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Abstract: Drip irrigation (DI) has been widely utilized for crops and its water-saving effect has
been confirmed by numerous studies. However, whether this technology can save so much water
under the field scale during practical application is still uncertain. In order to answer this question,
evapotranspiration (ET), soil water content, transpiration and evaporation over the DI and border
irrigation (BI) in an arid area of NW China were continuously measured by two eddy covariance
systems, micro-lysimeters, the packaged stem sap flow gauges and CS616 sensors during 2014–2018
growing seasons. The results showed that the DI averagely increased crop water use efficiency
(CWUE) by 11% per year against BI. The deep drainage under DI treatment was lower than BI by
8% averagely for the five-year period. While for the ET, the DI averagely decreased ET by 7% and
40mm per year against the traditional BI. The decrease in ET was mainly due to the significant
reduction in soil evaporation instead of transpiration. Oppositely, we found that DI may increase
maize (Zea mays L.) transpiration in some year for the better preponderant growth of crop. Thus,
the accelerating effect on transpiration of DI and its reducing effect on soil evaporation should be
considered simultaneously. In our experiment, DI only improved CWUE and WUE (water use
efficiency) by 11% and 15% on average in a large farmland scale, unable to always be more than a
20% improvement, as concluded by many other field experiments. Consequently, the water-saving
effect of DI should not be overestimated in water resource evaluation.

Keywords: water use efficiency; border irrigation; drip irrigation; soil water balance

1. Introduction

Water scarcity is becoming more and more serious globally as a result of climate change
and population increase [1]. How to maximize the use of water in irrigated agriculture
has been the focus of many researchers. Film-mulched drip irrigation technology is a kind
of new surface irrigation technology to meet the water-saving agriculture development
and has been widely considered as a reliable irrigation way in terms of water saving
and production increasing, and thus widely promoted and used in arid and semi-arid
regions. In this irrigation method, the drip irrigation lines are laid on the soil surface and
under the plastic film, and the water enters the soil surface through the drip irrigation
line’s emitters and gradually wets the soil. Due to the advantages of mulching and drip
irrigation, when compared with traditional extensive irrigation, many studies have proved
that drip irrigation under film can save water, increase temperature, promote crop growth,
raise yield and improve water and fertilizer utilization efficiency [2–7].

To date, many researchers have investigated the effect of drip irrigation on water
use efficiency. Verma (2007) [8] conducted experiments on a peach field, finding out film
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mulching drip irrigation saved irrigation water by 59.1%, and promoted fruit yield by
30.4% against surface irrigation. Fan (2012) [9] reported film mulching drip irrigation could
save 41.9% of water, increase 23.2% of cotton yield, and improve WUE by 70.7%, compared
with furrow irrigation. Zhang (2016) [10] indicated drip irrigation under film mulch
increased WUE of oil sunflower by 47.48%, 11.18% and 31.26%, respectively, compared
with that of drip irrigation, film mulching sprinkling irrigation and furrow irrigation under
mulching. Zhang (2017a) [11] studied different plastic films under drip irrigation in potato
and confirmed that the film mulch drip irrigation averagely increased WUE by 9% during
2014–2015. Zhang (2018) [12] indicated drip irrigation under mulch reduced 2.8–5.2%
evapotranspiration and enhanced WUE by 10.7–13.1% in the maize field for 3 years. Liao
(2019) [13] used the method of water balance to conclude that drip irrigation under film
mulch could averagely enhance WUE by 19% and decrease ET by 13–24% for 3 years
compared with furrow irrigation in a cherry field. Han (2019) [14] conducted a 3-year
field experiment in a cotton field indicating that drip irrigation under mulch significantly
decreased the ratio of soil evaporation to evapotranspiration by 9%.

Based on the previous studies, we can conclude that drip irrigation can improve crop
WUE against the traditional irrigation method by more than 20%, reduce evapotranspira-
tion by more than 15% and influence the process of water balance. However, these results
were mainly from the contrast experiments using the traditional measurement methods at
a small zone scale, with representativeness of the results to be verified. If applied in a large
area, such as 1000 hectare, whether this technology can save so much water will still be
uncertain and doubtful. Consequently, answering the question is so critical for extending
the technology in arid regions. Our experimental region faces the severest water scarcity
in NW China due to insufficient rainfall, excessive evaporation, and uneven distribution
of rainfall during the year. Irrigation under plastic mulch is the commonest farmland
management of maize in the region. In recent years, to meet the demand from water-saving
agriculture and relieve the increasingly severe regional water consumption crisis, DI was
widely introduced and popularized.

For that end, we spent a lot conducting a long-term flux contrast experiment between
the drip-irrigated maize fields and the border-irrigated maize fields of large area in north-
west China during 2014–2018. Evapotranspiration, soil water content, transpiration and
evaporation over drip irrigation (DI) and border irrigation (BI) treatments were contin-
uously measured by two eddy covariance (EC) systems, micro-lysimeters, the packaged
stem sap flow gauges and CS616 sensors, to reveal the water-saving effect of DI in a re-
gional scale by contrast measurements and analysis. Detailed long-term field observations
obtained through five-year experiments help us better understand the quantitative impact
of large-scale DI in arid areas on farmland water balance and WUEs.

2. Materials and Methods
2.1. Experimental Site

The experimental sites were located in Wuwei City in Gansu Province in northwest
China. Field observation was carried out for 5 years (2014–2018) at the Shiyanghe Exper-
imental Station (37◦52′ N, 102◦50′ E, elevation 1581 m). The studied area has a typical
temperate continental arid climate, which is characterized by 8 ◦C as an annual mean
temperature, about 3550 ◦C as an annual accumulated temperature (>0 ◦C), approximately
2000 mm as a mean annual evaporation, 164 mm as an annual precipitation, 3000 h as an
average annual sunshine duration and about 40 to 50 m as groundwater table [15–19]. The
soil texture is generally silty loam at 100 cm depth. The most of precipitation in the region
happens from July to September in summer.

2.2. Experimental Design

The contrast experiments were conducted during 2014–2018 on maize: film mulching
drip irrigation (DI) treatment and film mulching border irrigation (BI) treatment. The
drip irrigation Emitters with 3.2 L h−1 discharge rate were every 0.3 m along the drip
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line. The drip irrigation system (Dayu Irrigation Group Co., Ltd.; Wuwei, China) are
planned by the government. The drip irrigation system includes water sources, deep
pumps (40 kw), centrifugal filter, pressure pump (20 kw), laminated filter, capillary (Φ 16
drip line), branch (Φ 32 PE), trunk (Φ 63 PVC), pressure differential fertilization tank
(30 L), mesh filter, water meter, pressure gauge and other accessories. The border irrigation
system are planned by the farmers. It includes water sources, deep pumps (40 kw), branch
(Φ 32 PE), trunk (Φ 63 PVC), water meter, pressure gauge and other accessories. Field
management measures (Irrigation and fertilization) of both treatments conformed to the
local farmers’ traditional management practice.

BI is the main irrigation management method for maize by local farmers. The BI
treatment covered an area of 400 m × 200 m from 2014 to 2015 and an area of 500 m ×
250 m from 2016 to 2018. The 100cm of soil was characterized by 1.52 g cm−3 as a mean soil
dry bulk density and 0.29 cm3 cm−3 as a field capacity during 2014–2015. Moreover, the
100 cm of soil was characterized by 1.52 g cm−3 as a mean soil dry bulk density and 0.32 cm3

cm−3 as a field capacity during 2016–2018. However, film mulching drip irrigation is a
water-saving irrigation method promoted locally in recent years. The area of DI treatment
was 2000 m×1000 m in 2014 and 2015, and 400 m × 200 m during 2016–2018. The mean
soil dry bulk density was 1.52 g cm−3 and field capacity 0.30 cm3 cm−3 in 2014 and 2015.
In addition, the 100 cm soil had the mean soil dry bulk density 1.52 g cm−3 and soil field
capacity 0.29 cm3 cm−3 from 2016 to 2018. The experimental sites were shown in detail in
previous study of Wang [20].

2.3. Methods and Measurements

In each treatment, an EC system was installed. The EC system of BI treatment in 2014
included a 3D sonic anemometer/thermometer, a Krypton hygrometer, a temperature and
humidity sensor, a net radiometer and two soil heat flux plates, as described by previous
studies [15–18]. During 2015–2018 under BI treatment, the new EC system consisted of a
CO2/H2O open path gas analyzer, two temperature and humidity probes, a Kipp & Zonen
radiometer, two soil heat flux plates, five CS616 probes, five soil thermocouple probes,
and an infrared radiometer. Five water content sensors and five soil temperature probes
were set at every 20 cm of 100 cm depth, respectively. The EC system under DI treatment
during 2014–2018 was same as that under BI treatment from 2015–2018. The energy flux
data were measured every 30 min with the EC system and the sampling frequency was
20 Hz. These instruments and data processing methods have been detailed described by
previous studies of Li (2018) and Wang (2020) [19,20].

Maize transpiration was measured with Stem-flow gauges (Flow32-1K, Dynamax Co.,
USA). Each device has eight probes to be installed on maize stems about 20 cm above the
ground. Then we used the suitable calculation method for seed maize described in detail by
Jiang (2014) [21] to caculate the transpiration rate of the crop stems. Soil evaporation was
obtained on a daily basis by micro-lysimeters. The micro-lysimeter PVC tubes were 20 cm
at height and 10 cm in diameter, respectively. Previous observations by Qin (2018) [22]
indicated evaporation under mulch was considered non-negligible. The micro-lysimeters
were buried in the middle of mulch (three replications) and the bare area between mulches
(three replications), respectively. The irrigation amount was measured by water meters.
These instruments and detailed data processing methods have been described by Wang
(2020) [20].

The drainage amount (D) was obtained by the water balance equation [23,24]:

D = P + I + ∆W + C− E− T − R (1)

where D is drainage under the observation depth (mm), E evaporation (mm), T transpi-
ration (mm), P precipitation (mm), I irrigation amount (mm), ∆W change in soil water
storage (mm), C capillary rise (mm) and R runoff (mm). Meanwhile, as the field was flat
and the groundwater table was 30–40 m, the value of both R and C was zero.
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2.4. Data Interpolation

The experimental methods of evaporation (E) and transpiration (T) in our study missed
the data in the days with the big winds, heavy rain or irrigation events. To analyze the
variation of T and E during the whole growing period. We used the adjusted Shuttleworth–
Wallace model introduced by Li (2013b) and Qin (2018) [16,22] to interpolate the missing
data. The simulated values have a good agreement with the measured values (Figure 1).
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Figure 1. Comparison of simulated value of evapotranspiration (ETS) by adjusted Shuttleworth-
Wallace model and measured value of evapotranspiration (ETM) over the maize field from 2014 to
2018 under film mulching border irrigation (BI) treatment and film mulching drip irrigation (DI)
treatment.

2.5. Data Analysis Method

Two water use efficiencies were used in our study. We have referred to the calibration
of crop water use efficiency (CWUE) in previous study [25]. However, evaporation always
was considered as the ineffective component of water use, and transpiration related to crop
growth. Considering that the CWUE was obtained as follows:

CWUE =
T

I + P
(2)

The water use efficiency (WUE, kg m−3) was obtained as Kijne (2003) [26]. Some
researchers name it “Crop Water Productivity”. It is as follows:

WUE =
Y

E + T
(3)

where Y represents the maize yield (t hm−2).
The Irrigation water use efficiency (IWUE, kg m−3) was referred to Knox (2013) [27].

The calibration is as follows:
IWUE =

Y
I

(4)

In this paper, SPSS software was used to conduct t-test for components of soil water
balance and WUEs in the drip irrigation and border irrigation, respectivly, and to analyze
whether the differences between the data were significant or not.

3. Results
3.1. Soil Water Balance
3.1.1. The Difference of Precipitation (P), Irrigation (I) and Soil Water Content (SWC),
Drainage (D) between DI Treatment and BI Treatment

As for the irrigation, the total irrigation amount under BI treatment was 360 mm,
550 mm, 480 mm, 570 mm, and 525 mm in 2014, 2015, 2016, 2017 and 2018, respectively,
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while this figure under DI treatment was 350 mm, 400 mm, 427 mm, 368 mm, and 422 mm
over the same period, respectively. Compared to the BI treatment, the DI treatment reduced
irrigation amount by 10 mm, 150 mm, 53 mm, 202 mm and 103 mm, respectively, during
this period. On average, drip irrigation reduced the irrigation amount of maize by 104 mm
per year during the five years (Figure 2 and Table 1).
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Figure 2. Seasonal variations of precipitation (P) and irrigation (I) over the maize field from 2014
to 2018 under film mulching border irrigation (BI) treatment and film mulching drip irrigation (DI)
treatment.

Table 1. Water balance components, D/(P+I), T/(P+I) (CWUE), Y/I (IWUE) and Y/ET (WUE) under film mulching border
irrigation (BI) and film mulching drip irrigation (DI) during 2014–2018 and p value by t-test of these.

Treatment Year Days
ET E T P I ∆W D Yield

D/(P+I) T/(P+I)
Y/I Y/ET

(mm) (mm) (mm) (mm) (mm) (mm) (mm) (t/hm2) (kg/m3) (kg/m3)

BI 2014 149 497 108 389 201 360 −31 95 6.9 17% 69% 1.92 1.39
DI 2014 134 479 108 371 195 350 −11 78 9.04 14% 68% 2.59 1.89
BI 2015 155 616 190 426 151 550 −8 93 8.52 13% 61% 1.55 1.38
DI 2015 132 517 95 421 119 400 −8 10 9.97 2% 81% 2.49 1.93
BI 2016 154 521 106 415 119 480 −47 124 10.44 21% 69% 2.17 2.00
DI 2016 144 511 99 412 115 427 −1 32 10.95 6% 76% 2.56 2.14
BI 2017 147 581 122 459 133 570 50 72 6.76 10% 65% 1.18 1.16
DI 2017 142 490 95 394 134 368 −48 61 5.29 12% 79% 1.44 1.08
BI 2018 159 525 117 408 158 525 56 103 7.53 15% 60% 1.44 1.44
DI 2018 146 543 97 446 156 422 29 6 7.92 1% 77% 1.88 1.46
BI 2014–2018 153 548 129 419 152 497 4 97 8.03 15% 65% 1.62 1.47
DI 2014–2018 140 508 99 409 144 393 −8 37 8.63 7% 76% 2.20 1.70

p-value
(t-test) 0.074 0.043 0.47 0.002 0.564 0.001 0.548 0.011 0.001 0.043 0.267

The daily variation of precipitation (P) and irrigation (I) under BI treatment and DI treatment during 2014–2018 is shown in Figure 2.
During 2014–2018, drip irrigation reduced the precipitation of maize by an average of 8 mm (5%) for the shorter growth stages of DI
treatment.

The daily variations of 0–100 cm SWC under BI treatment and DI treatment during
2014–2018 are shown in Figure 3. Due to more irrigation frequencies under DI treatment,
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the fluctuation time of SWC in the whole growth period was more than that under BI
treatment, but the fluctuation range of SWC under DI treatment was less than that under
BI treatment during 2014–2018. The absolute change of SWC (∆W) under BI treatment was
31 mm, 8 mm, 47 mm, 50 mm, and 56 mm in 2014, 2015, 2016, 2017 and 2018, respectively,
while this figure under DI treatment was 11 mm, 8 mm, 1 mm, 48 mm, and 29 mm in
the five years, respectively. Compared to the BI treatment, the DI treatment saved ∆W by
20 mm, 0 mm, 46 mm, 2 mm and 27 mm, respectively, in the five years. By comparison,
drip irrigation reduced the absolute ∆W of maize by 18 mm averagely during 2014–2018.
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Figure 3. Seasonal variations of average soil water content of 100 cm depth measured by CS616
probes during the maize growing season from 2014 to 2018 under film mulching border irrigation
(BI) treatment and film mulching drip irrigation (DI) treatment.

The total drainage under BI treatment was 95 mm, 93 mm, 124 mm, 72 mm and 103 mm
in 2014, 2015, 2016, 2017 and 2018, respectively, while this figure under DI treatment was
78 mm, 10 mm, 32 mm, 61 mm, and 6 mm in the five years, respectively. Compared to the
BI treatment, the DI treatment reduced drainage by 17 mm, 83 mm, 92 mm, 12 mm and
96 mm, respectively, in the five years. On average, drip irrigation markedly reduced the
drainage of maize field by 60 mm per year (62%) (Table 1 and Figure 4).
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Figure 4. Comparison of drainage (D), D/(P+I) and effective water utilization (T/(P+I)) under BI treatment and DI treatment
during 2014–2018.

In conclusion, DI treatment significantly decreased water input and output, which is
mainly due to reduction on irrigation and drainage by 21% and 62% in an arid region. In
addition, DI made the field water storage in a relatively stable state, which is beneficial to
provide the water conditions needed for the growth of crops.

3.1.2. The Difference of Evaporation (E), Transpiration (T) between DI Treatment and
BI Treatment

The daily variations of transpiration (T) and evaporation (E) under BI and DI treat-
ments during 2014–2018 are shown in Figure 5. The total E under BI and DI treatments
was 108 mm and 108 mm in 2014, 190 mm and 95 mm in 2015, 106 mm and 99 mm in 2016,
122 mm and 95 mm in 2017, and 117 mm and 97 mm in 2018, respectively. The DI treat-
ment reduced evaporation by 0 mm, 94 mm, 8 mm, 27 mm and 20 mm, respectively, over
2014–2018, and averagely lowered evaporation by 30mm per year against BI treatment.

As for the transpiration, the total T under BI treatment and DI treatment was 389 mm
and 371 mm in 2014, 426 mm and 421 mm in 2015, 415 mm and 412 mm in 2016, 459 mm
and 394 mm in 2017, and 408 mm and 446 mm in 2018, respectively. Transpiration under
DI treatment was saved by 18 mm, 5 mm, 3 mm, 65 mm and −38 mm, respectively,
against BI treatment in the five years. Thus, drip irrigation may decrease or increase crop
transpiration.

As for the five-year period, drip irrigation only reduced transpiration by 10 mm
and less than 2.5% ET per year averagely. Thus, we could infer that the water-saving
effect of drip irrigation was mainly due to reduction in soil evaporation rather than crop
transpiration. In the opposite, drip irrigation may accelerate crop water demand and
consumption. This is a very important finding, which will be discussed in the later section.
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Figure 5. Seasonal variations of daily transpiration (T) measured by sap flow and daily evaporation (E) measured by
micro-lysimeters under film mulching border irrigation (BI) treatment and film mulching drip irrigation (DI) treatment
during 2014–2018.

3.2. Comparison of Proportion of CWUE, WUE, IWUE and Proportion of Drainage to the Sum of
Precipitation and Irrigation (D/(P+I)) between DI Treatment and BI Treatment

The annual T/(P+I) (CWUE) and D/(P+I) under the BI and DI treatments during
2014–2018 are shown in Figures 4 and 6 and Table 1. The IWUE under BI treatment was
69%, 61%,69%, 65% and 60% in 2014, 2015, 2016, 2017, and 2018, respectively, while this
figure under DI treatment was 68%, 81%, 76%, 79%, and 77% in the five years, respectively.
Compared to the BI treatment, the DI treatment increased CWUE by −1%, 20%, 7%, 13%
and 17% in the five years. By contrast, film mulching drip irrigation reduced CWUE of
maize by an average of 11%.

While the WUE under BI treatment was 1.39 kg m−3, 1.38 kg m−3, 2.00 kg m−3,
1.16 kg m−3, and 1.44 kg m−3 in 2014, 2015, 2016, 2017, and 2018, respectively (Table 1),
while this figure under DI treatment was 1.89 kg m−3, 1.93 kg m−3, 2.14 kg m−3, 1.08 kg m−3,
and 1.46 kg m−3 in the five years, respectively. Compared to the BI treatment, the DI treat-
ment promoted WUE by 36%, 39%, 7%, −7% and 2% in the five years. By contrast, film
mulching drip irrigation enhanced WUE of maize by an average of 15%. The DI treatment
enhanced IWUE by 35%, 61%, 18%, 22% and 31% in the five years, this is a very significant
improvement.
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Figure 6. Comparison of evaporation (E), transpiration (T), drainage (D), P+I, D/(P+I) and effective water utilization
(T/(P+I)) under film mulching border irrigation (BI) treatment film mulching drip irrigation (DI) treatment during 2014–2018.

As for D/(P+I), the proportion of drainage to the sum of precipitation and irrigation
(D/(P+I)) under BI treatment was 17%, 13%, 21%, 10%, and 15% in 2014, 2015, 2016, 2017
and 2018, respectively, while this figure under DI treatment was 14%, 2%, 6%, 12%, and 1%
in the five years, respectively. Compared to the BI treatment, the DI treatment increased
D/(P+I) by 3%, 11%, 15%, −2% and 14% in the five years. By contrast, drip irrigation
reduced the D/(P+I) of maize by an average of 8% per year.

The results showed that DI significantly improved the WUE and CWUE. This result
further verified the water-saving effect and feasibility of DI in arid areas. Many studies
have shown that the amount of leakage increases with the amount of irrigation, but our
study found that drip irrigation could reduce this increase rate (D/(P+I)). This finding
also provides theoretical support for the development and application of drip irrigation
technology.

4. Discussion
4.1. Why Does Drip Irrigation Improve Water Use Efficiencies?

Water resource shortage is one of the major characteristics of arid regions, where
development of water-saving agriculture is the concern of many scholars. Three different
WUE indexes were selected to comprehensively evaluate the performance of DI in WUE
from the aspects of economic production benefit (WUE and IWUE), crop water consumption
and component of water consumption (CWUE) [25–28]. Meanwhile, multiple indexes were
selected to analyze the influence of drip irrigation on water use efficiency in order to provide
data reference and theoretical support for future related studies. Our results showed that
the change of irrigation methods from BI to DI could improve the maize CWUE, WUE and
IWUE by 11%, 15% and 36% per annum during 2014–2018. This indicates that DI has a
greater water-saving capacity than BI in arid area, and the application of DI technology is
also an effective measure to improve the WUE of farmland [29].

Two mainly factors contributed to the increase on WUE of DI. One is the significant
decrease of water input under DI, which is mainly due to reduction on irrigation by 21%
under DI in our study. With little amount and high frequency of DI, the soil moisture
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content of the root layer maintained a relatively stable value for a long time. At the same
time, little water infiltrated in the deep soil layer, thus utilizing more irrigation water. The
irrigation pipes of DI were laid under the film, which makes the film mulching increase the
evaporation resistance, and thus changes the vapor exchange of surface water [30]. The
other factor is that the DI promotes the crop growth. Moreover, the superior growth of the
crop contributed to the increase of maize yield (Table 1). Transpiration is closely related
to the growth of plant. Our study showed the annual transpiration under two treatments
was similar and concluded that more water-saving DI would not reduce transpiration of
crops, but even enhance transpiration to promote the growth of crops due to the warming
effect of DI. This is also consistent with previous studies showing that DI accelerates crop
growth [7,31–34]. Many previous studies have shown that DI can improve utilization
efficiency of irrigation water [6,35]. The research of Geerts and Raes have considered DI
aimed to maximize water productivity and to stabilize—rather than maximize—yields [36].

4.2. Compared with Precious Studies?

Our Research analyzed differences in farmland water balance and WUE between
DI and BI in arid areas of northwest China. The research shows that DI has a significant
improvement in water-saving capacity in drought-stricken areas compared with traditional
BI. Many previous studies have focused on the development of irrigation systems when
implementing DI techniques on many crops, and different methods of implementing the
same irrigation method will result in different WUE and yield [37–39]. Different irrigation
systems and management methods under different DI conditions in different crops and
regions can increase the WUE and yield by more than 15% [36,40,41], which indicates
that DI has strong water-saving potential and needs to be developed urgently. Our study
showed that DI improved WUE by 15% compared with BI without irrigation optimization.
However, how much water-saving space can be improved by implementing DI with
optimized irrigation system in a large area should be the direction of our further research.

Our research shows that the DI reduced the drainage and D/(P+I) by an average of
62% and an average of 8% in maize fields. This is a very significant improvement. The main
reason is that DI could reduce per-time irrigation norm and therefore shallowed the wetting
front depth and reduced the wetting area of irrigation water in the soil, thus resulting in
reduction of water going deep into the soil, to effectively reduce deep drainage loss of
water [42–44]. Second, DI increases the irrigation frequency. The SWC under film-mulched
irrigation had a low fluctuation range during the whole growth period. Compared with
traditional irrigation, the water losses of both the upper (soil evaporation) and lower (deep
drainage) borders are lower. It has shown that the water leakage increases with the amount
of irrigation. Meanwhile, our study found that DI can reduce this increase rate (D/(P+I)).
This finding also provides theoretical support for the development and application of
drip irrigation technology. Meanwhile, DI reduces the loss of water leakage, which may
avoid problems such as groundwater pollution, but in arid areas where evaporation is
greater, salt and fertilizer may remain more on the soil surface, causing soil compaction
and other problems. However, how to avoid these problems by regulating DI fertilization
and irrigation system still needs further research.

5. Conclusions

Having conducted a five-year continuous contrast observation field experiment under
border irrigation and drip irrigation treatments, we concluded that drip irrigation averagely
increased maize CWUE and WUE by 11% and 15%, decreased ET by 7% and 40mm per
year against the traditional border irrigation. The decrease in ET was mainly due to the
significant reduction in soil evaporation rather than transpiration. In the opposite, drip
irrigation may increase maize transpiration in some year for the better preponderant
growth of crop. The increasing effect on transpiration of drip irrigation and its reducing
effect on soil evaporation should be considered simultaneously. Furthermore, our research
revealed that the drip irrigation can only improve CWUE and WUE by 11% and 15%
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averagely in a farmland scale, unable to always over 20% as concluded by many field
experiments. Thus the water-saving effect of drip irrigation shouldn’t be overestimated in
a large regional scale.

Our research revealed the water-saving mechanism of drip irrigation, and evaluated
the water-saving effect of technology in regional scale. These provided critical scientific
basis for understanding and promoting the drip irrigation technology. However, the study
focused only on the impact of changes in border irrigation conversion to drip irrigation
on water use efficiency, and failed to explore the water-saving space generated by better
irrigation systems under drip irrigation conditions. In addition, the beneficial and harmful
effects of drip irrigation on farmland ecosystem still need further research and exploration.
These are the directions that we need to pay attention to in the future.
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