5.24 0.76 0.839 0.067 0.010
BNU_ESM 0.774 0.051 0.007 5.05 5.16 0.74 0.827 0.071 0.010
CMCC_CESM 0.762 0.049 0.007 6.05 5.47 0.79 0.816 0.073 0.010
CMCC_CM 0.779 0.039 0.006 7.13 5.28 0.76 0.813 0.070 0.010
CMCC_CMS 0.762 0.042 0.006 6.28 5.32 0.77 0.816 0.072 0.010
CNRM_CM5 0.775 0.046 0.007 7.99 5.53 0.80 0.784 0.078 0.011
inmcm4 0.783 0.042 0.006 5.08 5.17 0.75 0.833 0.070 0.010
IPSL_CM5A_MR 0.784 0.043 0.006 6.89 5.53 0.80 0.791 0.074 0.011
MIROC_ESM 0.762 0.051 0.007 6.58 5.51 0.80 0.786 0.082 0.012
MIROC5 0.788 0.042 0.006 8.81 5.40 0.78 0.789 0.077 0.011
MPI_ESM_LR 0.769 0.046 0.007 7.45 5.54 0.80 0.799 0.076 0.011
MPI_ESM_MR 0.763 0.048 0.007 7.59 5.47 0.79 0.794 0.075 0.011
MRI_CGCM3 0.733 0.047 0.007 9.74 5.71 0.82 0.731 0.079 0.011

Geometric based EIG1 0.871 0.027 0.004 6.88 5.36 0.77 0.784 0.084 0.012
ensemble EIG2 0.871 0.027 0.004 0.00 0.00 0.00 0.798 0.073 0.010

Machine learning RF 0.974 0.005 0.001 1.12 0.41 0.06 0.957 0.010 0.001
based ensemble SVR 0.904 0.022 0.003 0.38 0.24 0.03 0.926 0.019 0.003

https://www.mdpi.com/2073-4441/13/2/222/s1
https://www.mdpi.com/2073-4441/13/2/222/s1
http://www.aemet.es/es/serviciosclimaticos/cambio_climat/datos_diarios
http://www.aemet.es/es/serviciosclimaticos/cambio_climat/datos_diarios
https://digital.csic.es/handle/10261/183071
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Table A1. Cont.

Type of Serie Series Class R2 sd se PBIAS (abs.) sd se KGE sd se

BMA 0.872 0.027 0.004 0.00 0.00 0.00 0.906 0.020 0.003
Regression based CLS 0.864 0.031 0.004 5.00 4.66 0.67 0.815 0.072 0.010
ensemble LAD 0.872 0.027 0.004 0.61 0.49 0.07 0.906 0.023 0.003

OLS 0.872 0.027 0.004 0.00 0.00 0.00 0.907 0.020 0.003

MED 0.867 0.027 0.004 6.51 5.22 0.75 0.789 0.082 0.012
Simple ensemble SA 0.871 0.027 0.004 6.71 5.34 0.77 0.787 0.083 0.012

TA 0.871 0.027 0.004 6.53 5.22 0.75 0.788 0.082 0.012

Table A2. Goodness of fit statistics in validation for the different series. N = 1296 observations (nk = 48 weather stations by class).

Type of Serie Series Class R2 sd se PBIAS (abs.) sd se KGE sd se

Regionalized model

ACCESS1_0 0.794 0.043 0.006 7.61 5.58 0.81 0.785 0.079 0.011
ACCESS1_3 0.803 0.046 0.007 6.34 5.06 0.73 0.798 0.075 0.011
bcc_csm1_1 0.768 0.050 0.007 6.45 5.27 0.76 0.802 0.071 0.010
bcc_csm1_1_m 0.779 0.051 0.007 5.78 5.29 0.76 0.822 0.066 0.010
BNU_ESM 0.779 0.059 0.009 5.93 5.36 0.77 0.819 0.072 0.010
CMCC_CESM 0.764 0.053 0.008 7.36 5.11 0.74 0.800 0.068 0.010
CMCC_CM 0.717 0.044 0.006 9.51 5.99 0.86 0.786 0.063 0.009
CMCC_CMS 0.755 0.049 0.007 7.36 5.38 0.78 0.794 0.069 0.010
CNRM_CM5 0.783 0.049 0.007 8.38 5.79 0.84 0.770 0.077 0.011
inmcm4 0.788 0.046 0.007 5.85 5.14 0.74 0.826 0.068 0.010
IPSL_CM5A_MR 0.796 0.049 0.007 7.45 5.34 0.77 0.791 0.071 0.010
MIROC_ESM 0.754 0.053 0.008 7.30 5.56 0.80 0.777 0.075 0.011
MIROC5 0.799 0.046 0.007 9.34 6.06 0.87 0.786 0.077 0.011
MPI_ESM_LR 0.775 0.050 0.007 8.20 5.60 0.81 0.785 0.072 0.010
MPI_ESM_MR 0.762 0.051 0.007 8.59 5.70 0.82 0.778 0.070 0.010
MRI_CGCM3 0.736 0.048 0.007 11.07 6.40 0.92 0.716 0.083 0.012

Geometric based EIG1 0.877 0.033 0.005 7.70 5.56 0.80 0.775 0.082 0.012
ensemble EIG2 0.877 0.033 0.005 3.30 2.92 0.42 0.787 0.069 0.010

Machine learning RF 0.881 0.032 0.005 3.09 3.00 0.43 0.915 0.031 0.004
based ensemble SVR 0.875 0.033 0.005 3.25 2.97 0.43 0.891 0.032 0.005

BMA 0.878 0.033 0.005 3.28 2.93 0.42 0.890 0.033 0.005
Regression based CLS 0.870 0.035 0.005 6.18 5.01 0.72 0.803 0.071 0.010
ensemble LAD 0.878 0.033 0.005 3.20 2.98 0.43 0.891 0.035 0.005

OLS 0.878 0.033 0.005 3.28 2.92 0.42 0.890 0.033 0.005

MED 0.873 0.033 0.005 7.41 5.48 0.79 0.779 0.080 0.012
Simple ensemble SA 0.877 0.033 0.005 7.56 5.52 0.80 0.777 0.082 0.012

TA 0.877 0.033 0.005 7.41 5.46 0.79 0.778 0.080 0.012

Table A3. Averaged relative variable importance in RF ensembles (n = 48 weather stations).

Regionalized Individual Model Importance (%) sd se

MIROC5 76.67 29.21 4.22
CNRM_CM5 70.57 24.83 3.58
MPI_ESM_LR 68.86 27.28 3.94
ACCESS1_0 50.47 30.41 4.39
MPI_ESM_MR 45.69 30.57 4.41
BNU_ESM 39.04 26.95 3.89
inmcm4 34.81 23.74 3.43
MRI_CGCM3 31.91 27.98 4.04
bcc_csm1_1 27.63 22.56 3.26
MIROC_ESM 16.16 20.33 2.94
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Table A4. Summary of annual and seasonal ET0 (n = 48 weather stations by period and scenario).

Period Scenario ET0 (mm) sd se

1971–2000 HISTORICAL 1216.32 85.44 12.33
2041–2070 RCP4.5 1292.36 85.08 12.28

Annual 2041–2070 RCP8.5 1317.32 86.10 12.43
2071–2099 RCP4.5 1307.21 85.76 12.38
2071–2099 RCP8.5 1369.13 88.57 12.78

1971–2000 HISTORICAL 184.24 18.76 2.71
2041–2070 RCP4.5 194.20 16.99 2.45

Autumn 2041–2070 RCP8.5 199.71 16.78 2.42
2071–2099 RCP4.5 197.49 16.98 2.45
2071–2099 RCP8.5 211.13 16.52 2.39

1971–2000 HISTORICAL 385.87 27.26 3.93
2041–2070 RCP4.5 421.51 29.21 4.22

Spring 2041–2070 RCP8.5 430.92 29.20 4.21
2071–2099 RCP4.5 426.63 29.37 4.24
2071–2099 RCP8.5 449.52 29.54 4.26

1971–2000 HISTORICAL 488.43 35.83 5.17
2041–2070 RCP4.5 505.66 37.46 5.41

Summer 2041–2070 RCP8.5 511.65 38.50 5.56
2071–2099 RCP4.5 509.03 37.95 5.48
2071–2099 RCP8.5 524.97 40.42 5.83

1971–2000 HISTORICAL 157.79 18.34 2.65
2041–2070 RCP4.5 170.99 18.36 2.65

Winter 2041–2070 RCP8.5 175.04 18.17 2.62
2071–2099 RCP4.5 174.07 18.19 2.63
2071–2099 RCP8.5 183.51 17.30 2.50

References
1. IPCC. Climate Change 2013-The Physical Science Basis: Summary for Policymakers; Intergovernmental Panel on Climate Change:

Geneva, Switzerland, 2013.
2. World Climate Research Programme. CORDEX: Coordinated Regional Climate Downscaling Experiment; World Climate Research

Programme’s Working Group: Norrköping, Sweden, 2020.
3. Van der Linden, P.; Mitchell, J. ENSEMBLES: Climate Change and Its Impacts: Summary of Research and Results from the ENSEMBLES

Project; Technical Report; Met Office Hadley Centre: Exeter, UK, 2009.
4. Gutiérrez, J.; Brands, S.; Herrera, S.; Gaitán, E.; San-Martín, D.; Sordo, C.; Tuni, M.; Manzanas, R. Proyecto esTcena: Programa

Coordinado Para la Generación de Escenarios Regionalizados de Cambio Climático: Regionalización Estadística; Cantabria University,
Spanish National Research Council and Spanish Meteorological Agency: Santander, Spain, 2013.

5. Amblar Francés, P.; Casado Calle, M.; Pastor Saavedra, A.; Ramos Calzado, P.; Rodríguez Camino, E. Guía de Escenarios
Regionalizados de Cambio Climático Sobre España a Partir de los Resultados del IPCC-AR5; AEMET: Madrid, Spain, 2017; p. 102.

6. IPCC. Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovern-
mental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2016; p. 1535.

7. AEMET. Proyecciones Climáticas Para el Siglo XXI. Plan Nacional de Adaptación al Cambio Climático (PNACC); AEMET: Madrid,
Spain, 2020.

8. Mitchell, T.D.; Hulme, M. Predicting regional climate change: Living with uncertainty. Prog. Phys. Geogr. Earth Environ. 1999,
23, 57–78. [CrossRef]

9. Devineni, N.; Sankarasubramanian, A.; Ghosh, S. Multimodel ensembles of streamflow forecasts: Role of predictor state in
developing optimal combinations. Water Resour. Res. 2008, 44, W09404. [CrossRef] [PubMed]

10. Hagedorn, R.; Doblas-Reyes, F.J.; Palmer, T. The rationale behind the success of multi-model ensembles in seasonal forecasting —
I. Basic concept. Tellus A Dyn. Meteorol. Oceanogr. 2005, 57, 219–233. [CrossRef]

11. Oviedo Torres, B.E.; León Aristizábal, G. Guía de Procedimiento Para la Generación de Escenarios de Cambio Climático Regional y Local
a Partir de los Modelos Globales; Instituto de Hidrología, Meteorología y Estudios Ambientales: Bogotá, Colombia, 2010; p. 89.

12. Giorgi, F.; Mearns, L.O. Calculation of Average, Uncertainty Range, and Reliability of Regional Climate Changes from AOGCM
Simulations via the “Reliability Ensemble Averaging” (REA) Method. J. Clim. 2002, 15, 1141–1158. [CrossRef]

13. Xu, Y.; Gao, X.; Giorgi, F. Upgrades to the reliability ensemble averaging method for producing probabilistic climate-change
projections. Clim. Res. 2010, 41, 61–81. [CrossRef]

14. Chen, W.; Jiang, Z.; Li, L. Probabilistic projections of climate change over China under the SRES A1B scenario using 28 AOGCMs.
J. Clim. 2011, 24, 4741–4756. [CrossRef]

15. Giménez, P.O.; Galiano, S.G.; Giraldo-Osorio, J. Identifying a robust method to build RCMs ensemble as climate forcing for
hydrological impact models. Atmos. Res. 2016, 174, 31–40. [CrossRef]

http://doi.org/10.1177/030913339902300103
http://dx.doi.org/10.1029/2006WR005855
http://www.ncbi.nlm.nih.gov/pubmed/19081782
http://dx.doi.org/10.3402/tellusa.v57i3.14657
http://dx.doi.org/10.1175/1520-0442(2002)015<1141:COAURA>2.0.CO;2
http://dx.doi.org/10.3354/cr00835
http://dx.doi.org/10.1175/2011JCLI4102.1
http://dx.doi.org/10.1016/j.atmosres.2016.01.012


Water 2021, 13, 222 24 of 27

16. Min, S.K.; Hense, A.; Paeth, H.; Kwon, W.T. A Bayesian decision method for climate change signal analysis. Meteorol. Z. 2004,
13, 421–436. [CrossRef]

17. Min, S.K.; Hense, A. A Bayesian approach to climate model evaluation and multi-model averaging with an application to global
mean surface temperatures from IPCC AR4 coupled climate models. Geophys. Res. Lett. 2006, 33, 1–15. [CrossRef]

18. Huntingford, C.; Jeffers, E.S.; Bonsall, M.B.; Christensen, H.M.; Lees, T.; Yang, H. Machine learning and artificial intelligence to
aid climate change research and preparedness. Environ. Res. Lett. 2019, 14, 124007. [CrossRef]

19. Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat. Deep learning and process
understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [CrossRef] [PubMed]

20. Wang, B.; Zheng, L.; Liu, D.L.; Ji, F.; Clark, A.; Yu, Q. Using multi-model ensembles of CMIP5 global climate models to reproduce
observed monthly rainfall and temperature with machine learning methods in Australia. Int. J. Climatol. 2018, 38, 4891–4902.
[CrossRef]

21. Ahmed, K.; Sachindra, D.; Shahid, S.; Iqbal, Z.; Nawaz, N.; Khan, N. Multi-model ensemble predictions of precipitation and
temperature using machine learning algorithms. Atmos. Res. 2020, 236, 104806. [CrossRef]

22. Kumar, A.; Mitra, A.; Bohra, A.; Iyengar, G.; Durai, V. Multi-model ensemble (MME) prediction of rainfall using neural networks
during monsoon season in India. Meteorol. Appl. 2012, 19, 161–169. [CrossRef]

23. Acharya, N.; Shrivastava, N.A.; Panigrahi, B.; Mohanty, U. Development of an artificial neural network based multi-model
ensemble to estimate the northeast monsoon rainfall over south peninsular India: An application of extreme learning machine.
Clim. Dyn. 2014, 43, 1303–1310. [CrossRef]

24. CHS. Plan Hidrológico de la Demarcación Hidrográfica del Segura 2015/21; Ministerio de Agricultura, Alimentación y Medio Ambiente;
Confederación Hidrográfica del Segura: Murcia, Spain, 2015.

25. Giménez, P.; García-Galiano, S. Assessing regional climate models (RCMs) ensemble-driven reference evapotranspiration over
Spain. Water 2018, 10, 1181. [CrossRef]

26. Gomariz-Castillo, F.; Alonso-Sarría, F.; Cabezas-Calvo-Rubio, F. Calibration and spatial modelling of daily ET0 in semiarid areas
using Hargreaves equation. Earth Sci. Inform. 2018, 11, 325–340. [CrossRef]

27. Allen, R.G.; Pereira, L.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Requirements; Number 56; FAO:
Rome, Italy, 1998; p. 300. [CrossRef]

28. Li, Z.; Zheng, F.L.; Liu, W.Z. Spatiotemporal characteristics of reference evapotranspiration during 1961–2009 and its projected
changes during 2011–2099 on the Loess Plateau of China. Agric. For. Meteorol. 2012, 154, 147–155. [CrossRef]

29. Tao, X.E.; Chen, H.; Xu, C.Y.; Hou, Y.K.; Jie, M.X. Analysis and prediction of reference evapotranspiration with climate change in
Xiangjiang River Basin, China. Water Sci. Eng. 2015, 8, 273–281. [CrossRef]

30. Peng, S.; Ding, Y.; Wen, Z.; Chen, Y.; Cao, Y.; Ren, J. Spatiotemporal change and trend analysis of potential evapotranspiration
over the Loess Plateau of China during 2011–2100. Agric. For. Meteorol. 2017, 233, 183–194. [CrossRef]

31. Izquierdo-Miñano, C.; Gomariz-Castillo, F.; Jiménez-Guerrero, P. Regionalización de la temperatura, precipitación y humedad
diaria en la Cuenca del Segura a partir de variables ambientales y Random Forest. In Miradas Confluyentes: Aportaciones de los
Jóvenes Investigadores; Lozano-Reina, G., Planes-Muñoz, D., Ponce, A.I., Madrid-Valero, J.J., Eds.; Servicio de Publicaciones de la
Universidad de Murcia: Murcia, Spain, 2020; Chapter 5, pp. 96–127.

32. Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [CrossRef]
33. Hargreaves, G.H.; Allen, R.G. History and evaluation of Hargreaves evapotranspiration equation. J. Irrig. Drain. Eng. 2003,

129, 53–63. [CrossRef]
34. Di Stefano, C.; Ferro, V. Estimation of evapotranspiration by Hargreaves formula and remotely sensed data in semi-arid

Mediterranean areas. J. Agric. Eng. Res. 1997, 68, 189–199. [CrossRef]
35. López-Urrea, R.; de Santa Olalla, F.M.; Fabeiro, C.; Moratalla, A. Testing evapotranspiration equations using lysimeter observa-

tions in a semiarid climate. Agric. Water Manag. 2006, 85, 15–26. [CrossRef]
36. Er-Raki, S.; Chehbouni, A.; Khabba, S.; Simonneaux, V.; Jarlan, L.; Ouldbba, A.; Rodriguez, J.C.; Allen, R.G. Assessment

of reference evapotranspiration methods in semi-arid regions: Can weather forecast data be used as alternate of ground
meteorological parameters? J. Arid Environ. 2010, 74, 1587–1596. [CrossRef]

37. Droogers, P.; Allen, R.G. Estimating reference evapotranspiration under inaccurate data conditions. Irrig. Drain. Syst. 2002,
16, 33–45. [CrossRef]

38. Gomariz-Castillo, F. Estimación de Variables y Parámetros Hidrológicos y Análisis de su Influencia Sobre la Modelización
Hidrológica: Aplicación a los Modelos de Témez y Swat. Ph.D. Thesis, Universidad de Murcia, Murcia, Spain, 2016.

39. Hargreaves, G. Simplified Coefficients for Estimating Monthly Solar Radiation in North America and Europe; Departmental Paper; Utah
State University: Logan, UT, USA, 1994.

40. Allen, R. Evaluation of Procedures for Estimating Mean Monthly Solar Radiation from Air Temperature; Report Prepared for FAO, Water
Resources Development and Management Service; FAO: Rome, Italy, 1995; p. 120.

41. Samani, Z.A. Estimating Solar Radiation and Evapotranspiration Using Minimum Climatological Data. J. Irrig. Drain. Eng. 2000,
126, 265–267. [CrossRef]

42. Terink, W.; Immerzeel, W.W.; Droogers, P. Climate change projections of precipitation and reference evapotranspiration for the
Middle East and Northern Africa until 2050. Int. J. Climatol. 2013, 33, 3055–3072. [CrossRef]

http://dx.doi.org/10.1127/0941-2948/2004/0013-0421
http://dx.doi.org/10.1029/2006GL025779
http://dx.doi.org/10.1088/1748-9326/ab4e55
http://dx.doi.org/10.1038/s41586-019-0912-1
http://www.ncbi.nlm.nih.gov/pubmed/30760912
http://dx.doi.org/10.1002/joc.5705
http://dx.doi.org/10.1016/j.atmosres.2019.104806
http://dx.doi.org/10.1002/met.254
http://dx.doi.org/10.1007/s00382-013-1942-2
http://dx.doi.org/10.3390/w10091181
http://dx.doi.org/10.1007/s12145-017-0327-1
http://dx.doi.org/10.1016/j.eja.2010.12.001
http://dx.doi.org/10.1016/j.agrformet.2011.10.019
http://dx.doi.org/10.1016/j.wse.2015.11.002
http://dx.doi.org/10.1016/j.agrformet.2016.11.129
http://dx.doi.org/10.13031/2013.26773
http://dx.doi.org/10.1061/(ASCE)0733-9437(2003)129:1(53)
http://dx.doi.org/10.1006/jaer.1997.0166
http://dx.doi.org/10.1016/j.agwat.2006.03.014
http://dx.doi.org/10.1016/j.jaridenv.2010.07.002
http://dx.doi.org/10.1023/A:1015508322413
http://dx.doi.org/10.1061/(ASCE)0733-9437(2000)126:4(265)
http://dx.doi.org/10.1002/joc.3650


Water 2021, 13, 222 25 of 27

43. Wang, W.; Xing, W.; Shao, Q.; Yu, Z.; Peng, S.; Yang, T.; Yong, B.; Taylor, J.; Singh, V.P. Changes in reference evapotranspiration
across the Tibetan Plateau: Observations and future projections based on statistical downscaling. J. Geophys. Res. Atmos. 2013,
118, 4049–4068. [CrossRef]

44. Xing, W.; Wang, W.; Shao, Q.; Peng, S.; Yu, Z.; Yong, B.; Taylor, J. Changes of reference evapotranspiration in the Haihe River
Basin: present observations and future projection from climatic variables through multi-model ensemble. Glob. Planet. Chang.
2014, 115, 1–15. [CrossRef]

45. CEDEX. Evaluación del Impacto del Cambio Climático en los Recursos Hídricos y Sequías en España; Centro de Estudios y Experi-
mentación de Obras Públicas, Ministerio de Fomento y Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente:
Madrid, Spain, 2017.

46. Kidron, G.J.; Zohar, M. Spatial evaporation patterns within a small drainage basin in the Negev Desert. J. Hydrol. 2010,
380, 376–385. [CrossRef]

47. Mardikis, M.; Kalivas, D.; Kollias, V. Comparison of interpolation methods for the prediction of reference evapotranspiration—An
application in Greece. Water Resour. Manag. 2005, 19, 251–278. [CrossRef]

48. Vicente-Serrano, S.M.; Lanjeri, S.; López-Moreno, J.I. Comparison of different procedures to map reference evapotranspiration
using geographical information systems and regression-based techniques. Int. J. Climatol. A J. R. Meteorol. Soc. 2007, 27, 1103–1118.
[CrossRef]

49. Conesa García, C. Las Formas del Relieve; Editum: Murcia, Spain, 2006; pp. 47–94.
50. Colino Sueiras, J.; Martínez-Carrasco Pleite, F.; Martínez Paz, J. El Impacto de la PAC Renovada Sobre el Sector Agrario de la Región de

Murcia; Consejo Económico y Social de la Región de Murcia: Murcia, Spain, 2014.
51. Calvo García-Tornel, F. Sureste español: Regadío, tecnologías hidráulicas y cambios territoriales. Scr. Nova Rev. Electrónica Geogr.

Y Cienc. Soc. 2006, 10, 1–35.
52. Morales Gil, A.; Rico Amorós, A.; Hernández Hernández, M. El trasvase Tajo-Segura. Obs. Medioambient. 2005, 8, 73–110.
53. García Aróstegui, J.; Senent Alonso, M.; Martínez Vicente, D.; Aragón Rueda, R. La Sobreexplotación de Acuíferos; Instituto

Euromediterráneo del Agua: Murcia, Spain, 2014; pp. 63–132.
54. López Bermudez, F.; Quiñonero Rubio, J.; García Marín, R.; Martín de Balmaseda, E.; Sánchez Fuster, M.; Chocano Vañó,

C.; Guerrero García, F. Fuentes y manantiales de la Cuenca del Segura; Instituto Euromediterráneo del Agua y Confederación
Hidrogárfica del Segura: Murcia, Spain, 2014.

55. Pellicer-Martínez, F.; Martínez-Paz, J.M. Climate change effects on the hydrology of the headwaters of the Tagus River:
Implications for the management of the Tagus–Segura transfer. Hydrol. Earth Syst. Sci. 2018, 22, 6473–6491. [CrossRef]

56. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna,
Austria, 2020.

57. Bi, D.; Dix, M.; Marsland, S.; O’Farrell, S.; Rashid, H.; Uotila, P.; Hirst, A.; Kowalczyk, E.; Golebiewski, M.; Sullivan, A.; et al. The
ACCESS coupled model: Description, control climate and evaluation. Aust. Meteorol. Oceanogr. J. 2013, 63, 41–64. [CrossRef]

58. Wu, T.; Li, W.; Ji, J.; Xin, X.; Li, L.; Wang, Z.; Zhang, Y.; Li, J.; Zhang, F.; Wei, M.; et al. Global carbon budgets simulated by the
Beijing Climate Center Climate System Model for the last century. J. Geophys. Res. Atmos. 2013, 118, 4326–4347. [CrossRef]

59. Ji, D.; Wang, L.; Feng, J.; Wu, Q.; Cheng, H.; Zhang, Q.; Yang, J.; Dong, W.; Dai, Y.; Gong, D.; et al. Description and basic evaluation
of Beijing Normal University Earth System Model (BNU-ESM) version 1. Geosci. Model Dev. 2014, 7, 2039–2064. [CrossRef]

60. Hurrell, J.W.; Holland, M.M.; Gent, P.R.; Ghan, S.; Kay, J.E.; Kushner, P.J.; Lamarque, J.F.; Large, W.G.; Lawrence, D.; Lindsay,
K.; et al. The Community Earth System Model: A Framework for Collaborative Research. Bull. Am. Meteorol. Soc. 2013,
94, 1339–1360. [CrossRef]

61. Scoccimarro, E.; Gualdi, S.; Bellucci, A.; Sanna, A.; Giuseppe Fogli, P.; Manzini, E.; Vichi, M.; Oddo, P.; Navarra, A. Effects of
Tropical Cyclones on Ocean Heat Transport in a High-Resolution Coupled General Circulation Model. J. Clim. 2011, 24, 4368–4384.
[CrossRef]

62. Weare, B.C.; Cagnazzo, C.; Fogli, P.G.; Manzini, E.; Navarra, A. Madden-Julian Oscillation in a climate model with a well-resolved
stratosphere. J. Geophys. Res. Atmos. 2012, 117, 1–11. [CrossRef]

63. Voldoire, A.; Sanchez-Gomez, E.; Salas y Mélia, D.; Decharme, B.; Cassou, C.; Sénési, S.; Valcke, S.; Beau, I.; Alias, A.; Chevallier,
M.; et al. The CNRM-CM5.1 global climate model: Description and basic evaluation. Clim. Dyn. 2013, 40, 2091–2121. [CrossRef]

64. Volodin, E.M.; Dianskii, N.A.; Gusev, A.V. Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric
and oceanic general circulations. Izv. Atmos. Ocean. Phys. 2010, 46, 414–431. [CrossRef]

65. Dufresne, J.L.; Foujols, M.A.; Denvil, S.; Caubel, A.; Marti, O.; Aumont, O.; Balkanski, Y.; Bekki, S.; Bellenger, H.; Benshila, R.; et al.
Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim. Dyn. 2013, 40, 2123–2165.
[CrossRef]

66. Watanabe, S.; Hajima, T.; Sudo, K.; Nagashima, T.; Takemura, T.; Okajima, H.; Nozawa, T.; Kawase, H.; Abe, M.; Yokohata, T.;
et al. MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. 2011, 4, 845–872.
[CrossRef]

67. Giorgetta, M.A.; Jungclaus, J.; Reick, C.H.; Legutke, S.; Bader, J.; Böttinger, M.; Brovkin, V.; Crueger, T.; Esch, M.; Fieg, K.; et al.
Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project
phase 5. J. Adv. Model. Earth Syst. 2013, 5, 572–597. [CrossRef]

http://dx.doi.org/10.1002/jgrd.50393
http://dx.doi.org/10.1016/j.gloplacha.2014.01.004
http://dx.doi.org/10.1016/j.jhydrol.2009.11.012
http://dx.doi.org/10.1007/s11269-005-3179-2
http://dx.doi.org/10.1002/joc.1460
http://dx.doi.org/10.5194/hess-22-6473-2018
http://dx.doi.org/10.22499/2.6301.004
http://dx.doi.org/10.1002/jgrd.50320
http://dx.doi.org/10.5194/gmd-7-2039-2014
http://dx.doi.org/10.1175/BAMS-D-12-00121.1
http://dx.doi.org/10.1175/2011JCLI4104.1
http://dx.doi.org/10.1029/2011JD016247
http://dx.doi.org/10.1007/s00382-011-1259-y
http://dx.doi.org/10.1134/S000143381004002X
http://dx.doi.org/10.1007/s00382-012-1636-1
http://dx.doi.org/10.5194/gmd-4-845-2011
http://dx.doi.org/10.1002/jame.20038


Water 2021, 13, 222 26 of 27

68. Yukimoto, S.; Adachi, Y.; Hosaka, M.; Sakami, T.; Yoshimura, H.; Hirabara, M.; Tanaka, T.Y.; Shindo, E.; Tsujino, H.; Deushi,
M.; et al. A New Global Climate Model of the Meteorological Research Institute: MRI-CGCM3—Model Description and Basic
Performance—. J. Meteorol. Soc. Jpn. 2012, 90A, 23–64. [CrossRef]

69. Herrera, S.; Cardoso, R.M.; Soares, P.M.; Espírito-Santo, F.; Viterbo, P.; Gutiérrez, J.M. Iberia01: A new gridded dataset of daily
precipitation and temperatures over Iberia. Earth Syst. Sci. Data 2019, 11, 1947–1956. [CrossRef]

70. Weiss, C.E.; Roetzer, G.R. GeomComb: (Geometric) Forecast Combination Methods. R Package Version 1.0. 2016. Available
online: https://CRAN.R-project.org/package=GeomComb.

71. Zeugner, S.; Feldkircher, M. Bayesian Model Averaging Employing Fixed and Flexible Priors: The BMS Package for R. J. Stat.
Softw. 2015, 68. [CrossRef]

72. Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22.
73. Karatzoglou, A.; Smola, A.; Hornik, K.; Zeileis, A. kernlab-An S4 Package for Kernel Methods in R. J. Stat. Softw. 2004, 11.

[CrossRef]
74. Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013. [CrossRef]
75. Timmermann, A. Chapter 4 Forecast Combinations. In Handbook of Economic Forecasting; Elsevier: Amsterdam, The Netherlands,

2006; Volume 1, pp. 135–196. [CrossRef]
76. Armstrong, J.S. Combining Forecasts. In Principles of Forecasting: A Handbook for Researchers and Practitioners; Armstrong, J.S., Ed.;

Springer: Boston, MA, USA, 2001; pp. 417–439. [CrossRef]
77. Granger, C.W.J.; Ramanathan, R. Improved methods of combining forecasts. J. Forecast. 1984, 3, 197–204. [CrossRef]
78. Elliott, G.; Timmermann, A. Optimal forecast combinations under general loss functions and forecast error distributions. J.

Econom. 2004, 122, 47–79. [CrossRef]
79. Kass, R.E.; Raftery, A.E. Bayes Factors. J. Am. Stat. Assoc. 1995, 90, 773–795. [CrossRef]
80. Raftery, A.E.; Gneiting, T.; Balabdaoui, F.; Polakowski, M. Using Bayesian Model Averaging to Calibrate Forecast Ensembles.

Mon. Weather Rev. 2005, 133, 1155–1174. [CrossRef]
81. Graefe, A.; Küchenhoff, H.; Stierle, V.; Riedl, B. Limitations of Ensemble Bayesian Model Averaging for forecasting social science

problems. Int. J. Forecast. 2015, 31, 943–951. [CrossRef]
82. Hinne, M.; Gronau, Q.F.; van den Bergh, D.; Wagenmakers, E.J. A Conceptual Introduction to Bayesian Model Averaging. Adv.

Methods Pract. Psychol. Sci. 2020, 3, 200–215. [CrossRef]
83. Hsiao, C.; Wan, S.K. Is there an optimal forecast combination? J. Econom. 2014, 178, 294–309. [CrossRef]
84. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning, 2nd ed.; Springer Series in Statistics; Springer: New York,

NY, USA, 2009; p. 745. [CrossRef]
85. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
86. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
87. Caputo, B.; Sim, K.; Furesjo, F.; Smola, A. Appearance–Based Object Recognition Using SVMs: Which Kernel Should I Use? In

Proceedings of the NIPS Workshop on Statistical Methods for Computational Experiments in Visual Processing and Computer
Vision, Whistler, BC, Canada, 12–14 December 2002; MIT Press: Cambridge, MA, USA, 2002.

88. Krause, P.; Boyle, D.P.; Bäse, F. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 2005,
5, 89–97. [CrossRef]

89. Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel
Expert Calibration. J. Hydrol. Eng. 1999, 4, 135–143. [CrossRef]

90. Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria:
Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [CrossRef]

91. Kling, H.; Fuchs, M.; Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J.
Hydrol. 2012, 424–425, 264–277. [CrossRef]

92. Levene, H. Robust tests for equality of variances. In Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling;
Olkin, I., Hotelling, H., Eds.; Stanford University Press: Palo Alto, CA, USA, 1960; pp. 278–292.

93. Long, J.S.; Ervin, L.H. Using Heteroscedasticity Consistent Standard Errors in the Linear Regression Model. Am. Stat. 2000,
54, 217–224. [CrossRef]

94. Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [CrossRef]
95. Cannarozzo, M.; Noto, L.; Viola, F. Spatial distribution of rainfall trends in Sicily (1921–2000). Phys. Chem. Earth Parts A/B/C 2006,

31, 1201–1211. [CrossRef]
96. Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical

tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [CrossRef]
97. Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245. [CrossRef]
98. IGN. Modelo Digital del Terreno con Paso de Malla de 25 m; Centro Nacional de Información Geográfica: Madrid, Spain, 2015.
99. Hofierka, J.; Suri, M. The solar radiation model for Open source GIS: Implementation and applications. In Proceedings of the

Open Source GIS-GRASS Users Conference, Trento, Italy, 11–13 September 2002; Volume 2002, pp. 51–70.
100. Kutner, M.H.; Nachtsheim, C.J.; Neter, J.; Li, W. Applied Linear Statistical Models; McGraw-Hill Irwin: Boston, MA, USA, 2005;

Volume 5.

http://dx.doi.org/10.2151/jmsj.2012-A02
http://dx.doi.org/10.5194/essd-11-1947-2019
https://CRAN.R-project.org/package=GeomComb
http://dx.doi.org/10.18637/jss.v068.i04
http://dx.doi.org/10.18637/jss.v011.i09
http://dx.doi.org/10.1007/978-1-4614-6849-3
http://dx.doi.org/10.1016/S1574-0706(05)01004-9
http://dx.doi.org/10.1007/978-0-306-47630-3_19
http://dx.doi.org/10.1002/for.3980030207
http://dx.doi.org/10.1016/j.jeconom.2003.10.019
http://dx.doi.org/10.1080/01621459.1995.10476572
http://dx.doi.org/10.1175/MWR2906.1
http://dx.doi.org/10.1016/j.ijforecast.2014.12.001
http://dx.doi.org/10.1177/2515245919898657
http://dx.doi.org/10.1016/j.jeconom.2013.11.003
http://dx.doi.org/10.1007/978-0-387-84858-7
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.5194/adgeo-5-89-2005
http://dx.doi.org/10.1061/(ASCE)1084-0699(1999)4:2(135)
http://dx.doi.org/10.1016/j.jhydrol.2009.08.003
http://dx.doi.org/10.1016/j.jhydrol.2012.01.011
http://dx.doi.org/10.1080/00031305.2000.10474549
http://dx.doi.org/10.1080/01621459.1968.10480934
http://dx.doi.org/10.1016/j.pce.2006.03.022
http://dx.doi.org/10.1016/j.gloplacha.2012.10.014
http://dx.doi.org/10.2307/1907187


Water 2021, 13, 222 27 of 27

101. Tebaldi, C.; Knutti, R. The use of the multi-model ensemble in probabilistic climate projections. Philos. Trans. R. Soc. A Math.
Phys. Eng. Sci. 2007, 365, 2053–2075. [CrossRef] [PubMed]

102. Nowotarski, J.; Raviv, E.; Trück, S.; Weron, R. An empirical comparison of alternative schemes for combining electricity spot price
forecasts. Energy Econ. 2014, 46, 395–412. [CrossRef]

103. Palm, F.C.; Zellner, A. To combine or not to combine? issues of combining forecasts. J. Forecast. 1992, 11, 687–701. [CrossRef]
104. Blanc, S.M.; Setzer, T. When to choose the simple average in forecast combination. J. Bus. Res. 2016, 69, 3951–3962. [CrossRef]
105. Körner, S.; Holzäpfel, F.; Sölch, I. Probabilistic Multimodel Ensemble Wake-Vortex Prediction Employing Bayesian Model

Averaging. J. Aircr. 2019, 56, 695–706. [CrossRef]
106. Tegegne, G.; Melesse, A.M.; Worqlul, A.W. Development of multi-model ensemble approach for enhanced assessment of impacts

of climate change on climate extremes. Sci. Total Environ. 2020, 704, 135357. [CrossRef]
107. Tomas-Burguera, M.; Beguería, S.; Vicente-Serrano, S.M. Climatology and trends of reference evapotranspiration in Spain. Int. J.

Climatol. 2020, 1–15. [CrossRef]

http://dx.doi.org/10.1098/rsta.2007.2076
http://www.ncbi.nlm.nih.gov/pubmed/17569654
http://dx.doi.org/10.1016/j.eneco.2014.07.014
http://dx.doi.org/10.1002/for.3980110806
http://dx.doi.org/10.1016/j.jbusres.2016.05.013
http://dx.doi.org/10.2514/1.C035109
http://dx.doi.org/10.1016/j.scitotenv.2019.135357
http://dx.doi.org/10.1002/joc.6817

	Introduction
	Reference Evapotranspiration
	Materials and Methods
	Study Area
	Data Sources
	Multi-Model Ensemble
	Evaluation and Comparison of Individual Regional Models and Multi-Model Ensembles
	Temporal and Spatial Patterns of ET0
	Summarized Workflow

	Results and Discussion
	Performance of Individual Models and Multi-Model Ensembles
	Temporal and Spatial Trend of Climate Change Scenarios
	Temporal Trend of Anual ET0
	Spatial Distribution of Annual Variation in ET0


	Conclusions
	
	References

