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Abstract: Soil erosion by gullies in Ethiopia is causing environmental and socioeconomic problems.
A sound soil and water management plan requires accurately predicted gully erosion hotspot areas.
Hence, this study develops a gully erosion susceptibility map (GESM) using frequency ratio (FR)
and random forest (RF) algorithms. A total of 56 gullies were surveyed, and their extents were
derived by digitizing Google Earth imagery. Literature review and a multicollinearity test resulted in
14 environmental variables for the final analysis. Model prediction potential was evaluated using
the area under the curve (AUC) method. Results showed that the best prediction accuracy using
the FR and RF models was obtained by using the top four most important gully predictor factors:
drainage density, elevation, land use, and groundwater table. The notion that the groundwater table
is one of the most important gully predictor factors in Ethiopia is a novel and significant quantifiable
finding and is critical to the design of effective watershed management plans. Results from separate
variable importance analyses showed land cover for Nitisols and drainage density for Vertisols as
leading factors determining gully locations. Factors such as texture, stream power index, convergence
index, slope length, and plan and profile curvatures were found to have little significance for gully
formation in the studied catchment.

Keywords: gully erosion mapping; Ethiopian highlands; Nitisols; Vertisols; soil type; groundwater table

1. Introduction

Although gullies occupy, on average, a small portion of a catchment (<5%), land degra-
dation due to gully erosion causes serious environmental and socioeconomic problems by
affecting soil and land functions [1,2]. Gully erosion lowers the groundwater table [3] and
increases the susceptibility of soils to drought, causing crop yield reduction [4]. Gullies
also increase landscape connectivity by providing efficient paths for the transport of water,
sediment, and other materials from the source to the sink [5,6]. This affects flooding and
reservoir siltation [7]. Soil erosion studies worldwide have shown that sediment in rivers
mainly originates from gully erosion [8]. In Ethiopia, severe gully erosion has been a major
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concern for both current and planned water management developments, which range
from small-scale irrigation to large-scale hydroelectric dams [9–11]. Gully erosion in the
Ethiopian highlands accounts for 28% of the soil loss in semiarid regions [12], whereas in
the subhumid areas, it accounts for two orders of magnitude more soil loss than rill and
inter-rill erosions [13].

In Ethiopia, the dominant causes of gully erosion have been investigated with re-
gard to anthropogenic, morphologic, hydrologic, soil, and environmental aspects of a
catchment. Land degradation by gullies has been associated with stagnation of agri-
cultural technology and lack of agricultural intensification [14], increased traditional
drainage ditches [15], drainage area, slope, and lithology [16], and elevated groundwater
levels [17,18]. Furthermore, road construction can facilitate gully development by increas-
ing its drainage area [19] and can cause up to one order of magnitude increase in gully head
retreats [20]. Soil crack and pipes also aggravate gully erosion by allowing preferential
water flow in the soil and increasing soil pore water pressure [13,20].

Previous studies of gully erosion in Ethiopian highlands have been based on field
monitoring [4,21–23] and combined field monitoring and interviews [7,13]. However, large-
scale field monitoring of gullies throughout a catchment is costly and labor-demanding.
As a result, often, only a few parameters to understand the gully dynamics are measured,
omitting other environmental factors that affect gully development.

In regions with developing economies, where resources are particularly limited to
undertaking extensive field surveys, the use of prediction models can be effective for
identifying areas susceptible to gully erosion and determining the most important drivers
of gully erosion [24]. Prediction of gully-susceptible areas is essential for the appropriate
planning of sustainable soil and water conservation measures [24,25]. Nowadays, statistical
and machine-learning models have been successfully used to predict a variety of environ-
mental properties across different fields, e.g., groundwater zoning [26], landslide hazard
mapping [27–29], flood risk assessment [30], and gully-head susceptibility mapping [31].
Various techniques have been used to map gullies, such as entropy information value [32],
multivariate adaptive regression splines [33], certainty factor and maximum entropy [34],
frequency ratio [35,36], and random forest [37,38].

Few studies in Ethiopia have predicted gully erosion by using topographical thresh-
old factors such as the topographic wetness index (TWI) and the stream power index
(SPI) [39,40]. The application of these thresholds is flawed mainly because streams and
saturated-bottom lands are preferentially considered most vulnerable to gullies. This is par-
ticularly problematic when gullies are predominantly controlled by other factors (e.g., land
use, soil type, and elevation). Since gully erosion is a function of various hydrological,
geomorphic, and environmental factors [8], using more gully erosion factors in modeling
would improve prediction accuracy.

Recently, FR and RF models were tested in several countries and gave very good gully
prediction accuracies [41,42]. A recent field campaign in the Minzir catchment in the upper
Blue Nile river basin (Ethiopia) [43] provides the necessary extra gully erosion factors for
a more accurate gully-erosion susceptibility map (GESM). Therefore, the objective of this
study is to develop this GESM using frequency ratio (FR) and random forest (RF) models
for the Minzir catchment, Upper Blue Nile River Basin (Ethiopia). In addition to GESM,
the RF model was also used to rank predictor factors based on their importance to gully
erosion. Among the 16 selected factors, soil type and groundwater table (GWT) are new
variables introduced to the models that have not been used in previous studies. Gully
erosion predictor factors for the Nitisol- and Vertisol-dominated subcatchment were ranked
separately. This distinction is based on the fact that the rate of gully erosion in Nitisol and
Vertisol has been reported to be different [43], which inspired this study to hypothesize
that the most important factors controlling gully-erosion might also be different.
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2. Materials and Methods
2.1. Study Area

The Minzir catchment is in the subhumid part of the upper Blue Nile river basin
(Ethiopia) and covers a drainage area of 18 km2 (Figure 1). Its altitude ranges from
2030–2265 m a.s.l. with an average of 2095 m a.s.l. The catchment receives an average
annual rainfall of 1480 mm, of which more than 90% falls between May and October. The
mean maximum monthly temperature is 30.0 ◦C in March to 23.1 ◦C in August, whereas
the mean minimum monthly temperature is 5.4 ◦C in December, with up to 13.1 ◦C in May
and June.
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Figure 1. Study area map and elevation range of the Minzir catchment.

The geology is dominated by Quaternary basalts [44], with soil type dominantly being
Nitisols (29.5%), Vertisols (29.2%), Luvisols (14.9%), Leptosols (10%), and Alisols (7.7%).
Cambisols, Fluvisols, and Regosols cover the remaining 5% of the catchment. The soil
texture is dominantly clay (83.7%), clay loam (5.9%), sandy clay loam (3.5%), and loam
(3.1%). The major land cover in the study area is cultivated land (83%), grassland (12.8%),
and plantation forest (1.6%). Woodland, bushland, villages, and water bodies together
comprise less than 3% of the catchment.

To reduce land degradation, different biological, agronomic, and physical soil and wa-
ter conservation measures (e.g., bunds and check dams) were introduced in the catchment
area [45]. Despite this effort, the amount of sediment reaching the Koga reservoir, which is
located downstream of Minzir, is still significant and amounts to 25 Mg ha−1 y−1 [46,47].
Moreover, soil and water conservation efforts in the last 15 years resulted in only 35%
reduction in soil erosion [48,49]. An increase in cultivated land and a decrease in woody
vegetation has contributed to the increased sediment yield in the catchment [46].
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The same study further stated that poorly planned and poorly constructed soil and
water conservation measures are among the main causes of soil erosion in the catchment.
A similar study from an adjacent catchment revealed that due to the lack of integrated
approaches and the lack of maintenance, rehabilitation measures have not been able to
reduce sediment in rivers [49]. This and an increase in cultivated land and a decrease in
woody vegetation have contributed to the increased sediment yield in the catchment [46]
in spite of the construction of rehabilitation measures.

2.2. Data Collection and Preparation

This research is organized as follows (see Figure 2): (1) data organization, including
gully erosion inventory and selection of gully predictor factors; (2) multicollinearity test of
gully predictor factors; (3) gully-erosion susceptibility mapping (GESM); (4) ranking gully
predictor factors; (5) model validation.
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2.2.1. Data Organization

• Gully erosion inventory

Gully erosion inventory data were prepared by combining field surveys with Google
Earth™ imagery analysis. A total of 56 gullies were surveyed in the field; their morphology,
including width, depth, length, and locations, were monitored. Then, the areal extent of
each gully was derived by digitizing Google Earth imagery.

• Gully erosion predictor factors

From a literature review, 18 predictor factors that control gully erosion were selected
from four data sets: digital elevation model (DEM), groundwater table, soil, and land
cover (Table 1). We omitted those that do not vary throughout the catchment and do not
have explanatory values in our modeling, such as geology and rainfall depth. Therefore, a
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total of 16 gully predictor factors, which have been subjected to the multicollinearity test
(elaborated in Table 2), will be used.

Table 1. Data sources.

Data Used Description Resolution Source

Digital elevation model
(DEM)

DEM to delineate the catchment boundary
and river networks and characterize the

landscape. Topography plays an important
role in runoff processes and helps us to
understand the physical processes of

disaggregation, transport, and soil
deposition [50]

12.5 m
Advanced Land

Observing Satellite
(ALOS)

Land use/cover
Land use/cover and soil digital layer are

used to quantify the hydrological processes
and soil erosion in a catchment [51]

12.5 m Song et al. [52]

Soil data This data set includes soil type and texture
data for the Minzir study catchment. 1:50,000

Amhara Design and
Supervision Works
Enterprise, Ethiopia

Groundwater level

In this study, we used groundwater table
(GWT) readings from 50 piezometers,

reported for 2018. GWT was measured from
the soil surface to the location of the GWT.
GWT surface was generated using inverse
distance weighting (IDW) interpolation of

the observations using ArcGIS [52].

50 piezometers
distributed across the

catchment
[43]

Note: vector maps of land use/cover and soil were reprocessed into 12.5-m rasters to match the DEM resolution.

To ascertain compatibility during modeling, maps of the gully inventory and predictor
factors were rasterized to the same pixel size of 12.5 m as the DEM using ArcGIS 10.5. To
extract different gully-erosion factors from the DEM, SAGA GIS 7.5 was used [53]. The first
12 factors presented in Table 2 were derived from DEM data.

The 1:50,000 scale soil data (soil type and soil texture) has an equivalent resolution of
25 m. The nearest resampling technique [54] was used to match the soil data resolution
with the DEM resolution. This resampling technique will not change the value of the cell.
The maximum spatial error of applying the nearest resampling technique is one-half of the
size of the cell.

Table 2. Description of gully predictor variables.

Variable Description Classes/Class Range

Elevation Determines vegetation distribution and rainfall patterns [55,56],
which indirectly affect gully distribution [24]. 2030–2265

Slope
Determines both the kinetic energy and the volume of surface runoff

[8], which, in turn, affects drainage density, discharge, and soil
erosion [24].

0–34

Aspect
Variation in aspect influences the distribution of vegetation by

influencing the rate of recharge, soil moisture content, and
evaporation that, in turn, control gully development [57,58].

Flat, North, Northeast,
East, Southeast, South,

Southwest, West,
Northwest, and North

Plan curvature

Plan curvature, also known as contour curvature [59], is defined as
“the rate of change of aspect along a contour” [60]. Plan curvature can

have positive, negative, and zero values representing convexity,
concavity, and flatness, respectively [61]. Flow diverges on a convex

slope and converges on a concave slope.

Concave, flat, and convex
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Table 2. Cont.

Variable Description Classes/Class Range

Profile curvature

Profile curvature is defined as “the rate of change of slope down a
flow line” [60], and its values can be positive, negative, and zero.
Profile curvature with positive values is concaved upward, with
slopes decreasing downhill and flows being accelerated. Profile

curvature with negative values is upwardly convexed, with slopes
increasing downhill and flows being decelerated. Zero values are

flat surfaces.

−2.69–2.01

Convergence index
(CI)

CI estimates the divergence (when CI is negative) and convergence
(positive) of flow in a given area; it is calculated on the basis of aspect

information [62].
−100–99.2

Topographic
ruggedness index

(TRI)

TRI is a measure of topographic heterogeneity and is calculated on
the basis of relief and drainage [63]. The TRI value for flat areas is

zero, while the value for mountain areas with steep ridges is
positive [64].

0.35–19.6

Topography position
index (TPI)

TPI is derived from DEM by comparing a given cell elevation to the
average of its surroundings [65]. The TPI value can be positive (when

the elevation of a location greater than the average of its
neighborhood), negative (when less than the surrounding areas), and

zero (for flat or constant slope) [66].

−7.90–22.8

Slope length (LS)

LS is defined as the distance between the start of overland flow to a
point where the slope gradient decreases sufficiently to cause

depositions [67]. LS influences soil erodibility and critical
shear stress [68].

0–772

Drainage density (DD)

Drainage density is a measure of stream length per unit of catchment
area [69] and is used as a predictor of gully erosion in many studies.
The soil drainage characteristics affect soil water retention capacity,

which, in turn, determines the rate of soil erosion [70].

0–2.2

Topographic wetness
index (TWI)

TWI quantifies the effect of local topography over the hydrological
process and assesses the spatial distribution of soil moisture and

surface saturation [71]. In areas where saturation excess runoff is the
dominant process of gullies, TWI predicts saturated areas susceptible

to gullies [72].

2.89–17.6

Stream power index
(SPI)

SPI estimates the erosive power of surface runoff as a result of the
relationship between discharge and catchment area [73]. Similarly, it
predicts the potential of streams to modify the geomorphology of a

catchment by gully erosion [74].

0–5965

Groundwater table
depth (GWT)

Research conducted in humid and subhumid regions has shown that
elevated groundwater is one of the most important causes of gully

erosion [18,75,76]. Nevertheless, we do not see this important factor
incorporated in any of the gully erosion prediction models so far.

0.01–4.05 (m)

Soil type
Although gullies can evolve on any soil type, the soil type determines
the size and shape of the gullies [77]. Therefore, integrating soil type

into gully modeling increases prediction accuracy.

Alisols, Cambisols,
Ferralsols, Fluvisols,
Leptosols, Luvisols,

Nitisols, Regosols, and Vertisols.

Soil texture Soil texture determines the rate of infiltration [78] and erosion
resistance, which determines the volume of gully erosion [79,80]

Clay, clay loam, loam, sandy
clay, sandy clay loam, silty clay,

and silty clay loam.

Land cover Land cover and gullies are closely linked [81] as land cover is one of
the factors that set the threshold for gully initiation [81]

cultivated land, bushland,
plantation forest, village,

waterbody, woodland,
and grassland
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The GWT surface generated using the IDW technique was resampled using the
bilinear resampling technique. This method determines the new value of a cell based on a
weighted distance average of the four nearest input cell centers [54]. This method is used
for continuous data and will cause some smoothening of data.

2.2.2. Multicollinearity Test

In this study, multicollinearity was tested by combining results from the variance
inflation factor (VIF) and tolerance (TOL), which are commonly used in different fields,
including forest fire and gully erosion [41,82], with a correlation matrix of all predictor
factors. The correlation method used in this study is the Pearson correlation coefficient. A
correlation with a corresponding p-value of >0.01 is considered insignificant. The corrplot
package, implemented in R statistical software, has been used to present the correlation
matrix and the confidence interval graphically [83]. Tolerance is the reciprocal of VIF.
Collinearity among predictor factors reduces model prediction accuracy [84]. Therefore,
input factors with evidence of collinearity will be discarded before the GESM is developed.

2.2.3. Gully Erosion Susceptibility Map (GESM) and Variable Importance

Frequency ratio (FR) and random forest (RF) models discussed below were used
to build the GESM. The GESM was finally classified as “low”, “moderate”, “high”, and
“very high” using the natural break method or the Jenks method in ArcGIS [85]. This
classification method was selected as it reduces variance within a class. The RF model was
also used to rank the most important gully erosion predictor factor.

• Frequency ratio (FR) model

As depicted in Equation (1), FR is the ratio of gully erosion probability of occurrence to
nonoccurrences within a gully predictor factor class [29,41]. This method is one of the sim-
plest statistical bivariate techniques used in various fields, such as landslide susceptibility
mapping [86]. Moreover, studies have shown that the FR model predicts gully susceptible
areas very well [36,87]. The modeling was executed by randomly dividing the gullies into
a training set (n = 39 or 70%) and a validation set (n = 17 or 30%). ArcGIS 10.5 was used to
develop the GESM using the FR model.

FR = (A/B)/(C/D) (1)

where A is the number of gully erosion pixels for each class of predictor factors, B is the
total number of gully erosion pixels in the study area, C is the number of pixels in each
class of gully predictor factor, and D is the number of total pixels in the study area.

The FR values obtained using Equation (1) were normalized using Equation (2).

YNFR = (XFR − MINFR)/(MAXFR − MINFR) (2)

where YNFR is the normalized frequency ratio, XFR is the frequency ratio of the class within
a predictor factor, MINFR is the minimum of all frequency ratios within a predictor factor,
and MAXFR is the maximum of all the frequency ratios within a predictor factor.

Finally, the gully erosion susceptibility map is developed by summing up the normal-
ized frequency ratio values for each predictor factors class.

• Random forest (RF) model

After conducting the multicollinearity test, gully erosion variable importance is com-
puted using the RF model. The RF is known for effectively predicting variable importance
in different disciplines, including land subsidence [88], invasive plant [89], groundwa-
ter [90], gully head susceptibility [31], and forest fire susceptibility [82]. The RF model
is a multivariate nonparametric machine learning technique developed by Breiman [91].
The RF is a powerful decision tree classifier that predicts well when there is missing data,
avoids over-fitting problems, produces more stable results, and is less sensitive to multi-
collinearity than other machine learning algorithms (e.g., support vector machine (SVM)
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and classification and regression tree (CART)) [30,88,92,93]. It is also known for predicting
gully erosion very well compared to other machine learning algorithms [41].

The RF model was implemented in R statistical software [94]. As the analysis in the RF
model was cell-based, a total of 2963 and 6560 gridded cells (12.5 by 12.5 m) were extracted
from the gully and nongully irregularly shaped sample spatial polygons, respectively.

The RF model works by growing many decorrelated decision trees as a base learner
using a fraction of randomly selected gully observation and gully predictor factors, with
replacement. Every tree was trained using 2/3 of the randomly selected training samples,
while the remaining 1/3 training samples, named out-of-bag (OOB) samples, were used to
validate the prediction result. Finally, the majority vote or mode rule was used to allocate a
pixel to a class [95]. The mean decrease in the Gini index (or Gini impurity) was used as
an indicator for variable importance of the evaluated gully-erosion predictors [96]. The
mean decrease in Gini is the mean of the total decrease in node impurity of the variable
(i.e., gully predictor factors), weighted by the proportion of samples reaching that node in
each individual decision tree in the RF. A higher mean decrease in Gini indicates higher
variable importance.

Determination of variable importance using the RF model was executed for three
scenarios with different combinations of gully predictor factors: (1) keeping all 15 nonsoil-
type gully predictor factors for Nitisol soils only (i.e., excluding other soil types); (2) keeping
all 15 factors for Vertisol soils only (i.e., excluding other soil types), and (3) using all
16 variables (i.e., including all soil types in the analysis).

2.2.4. Model Validation

In this study, model performances were evaluated using the area under the ROC
curve (AUC). A ROC curve is the plot of sensitivity versus 1-specificity for different
threshold values. The area under the ROC curve (AUC) is a commonly used parameter for
quantifying the quality of a classificator because it is a threshold-independent performance
measure [97]. It is a valuable technique for visualizing and measuring the accuracy of the
models [26], and its value ranges between 0.5 and 1, with the highest accuracy at 1 [29].
This method has been successfully used in gully erosion prediction research [24,25,31].

3. Results
3.1. Multicollinearity Test

The multicollinearity test showed that the VIF ranges from 1.04 to 7.8, while the TOL, which
is the reciprocal of the VIF, varies from 0.13 to 0.96 (Table 3). VIF values greater than 5, with
corresponding TOL values less than 0.2, indicate serious multicollinearity among factors [98].
VIF values for TRI and slope are greater than 5, suggesting multicollinearity (Table 3).

Table 3. Multicollinearity test statistics of gully predictor variables.

Gully Predictor Variables
Collinearity Statistics

Tolerance (TOL) Variance Inflation Factors (VIF)

Land cover 0.88 1.13
Plan curvature 0.49 2.04

Profile curvature 0.56 1.79
Texture 0.79 1.27
Aspect 0.96 1.04

Convergence index 0.68 1.46
Drainage density 0.78 1.28

Groundwater 0.81 1.23
Elevation 0.36 2.75

Slope length 0.59 1.68
Stream power index 0.77 1.29

Topographic position index 0.65 1.54
Terrain ruggedness index 0.13 7.8
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Table 3. Cont.

Gully Predictor Variables
Collinearity Statistics

Tolerance (TOL) Variance Inflation Factors (VIF)

Topographic wetness index 0.42 2.39
Slope 0.13 7.4

Soil type 0.5 1.99

In addition to the multicollinearity test using the VIF method, the results of the
correlation matrix (Figure 3) suggest that TRI and slope are strongly correlated (0.9), with a
corresponding p-value of 0 (Figure S1), indicating that the correlation is significant. Guided
by the results obtained using both the correlation matrix and VIF, we removed TRI and
slope from the entire analysis. Besides, model prediction performance was evaluated by
varying the number of gully predictor factors, depending on their importance presented
in Figure 4c.
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3.2. Gully Characteristics and Spatial Distribution

The average width, depth, and length of the 56 gullies were 6, 1.6, and 227 m,
respectively (Table 4). Gullies in the study watershed occupy 16.8 hectares of land. On the
basis of the average land-holding size (~0.7 ha) in the Ethiopian highlands [99], the land
taken over by the gullies would have been able to support 24 households. Furthermore,
the gullies in the study catchment are primarily located on cultivated land (57.45%) and
grasslands (41.3%), indicating that they are eroding economically important land and,
thereby, threatening the food security of the rural community.

Table 4. Statistical summary of the 56 surveyed gullies.

Parameter Minimum Maximum Average Median

Width (m) 2.06 15 6.08 5.13
Depth (m) 0.47 8.18 1.65 1.44
Length (m) 22.8 1463 227 134
Area (ha) 0.004 5.16 0.3 0.08

Many of the gullies were found on valley bottoms compared to hillslope areas. A larger
percentage (>70%) of gullies were located on slope gradients less than 5%, and for areas
with flat (48.1%) plan curvatures rather than concave and convex plan curvatures. Many
gully pixels were also found at lower elevations (2030–2070 m a.s.l. and 2070–2104 m a.s.l.)
compared to high elevation classes. Furthermore, though the flat aspect class occupied a
relatively small area, a larger percentage of gullies were found on lands with a flat aspect.

3.3. Gully Erosion Susceptibility Mapping and Variable Importance
3.3.1. FR Model

The frequency ratio values listed in Table 5 provide a spatial relationship between
gully locations and predictor factors (see Figures S2–S15). When FR values are greater
than 1 in a given gully-erosion predictor class, the class may be considered susceptible to
gullies [87]. Here, we will present the FR values of the top 4 gully-erosion predictor classes
that provide the best FR model accuracy. However, this does not mean that the other gully
predictor factors do not play a role in gully erosion, but only that the top four important
predictor factors well illustrated the effects of these factors.
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Table 5. (1) Areal coverage of gully predictor factors and training gully pixels and (2) the frequency ratio (FR) and normalized
frequency ratio (NFR) calculated for the training data set.

Factors Class Pixels in
Domain

% of Pixels
in Domain

Training
Gully Pixels
in Domain

% of Gully
Training Pixels

in Domain
FR NFR

CI −100–−42.75 12,282 10.8 320 14.5 1.34 1
−42.7–−10.6 22,765 19.9 509 23 1.15 0.65

−10.6–9 44,119 38.7 805 36.4 0.94 0.27
9–39.6 22,656 19.8 391 17.7 0.89 0.18

39.6–99.2 12,274 10.7 188 8.49 0.79 0
Elevation 2030–2070 42,552 37.3 836 37.8 1.01 0.66

2070–2104 33,214 29.1 984 44.5 1.53 1
2104–2141 18,891 16.6 360 16.3 0.98 0.64
2141–2186 14,494 12.7 33 1.49 0.12 0.08
2186–2265 4945 4.33 0 0 0 0

Plan curvature Concave 31,069 27.2 502 22.7 0.83 0
Flat 52,826 46.3 1076 48.6 1.05 0.86

Convex 30,201 26.5 635 28.7 1.08 1
Profile curvature −2.69–−0.75 4566 4 72 3.25 0.81 0

−0.75–−0.31 27,155 23.8 446 20.1 0.85 0.07
−0.31–0.30 50,120 43.9 1017 45.9 1.05 0.50
0.30–0.75 27,292 23.9 555 25.1 1.05 0.50
0.75–2.01 4963 4.35 123 5.56 1.28 1

LS (m) 0–25 79,752 69.9 1463 66.1 0.94 0
25–78 23,282 20.4 468 21.1 1.04 0.12

78–163 7754 6.79 207 9.35 1.38 0.59
163–315 2601 2.28 52 2.35 1.03 0.12
315–772 707 0.62 23 1.04 1.68 1

TPI −7.90 to −1.61 14,649 12.8 618 27.9 2.17 1
−1.61 to −0.17 37,952 33.3 838 37.9 1.14 0.47
−0.17–1.19 40,363 35.4 575 30 0.73 0.27
1.19–3.67 19,316 16.9 175 7.91 0.47 0.13
3.67–22.8 1816 1.59 7 0.32 0.2 0

SPI 0–128 110,406 96.8 1999 90.3 0.93 0
128–507 2643 2.32 106 4.79 2.07 0.24

507–1170 743 0.65 80 3.61 5.55 1
1170–2365 238 0.21 21 0.95 4.55 0.78
2365–5965 66 0.06 7 0.32 5.47 0.98

TWI 2.89–5.86 42,422 37.2 665 30 0.81 0
5.86–7.15 35,986 31.5 612 27.7 0.88 0.03
7.15–8.67 19,052 16.7 385 17.4 1.04 0.12
8.67–10.7 12,163 10.7 314 14.2 1.33 0.27
10.7–17.6 4473 3.92 237 10.7 2.73 1

DD (km km−2) 0–0.2 45,742 40.1 300 13.5 0.34 0
0.2–0.5 30,765 26.9 998 45.1 1.67 1
0.5–0.9 21,601 18.9 619 28 1.48 0.85
0.9–1.4 12,484 10.9 231 10.4 0.95 0.46
1.4–2.2 3504 3.07 65 2.94 0.96 0.46

land cover Cultivated land 94,296 82.6 1243 56.2 0.68 0.21
Bushland 951 0.83 11 0.5 0.6 0.18

Plantation forest 2173 1.90 0 0 0 0
Village 431 0.38 0 0 0 0

Waterbody 62 0.05 0 0 0 0
Woodland 1153 1.01 21 0.95 0.94 0.29
Grassland 15,030 13.2 938 42.4 3.22 1

Soil type Alisols 8800 7.71 102 4.61 0.6 0.17
Cambisols 2743 2.40 163 7.36 3.06 0.89
Ferralsols 4262 3.73 0 0 0 0
Fluvisols 1782 1.56 119 5.38 3.44 1
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Table 5. Cont.

Factors Class Pixels in
Domain

% of Pixels
in Domain

Training
Gully Pixels
in Domain

% of Gully
Training Pixels

in Domain
FR NFR

Leptosols 11,390 9.98 46 2.08 0.21 0.06
Luvisols 16,893 14.8 168 7.59 0.51 0.15
Nitosols 33,675 29.5 615 27.8 0.94 0.27
Regosols 1284 1.12 0 0 0 0
Vertisols 33,267 29.1 1000 45.2 1.55 0.45

Texture Clay 95,486 83.7 2149 97.1 1.16 0.47
Clay loam 6676 5.85 44 1.99 0.34 0.14

Loam 3503 3.07 0 0 0 0
Sandy clay 373 0.33 18 0.81 2.49 1

Sandy clay loam 3960 3.47 0 0 0 0
Silty clay 1423 1.25 2 0.09 0.07 0.03

Silty clay loam 2675 2.34 0 0 0 0
GWT (m) 0–1.03 2514 2.20 2 0.09 0.04 0

1.03–1.51 8718 7.64 227 10.2 1.34 1
1.51–1.95 38,198 33.5 994 44.9 1.34 0.99
1.95–2.42 36,005 31.5 622 28.1 0.89 0.65
2.42–4.05 28,661 25.1 368 16.6 0.66 0.48

Aspect Flat 4915 4.31 85 3.84 0.89 0.43
North 12,441 10.9 85 3.84 0.35 0.04

Northeast 7781 6.82 44 1.99 0.29 0
East 4312 3.78 34 1.54 0.41 0.08

Southeast 8028 7.04 151 6.82 0.97 0.48
South 13,624 11.9 448 20.2 1.694 1

Southwest 23,504 20.6 675 30.5 1.484 0.85
West 20,385 17.9 410 18.5 1.04 0.53

Northwest 19,106 16.7 281 12.7 0.76 0.33

Though large areas (40%) were covered by the DD class between 0 and 0.2 km km−2,
they had the smallest FR (0.34) and were less vulnerable to gully erosion. Drainage
density (0.2–0.5 and 0.5–0.9 km km−2), with FR 1.67 and 1.48, respectively, were the most
susceptible areas for gully formation. Drainage density of 0.9–1.4 and 1.4–2.2 km km−2

covers a small portion of the catchment, has relatively smaller FR values, and is less
susceptible to gully erosion.

Based on FR values, the vulnerability to gully erosion increases with a decline in
elevation. Low elevations (2030–2070 and 2070–2104 m a.s.l.), with FR 1.21 and 1.27, were
the most susceptible areas for gully formation, while higher elevation areas showed little
to no susceptibility to gully erosion.

Grassland (for grazing) with an FR value of 3.22 was the most susceptible area to
gully-erosion. Though large areas were cultivated (82.7%), they had smaller FR (0.68)
and were less prone to gully erosion. Other land uses, such as bushland, woodland, and
plantation forests, were also less correlated with gully erosion.

The FR values also showed that gullies are positively correlated with shallower GWT
zones. GWT depths (1.03–1.51 and 1.51–1.95 m) were found to have a higher FR (1.34)
value, indicating that they are strongly correlated with gully erosion. Conversely, areas
with deeper GWT had lower FR values, reflecting lower susceptibility to gully erosion.
Areas with GWT depths between 0 and 1.03 occupy a small percentage of the catchment
(2%) and are less prone to gully erosion (FR = 0.04).

Figure 5a presents the GESM obtained using the FR model. Susceptibility is classified
as “low”, “moderate”, “high”, and “very high.” The classifications were made using the
natural break method or the Jenks method in ArcGIS [85]: 13.9%, 23.8%, 45.5%, and 16.8%
for “low”, “moderate”, “high”, and “very high” classes, respectively.
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for this model, the training and validation gully polygon takes the same white color as the model
that classifies the training and validation data internally.

3.3.2. RF Model

The magnitude and rate of gully expansion differ between Nitisols and Vertisols [43];
therefore, the most important gully predictor factors were examined separately for these
soils (Figure 4a,b) in addition to all the soil types (Figure 4c).

Based on the mean decrease in Gini index values for the Nitisol soil type (Figure 4),
the five most important gully-erosion predictor factors were land use (242.4), DD (173.8),
elevation (124.9), GWT (105.3), and TWI (83.4), respectively. For the Vertisol soil type
(Figure 4b), the five most important gully-erosion predictor factors were DD (240.4),
elevation (153.5), TWI (141.4), GWT (140.0), and TPI (57.3). With soil type included as a
gully-erosion predictor factor, the most important variables were DD (625.9), elevation
(416.6), land cover (331.3), GWT (330.7), TWI (293.5), and soil type (225.7) (Figure 4c). In
general, factors such as texture, CI, LS, and profile and plan curvature had little importance
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to explain gully-erosion in the study area. Despite the degree of importance of each factor,
all 16 factors have been identified as important except for textures with no significance for
gully development in Nitisol.

The RF-model-derived GESM is presented in Figure 5b. The Jenks algorithm in
ArcGIS [85] was used to determine the “low”, “moderate”, “high”, and “very high” sus-
ceptibility classes at the class break of 46.7%, 20.8%, 13%, and 19%, respectively.

The percentage of gully erosion susceptibility class for Vertisols and Nitisols is pre-
sented in Figure 6. Class breaks of the low, moderate, high, and very high susceptibility
classes in Nitisol are 47.9%, 18.8%, 19.8%, and 13.5%, whereas in the Vertisol class, breaks
are 33.7%, 23.7%, 17.2%, and 25%, respectively. One can see that the areas with a low
susceptibility class are higher for Nitisols than Vertisols. In contrast, the most susceptible
area in Vertisols is approximately two times higher than in Nitisols. For the moderate and
high susceptible classes, similar predictions have been obtained for both soils.
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Figure 6. Gully erosion susceptibility in Nitisol and Vertisol soils.

3.4. Model Validation

Model performance for the FR and RF models was evaluated for five scenarios
(Figure 7). The first case involved all predictor factors (i.e., using the 14 gully-predictor
factors, excluding TRI and slope), which is called “All” hereafter. The second case used
the top six factors obtained from Figure 4c, which is called “Top6” hereafter. The third
case used all the top six gully-predictor factors but excluded soil type, called “exclSoil”
hereafter. The fourth case involved all the top six gully-predictor factors but excluded
GWT, called “exclGWT” hereafter. The third and fourth cases were evaluated to see the
predictive potential of the newly introduced parameters (i.e., soil type and GWT) for gully
prediction. In the fifth scenario, the top four factors obtained from Figure 4c were used;
this scenario is called “Top4” hereafter.

The prediction accuracy of models using AUC is categorized as poor (0.5–0.6), average
(0.6–0.7), good (0.7–0.8), very good (0.8–0.9), and excellent (0.9–1) [100]. In the case of
RF, all five scenarios demonstrated excellent model prediction accuracy. The Top4 and
Top6 model scenarios provided the best AUC values (99.9%). A higher AUC value (99.8%)
was also obtained for the All model scenario in the RF model. Prediction accuracy after
excluding soil type (exclSoil) and GWT (exclGWT) from the top six factors was 97.9% and
99.3%, respectively.
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Prediction accuracy using the FR model ranged from average to good. Similar to the RF
model, the highest prediction accuracy (AUC = 71.6%) was obtained for the Top4 FR model.
The AUC values for the exclSoil and Top6 models were 70.8% and 70.7%, respectively.
Lower AUC values were obtained for the All model (AUC = 63.3%) and the exclGWT
model (AUC = 63.1%). Excluding the GWT reduced the FR model prediction accuracy by
about 7%, whereas excluding the soil type did not affect the FR model’s performance.

4. Discussion
4.1. Spatial Distribution of Gullies and Gully-Erosion Predictor Variable Importance

All 16 gully-erosion predictor factors were found to be important for the development
of gullies in the Minzir catchment, at different levels of importance. However, gully erosion
prediction using the FR and RF models showed that the best prediction accuracy was
obtained using the top four most important gully-predictor factors. This suggests that the
impact of the other factors on gully erosion is well illustrated by DD, elevation, land use,
and GWT.

DD was found to be the most important factor that determines gully location in the
study catchment. Studies have shown that gully erosion susceptibility increases with
increasing DD [33,101,102]. The FR values obtained in this study are the highest for the
middle DD classes, and smaller values were obtained for the two highest classes. As
described above, gully erosion is dominantly a function of four major factors. Therefore,
lower FR values for the two highest DD classes may be attributed to little contribution
from the other three gully predictor factors. For example, the GWT in this area was the
deepest, indicating little susceptibility to gully erosion.

Elevation was found to be the second most important gully-erosion predictor factor.
The two lower elevation classes (2030–2070 and 2070–2104 m a.s.l.) had the largest gullied
area, which was revealed by high FR values obtained for these classes (Table 5). This
finding is consistent with studies in subhumid Iran, which found low elevation areas to be
vulnerable to gullies due to the presence of concentrated flow [42].

The third-most important gully-erosion predictor factor was land use/cover. This
is consistent with studies that found land cover as one of the most important factors
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determining gully locations [31,38,61]. While in the Minzir catchment, the area of grazing
land (13.2%) is smaller than that of cultivated land (82.7%), it has the largest proportion
of gullies, which was revealed by a high FR value (Table 5). Studies have stated that
grazing lands are more susceptible to gully-erosion than other land-use groups [25,42,77].
Moreover, [103,104] reported that the conversion of forest land to cultivated and grazing
land had resulted in increased gully erosion. Land-use change affects gully erosion by
altering the hydrological and physicochemical properties of the soil. For instance, in tropical
Brazil, grazing has increased the amount of surface runoff that, in turn, increased saturated
area and subsurface flow in valley bottoms, which has led to gully development [76].
Forest plantations have resulted in a double increase in organic carbon and steady-state
infiltration, thereby improving aggregate stability [105]. It was found that uncultivated
land had twice as much soil organic carbon as 50-year-old cultivated land, which enhances
soil aggregate stability and, therefore, increases soil resistance to erosion [106].

The relationship between the spatial distribution of gullies and the elevation of the
terrain and slope suggested that gullies are mainly located at the valley bottom. This finding
is in agreement with [24,33], who reported that due to concentrated flow, valley bottoms are
more vulnerable to gullies. Field observations have also shown that intensified agricultural
activities in the valley bottom expose the catchment to all forms of land degradation.

The fourth most important factor that determines gully erosion is GWT. Gullies have
been observed in all classes of GWT, but FR values have shown that areas with GWT
depths shallower than 2 m are the most susceptible to gullies (Table 5). This is consistent
with most studies in subhumid Ethiopia, where elevated groundwater increases soil pore
water pressure and enhances gully erosion rate [13,21]. This is also in agreement with the
findings of [43], who have reported a higher gully head retreat rate (about four times) for
gullies with shallower GWT than areas with deeper GWT.

4.2. Gully Susceptibility in Vertisols and Nitisols

Both Nitisols and Vertisols, which are the dominant soils in the study catchment,
were found to be vulnerable to gully erosion (Table 5). However, both the GESM and
the FR value showed that Vertisols are more prone to gully erosion than Nitisols. The
RF-model-derived GESM showed that “low” susceptible classes in Nitisols (47.9%) were
larger than Vertisols (33.7%), whereas “very high” susceptible classes were larger in the
Vertisols (25%) than the Nitisols (13.7%). This is in line with the finding by [43] that higher
moisture retention capacity, poor drainage, and elevated GWT lead to increased pore water
pressure, which results in higher rates of gully erosion in Vertisols than in Nitisols that have
lower water retention capacity and deeper GWT. In addition, Nitisols are a well-drained
soil type [107] that reduces gully erosion due to both concentrated flow and soil saturation.
Additionally, [108] found that the high swelling and shrinkage nature of Vertisols makes
them more sensitive to gully erosion. The FR values also show that Fluvisols and Cambisols,
which occupy a very small percentage of the catchment, are susceptible to gullies.

The results of separate variable importance analyses for Nitisols and Vertisols showed
land cover and drainage densities as the number-one factor determining the location of
the gully in each soil, respectively. Land cover for Vertisols was ranked number nine,
suggesting it has little significance for gully-erosion in this soil. The other important gully-
erosion factors (i.e., elevation, TWI, and GWT) are similar for both soils. Further research is
needed on the fact that land cover is the most important gully-erosion factor for Nitisols.

4.3. Model Performance and Comparison

The performance of the FR models ranged from average to good, whereas, for the
RF model, excellent prediction accuracy was obtained. Excellent model performance was
achieved for all five models in the RF model. FR model performance was average for the
models exclGWT and All, whereas Top4, Top6, and exclSoil models performed good. The
Top4 model performed best in both RF and FR cases than the rest of the four models. This
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suggests that despite the importance of all predictor factors for gully erosion, gully erosion
can successfully be predicted using only DD, elevation, land cover, and GWT.

The impact of excluding GWT and soil type as gully erosion predictor factors had a
smaller impact on the RF model performance, whereas excluding GWT from the top six
parameters caused a 7% reduction in the AUC value of the FR model. This shows the high
explanatory power of the GWT parameter on the FR model. Moreover, GWT is among the
top four most important parameters that determine gully locations. Therefore, accounting
for this parameter in future gully erosion prediction research can provide better gully
erosion prediction accuracy, especially in subhumid areas. Excluding soil type from the FR
model did not affect the model performance. Despite this, soil type being the sixth most
important factor determining gully development suggests its significance for gully erosion.

The excellent model performance in all five RF model scenarios may attribute to the
ensemble learning algorithm in the RF model that works on majority voting principles by
growing a large collection of decorrelated decision trees (or models) as a base learner. As a
result, a single classifier error in RF model is outweighed by the majority [109], whereas
FR is a single model. Furthermore, RF can handle high dimensionality (high numbers of
attributes) and large datasets better than FR.

The excellent prediction accuracy achieved by the RF model is in agreement with [38]
and [31], who have successfully mapped gully erosion and gully head susceptible areas.
The FR model employed in this study predicts gully areas better than other statistical
models such as weight of evidence and index of entropy [36,42].

Current approaches towards gully erosion susceptibility mapping in the Ethiopian
highland are based on topographical threshold factors such as topographic wetness index
(TWI) and stream power index (SPI) [39,40]. The application of these thresholds is flawed,
primarily because streams and saturated-bottom lands are preferentially considered most
vulnerable to gullies. However, our findings have shown that TWI and SPI importance on
gully erosion is limited compared to the top four factors we have presented in this study,
which have provided the best model prediction accuracy. Therefore, the finding of this
research can be used for the successful planning and design of gully reclamation measures
in a catchment.

5. Conclusions

There is no single factor responsible for the formation of gullies in the study area;
all 16 factors we examined were found to be important for the development of gullies in
the Minzir catchment. However, gully erosion prediction using the FR and RF models
showed that the best prediction accuracy was obtained using the top four most important
gully-predictor factors: drainage density, elevation, land use, and groundwater. This
suggests that the impact of other gully-erosion parameters is well illustrated by the top four
important gully-erosion predictor factors. The separate variable importance analysis for
Nitisols and Vertisols showed land cover and drainage densities, respectively, as the most
important factors that determine gully locations. The other most important factors for both
soils were more or less similar. The fact that land cover is the most important factor for the
development of gullies in Nitisols requires further investigation. The results of this study
suggest that future planning and implementation of conservation measures in subhumid
regions of Ethiopia should target areas with higher drainage density, low-lying areas,
grazing land, and shallower groundwater table, which have been shown to be vulnerable
to gully erosion.

Frequency ratio (FR) and random forest (RF) models have been identified as useful
techniques for mapping gully erosion vulnerable areas and identifying the most important
gully erosion predictor factor. The performance of the FR models ranged from average to
good, whereas for the RF model, excellent prediction accuracy was obtained. The gully
erosion susceptibility map developed in this study can be used to plan informed gully
erosion rehabilitation and prevention measures in the Minzir catchment. As sediment
from gullies threatens the entire upper Blue Nile basin, a water source for many water



Water 2021, 13, 216 18 of 22

resource development activities, we recommend similar studies in different agroecology
and geomorphic settings within the degraded Ethiopian highlands.
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