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Abstract: Reliable hydrologic models are essential for planning, designing, and management of water
resources. However, predictions by hydrological models are prone to errors due to a variety of sources
of uncertainty. More accurate quantification of these uncertainties using a large number of ensembles
and model runs is hampered by the high computational burden. In this study, we developed a highly
efficient surrogate model constructed by sparse polynomial chaos expansion (SPCE) coupled with the
least angle regression method, which enables efficient uncertainty quantifications. Polynomial chaos
expansion was employed to surrogate a storage function-based hydrological model (SFM) for nine
streamflow events in the Hongcheon watershed of South Korea. The efficiency of SPCE is investigated
by comparing it with another surrogate model, full polynomial chaos expansion (FPCE) built by
a well-known, ordinary least square regression (OLS) method. This study confirms that (1) the
performance of SPCE is superior to that of FPCE because SPCE can build a more accurate surrogate
model (i.e., smaller leave-one-out cross-validation error) with one-quarter the size (i.e., 500 versus
2000). (2) SPCE can sufficiently capture the uncertainty of the streamflow, which is comparable to that
of SFM. (3) Sensitivity analysis attained through visual inspection and mathematical computation
of the Sobol’ index has been of great success for SPCE to capture the parameter sensitivity of SFM,
identifying four parameters, α, Kbas, Pbas, and Pchn, that are most sensitive to the likelihood function,
Nash-Sutcliffe efficiency. (4) The computational power of SPCE is about 200 times faster than that of
SFM and about four times faster than that of FPCE. The SPCE approach builds a surrogate model
quickly and robustly with a more compact experimental design compared to FPCE. Ultimately, it
will benefit ensemble streamflow forecasting studies, which must provide information and alerts in
real time.

Keywords: surrogate model; sparse polynomial chaos expansion; least angle regression; uncertainty
quantification; sensitivity analysis; hydrologic prediction

1. Introduction

Hydrological models are tools that convert climate inputs into responses to numeri-
cally represent the various physical processes of a watershed [1–5]. These models typically
include parameters embodying temporal and spatial variability of watershed characteristics
that cannot be measured explicitly [2,6]. Consequently, the predictive accuracy of hydro-
logic models is inevitably influenced by the uncertainty of the undetermined parameters,
yielding model results that are often mismatched with observations [2,7–11]. Therefore,
quantifying and reducing uncertainties has been a major challenge for researchers in wa-
ter planning and supply, sediment management, reservoir operation, and streamflow
predictions [12–16].

Numerous techniques for addressing uncertainty have been developed in the hy-
drological literature, such as generalized likelihood uncertainty estimation [17], Bayesian
recursive estimation [18], the Shuffled Complex Evolution Metropolis algorithm [19], the
DiffeRential Evolution Adaptive Metropolis [20], dual data assimilations [21], and simulta-
neous optimization and data assimilation [2]. The aforementioned methods have proven
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to be effective in estimating the uncertainty of model parameters. However, these methods
often encounter problems with excessive computational cost, which is accompanied by a
huge number of iterative calls of the model simulation to attain a satisfactory estimate of the
output statistics [14,22,23]. Even using the latest sampling techniques or parallel computing
methods does not significantly offset this issue [24–26]. To fill the gap, surrogate modeling
using the polynomial chaos expansion (PCE) theory has attracted much attention in the
literature, as a highly efficient solution to uncertainty quantification (UQ) [13,14,27–29].
PCE refers to polynomial fits to the input–output relationships of original models and
thus is able to provide a flexible approximation for the model behavior given a range of
parameter values. PCE that can handle both Gaussian and non-Gaussian random processes
is a computationally inexpensive and effective method to surrogate any model [13,30,31].

As originally proposed by Wiener [32], PCE was based on normally-distributed
random variables and a Hermite polynomial, and was later extended to be applied to
any statistical distribution by Xiu and Karniadakis [31]. The key to PCE effectiveness is
how to estimate PCE coefficients from the response of an original model at design points
in the input space [33]. Two widely used methods for optimizing the PCE coefficients
are the “projection” method, which can be cast as a numerical integration problem using
quadrature or sparse-grid methods, and the “regression” method, which uses least square
regression to minimize the mean square error between the surrogate model outputs and
original model outputs [33]. However, both methods are incompetent in optimizing
a great number of PCE coefficients because of the large number of model evaluations
entailed [34–36]. The number of PCE coefficients increases dramatically with the number
of uncertain inputs and the polynomial order. This “full” PCE requires an incredibly large
number of model evaluations that severely restrict the engineering applications [37].

To circumvent this problem, methods of downsizing the PCE coefficients have been
proposed such as sparse collocation [38], Bayesian compressive sensing [37], and least
angle regression (LAR) [39]. Among them, LAR has received attention recently because it
has been proven to provide significant computational gains over original PCE. The purpose
of LAR is generally to estimate only the coefficients for the important PCE basis terms
and assign zero to the coefficients for the nonessential terms. LAR enables high orders
of polynomials to be fit to nonlinear complex models without substantially increasing
the computational cost during the construction of a surrogate model [40]. Although the
effectiveness of LAR has been demonstrated, few studies have coupled LAR with PCE in
order to ensure that the original model can be accurately captured by PCE with a smaller
training dataset and can provide reliable predictions with higher computational efficiency
in the process of quantifying the uncertainty of a hydrologic model.

The aims of this study are to examine whether sparse PCE (SPCE) captures the
behavior of a hydrological model well, quantifies the uncertainty of parameters of the
hydrological model, and analyzes the sensitivity of parameters to hydrologic predictions.
To highlight the effectiveness and robustness of LAR, a well-known method, the ordinary
least square regression (OLS), is used and compared. The paper is structured as follows. In
Section 2, methodologies of PCE and uncertainty quantification for a hydrological model
are presented. Section 3 introduces a general description on a target domain, a hydrological
model, and a modeling configuration. The effectiveness, robustness, and scalability of
the proposed approach are demonstrated and discussed in Section 4. Finally, conclusions
based on a rigorous analysis are drawn in Section 5.

2. Methodology
2.1. Polynomial Chaos Expansion

Given a modeling representation Y = M(X) where the input vector X is composed of
NX uncertain parameters, Y is the output response of interest (e.g., simulated streamflow),
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and a hydrological model M maps the input X into output Y, the model response Y also
can be estimated from a surrogate model MPCE consisting of a set of polynomial bases:

Y = M(X) ≈ MPCE(X) =
∞

∑
α=0

εαΨα(X) (1)

where Ψα(X) are corresponding multivariate polynomials given as the uncertain param-
eters; α is a multi-index that identifies the components of the multivariate polynomials;
ε is unknown PCE coefficients. The multivariate polynomials Ψα(X) in Equation (1) are
assembled as the tensor product of univariate orthogonal polynomials Ψ(i)

αi (X) given the
degreeαi:

Ψα(X) =
NX

∏
i=1

Ψ(i)
αi (Xi) (2)

For computational purposes, a truncated form of the PCE can be used [33] and
described as:

Y = M(X) ≈ MPCE(X) =
NΨ−1

∑
α=0

εαΨα(X) (3)

where NΨ is the number of PCE coefficients (i.e., the number of polynomial expansion
basis terms) determined by NX and the polynomial degree p as:

NΨ =
(NX + p)!

NX!p!
(4)

Given the set of multivariate polynomials Ψα(X), the next step is to compute the
PCE coefficients ε. In this work, ordinary least square regression (OLS) and least angle
regression (LAR) methods are adopted. First, the OLS method attempts to identify the PCE
coefficients that minimize the mean-square error of approximation of the model response
by the surrogate model:

ε = argminε∈RNΨE

(Y−
NΨ−1

∑
α=0

εαΨα(X)

)2
 (5)

In OLS, the number of PCE coefficients that need to be estimated is NΨ, which can
be computed from Equation (4). The surrogate model constructed by OLS is hereafter
called full PCE (FPCE). Given a collection (also known as experimental design),
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={
X (1), . . . ,X (N)

}
consisting of N sets of parameters X and the corresponding model

response
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=
{

M
(
X (1)

)
, . . . , M

(
X (N)

)}
, the estimates of the PCE coefficients are given

by:

ε̂ = argminε∈RNΨ

1
N

N

∑
k=1

(
Y (k) −

NΨ−1

∑
α=0

εαΨα

(
X (k)

))2

(6)

which is equivalent to:

ε̂ =
(

FTF
)−1

FT
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where F is the N × NΨ information matrix whose generic term reads:

Fk,α = Ψα

(
X (k)

)
k = 1, . . . , N;α = 0, . . . , NΨ − 1 (8)

The second LAR method is an advanced regression method in solving Equation (5)
where a modification for the penalty term λ ||ε ||1 is added:
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ε = argminε∈RNΨE

(Y−
NΨ−1

∑
α=0

εαΨα(X)

)2
+ λ ||ε ||1 (9)

where λ is a non-negative constant; ||ε ||1 is a regularization term that forces a minimization
to favor the sparse solution, computed as ||ε ||1 = ∑

α∈NΨ

|εα|. The main difference between

LAR and OLS lies in the number of PCE coefficients, which is smaller in LAR than in OLS.
Specifically, LAR determines only the multivariate polynomials Ψα(X) that have the most
impact on the model response, while discarding polynomial terms that do not. The chosen
weighty PCE coefficients are estimated, while other insignificant coefficients are set to be
zero. A surrogate model is then achieved based on the sparse set of PCE terms and can be
delineated as Equation (10). This surrogate model is hereafter called sparse PCE (SPCE).
For a detailed description of SPCE, readers can refer to Blatman and Sudret [41]. To verify
the accuracy of constructed surrogate models, the leave-one-out cross-validation error
(LOO) is commonly used.

Y = M(X) ≈ MPCE(X) =
SΨ−1

∑
α=0

εs
αΨs

α(X) (10)

LOO =
1
N

N

∑
k=1

M
(
X (k)

)
−MPCE

(
X (k)

)
1−
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FTF
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F is defined in Equation (8).

2.2. Uncertainty Quantification of a Hydrological Model

The generalized likelihood uncertainty estimation (GLUE) method [42] is chosen
to quantify the uncertainty of hydrological predictions caused by unreliable parameters.
The procedure of GLUE is summarized in the following for clarity, and its details can
be found in Tran and Kim [14]: (1) Determine the prior probability distribution for each
uncertain parameter of concern. (2) Generate random parameter sets sampled from the
prior distributions. (3) Run a hydrological model for each random set to achieve a corre-
sponding quantity of interest (e.g., streamflow). Its accuracy is then investigated based
on selected likelihood functions. (4) Separate the simulated samples into non-behavioral
and behavioral runs. The behavioral runs and parameter sets refer to those satisfying a
predefined acceptance level. A threshold for the acceptance can be specified as an ad-hoc
value of the likelihood function, determined as an optimum value that balances efficiency
and accuracy [14], or used as a ratio of the total number of simulations [20]. The posterior
parameter distributions and the predictive uncertainties are then drawn from the achieved
behavioral sets.

3. Study Design
3.1. Study Domain and Dataset

The “Hongcheon” watershed, which belongs to the Han river basin located in the
central part of the Korean Peninsula, was chosen for this study (Figure 1). The area
of the basin is 883 km2, its mainstream length is about 60 km, and its altitude ranges
from 75 to 1180 m. This study collects data for the rainy season (June to September),
focusing on the uncertainty of flood predictions. Rainfall data are observed at 15 weather
stations near the study area, and streamflows are observed at the outlet of the watershed,
“Hongcheon” gauge station (Korea station ID = 2014650). Hourly observations of rainfall
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and streamflow data were downloaded from the Han River Flood Control Office (http:
//www.hrfco.go.kr/main.do). After inspecting the data availability within the period of
2009–2019, nine streamflow events (Table 1) were chosen, corresponding to various (low,
middle, and high) return periods based on frequency analysis (Figure 2).

Water 2021, 13, x FOR PEER REVIEW 5 of 20 
 

 

of 2009–2019, nine streamflow events (Table 1) were chosen, corresponding to various 

(low, middle, and high) return periods based on frequency analysis (Figure 2).  

  

Figure 1. The “Hongcheon” watershed belonging to Han river basin, and the locations of observed 

rainfall and flow gauges. 

Table 1. Characteristics of selected streamflow events. 

Event Time (DD/MM/YYYY) Flow Peak (m3/s) Flow Frequency (%) Duration (h) 

1 7–17 July 2009 2485.33 19 241 

2 10–20 July 2012 416.61 86 241 

3 10–17 July 2013 2264.07 28 169 

4 21–27 July 2013 477.59 81 145 

5 23–27 July 2015 477.60 81 97 

6 29 June–9 July 2016 1460.90 52 241 

7 30 June–5 July 2017 1616.14 47 121 

8 9–13 July 2017 1337.97 57 97 

9 27–31 August 2018 689.41 76 97 

Figure 1. The “Hongcheon” watershed belonging to Han river basin, and the locations of observed
rainfall and flow gauges.

Table 1. Characteristics of selected streamflow events.

Event Time
(DD/MM/YYYY) Flow Peak (m3/s) Flow Frequency (%) Duration (h)

1 7–17 July 2009 2485.33 19 241
2 10–20 July 2012 416.61 86 241
3 10–17 July 2013 2264.07 28 169
4 21–27 July 2013 477.59 81 145
5 23–27 July 2015 477.60 81 97
6 29 June–9 July 2016 1460.90 52 241
7 30 June–5 July 2017 1616.14 47 121
8 9–13 July 2017 1337.97 57 97
9 27–31 August 2018 689.41 76 97
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3.2. Hydrological Model

A conceptual, lumped, storage function-based hydrological model was employed,
which has been adopted for streamflow prediction practice at the Han River Flood Control
Office under the Ministry of Environment of Korea [43–46]. The storage function model
(SFM) [47] is an event-based, lumped model that characterizes the relations of rainfall,
runoff, and storage in watersheds and channels by solving the flow continuity equation.
Rather than solving the full dynamic momentum equations, the SFM employs a nonlinear
relation between storage and discharge for a given watershed and channel as:

Sbas(t) = Kbas ×QPbas
bas (t) (12)

Schn(t) = Kchn ×QPchn
chn (t) (13)

where Sbas(t) and Schn(t) are the storage amounts of the basin and channel at time t,
respectively; Qbas(t) and Qchn(t) are the direct runoffs (flow rates) of the basin and channel
at time t, respectively; Kbas and Pbas are the storage coefficient and exponent of the basin,
while Kchn and Pchn are the storage coefficient and exponent of the channel.

The spatially lumped continuity equation for a given basin and channel is expressed
as:

dSbas(t)
dt

= Re(t− Tlbas)−Qbas(t) (14)

dSchn(t)
dt

= Re(t− Tlchn)−Qchn(t) (15)

where Re is the effective rainfall, and Tlbas and Tlchn are time delays between the effective
rainfall and the outflow of the basin and channel, respectively.

In SFM, Re(t) is estimated based on the saturated rainfall approach of Sukegawa
and Kitagawa [48]. Specifically, before the accumulated rainfall depth ∑ R(t) reaches
the saturated rainfall Rsa, Re(t) is computed based on the primary runoff ratio ( f1); after
∑ R(t) exceeds Rsa, Re(t) is a function of the saturated runoff ratio ( fsa):

Re(t) =
{

f1 × R(t) ∑ R(t) < Rsa
fsa × R(t) ∑ R(t) ≥ Rsa

(16)

The lumped rainfall depth of the basin and channel (R(t)) is corrected based on
observed rainfall depth (Robs(t)) and rainfall multiplication factor (α): R(t) = α× Robs(t).
From the brief description above, one can see that a total of 10 parameters are required to
control the outflow of the watershed and implement the SFM (Table 2). For more detail,
readers can refer to Park, Kim, Kwak, and Kim [45].

Table 2. Description of the SFM parameters.

Parameter Unit Description Lower Bound Upper Bound

α [-] Rainfall magnification coefficient 0 1.3
f1 [-] Primary runoff ratio 0 1
fsa [-] Saturated runoff ratio 0 1
Rsa mm Saturated rainfall 0 300
Kbas [-] Basin storage-discharge coefficient 1 100
Pbas [-] Basin storage-discharge exponent 0 1
Tlbas [h] Time delay in watershed 0 1
Kchn [-] Channel storage-discharge coefficient 1 100
Pchn [-] Channel storage-discharge exponent 0 1
Tlchn [h] Time delay in channel 0 1

3.3. Experimental Configurations

The SPCE and FPCE models were compared by investigating the ability to construct
a satisfactory surrogate model with a limited training dataset, the degree of accuracy
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reflecting uncertainty in streamflow prediction, and the degree of improvement in the
efficiency of two surrogate models compared to the original model. The following three
experiments were conducted.

The first experiment was designed to demonstrate the effectiveness of SPCE in a
smaller experimental design. In the literature, the size ranges from 50 to O

(
104), based on

the complexity of the original model [14,49–51]. In this experiment, a total of 10 different
sizes, N, from 10 to 5000 were used to build the surrogate model. A polynomial degree of 3
was used, as in previous studies [13,14,26,28,29].

Given surrogate models constructed for the optimum value of N determined in the
first experiment, the second experiment was conducted to quantify the uncertainty of
streamflow prediction for nine rainfall events. Prior distributions for the uncertain parame-
ters were assumed to follow the uniform distribution over a given (prior) range [14,20,42].
Latin hypercube sampling (LHS) was used due to its efficiency [26]. Regarding the cutoff
threshold, we employed the ratio of the total number of simulations based on the likelihood
function value to differentiate between the behavior and nonbehavior runs. Specifically,
the cutoff threshold was designated as the highest 1% of Nash–Sutcliffe efficiency coeffi-
cient (NSE) values computed using 100,000 random parameters sampled from the prior
distributions [14,52].

NSE = 1 − ∑T
t=1 (y

obs
t − yt)

2

∑T
t=1 (y

obs
t − yobs)

2 (17)

Here, yobs
t and yt are observed and simulated streamflow at time t, respectively, and T

is the total duration of a rainfall event. The uncertainty of streamflow is then represented
by calculating the ensemble interval for the NSE and Peak Error (PE) metrics, which can
indicate important features of a streamflow event.

PE =

∣∣∣yobs
max − ymax

∣∣∣
yobs

max
× 100 (18)

Here, yobs
max and ymax are observed and simulated streamflow at the peak time of the

event, respectively.
Sensitivity analysis (SA) was implemented as the third experiment to recognize the

critical parameters governing model behavior and to evaluate the influence of model
parameters on model outputs [14,53]. These key parameters can be identified qualitatively
based on the shape of the posterior distributions obtained from GLUE, or quantitatively
based on the global sensitivity analysis. The latter produces the sensitivity indices for both
parameters and their interactions. Sobol’ indices [54] are employed in this experiment
(Appendix A).

4. Results and Discussions
4.1. The Construction of Surrogate Models

We investigate the effects of the size of the experimental design on the accuracy of
surrogate models constructed by FPCE and SPCE, thereby (i) providing a guideline for
choosing the appropriate size of experimental design and (ii) demonstrating the superiority
of SPCE to FPCE. As described in Section 3.3, we built several surrogate models with N
varying between 10 and 5000 for both FPCE and SPCE. Looking at Figure 3, one can see
that the LOO values for all nine events decrease as the value of N increases and are almost
indistinguishable when N reaches a certain value (about 2000 and 500 for FPCE and SPCE,
respectively). In other words, if one uses a larger experimental design (greater number
of samples) for training, the overall accuracy increases, but at some point the accuracy
stabilizes. Visual inspection from Figure 3 confirmed that FPCE and SPCE developed with
N of 2000 and 500, respectively, are suitable to represent SFM. Figure 3 also reveals that
SPCE outperforms FPCE in providing lesser LOO values for all events. Specifically, if N is
less than 200, the LOO values obtained using SPCE are smaller than 1, while these values
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for FPCE are larger, ranging from about 5 to 100. If N is greater than 200, the difference
of LOO between two surrogates decreases by about 10%. For all events, the LOO values
of SPCE constructed with N of 500 are equal to or even smaller than those of FPCE with
N of 2000. SPCE can build an efficient surrogate model with an accurate degree even if it
utilizes an experimental design size that is four times smaller than that of FPCE.
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As a follow-up discussion based on the benefits of SPCE above, it can be expected that
the use of this sparse approach would be more effective, especially for high-dimensional
models where heavy computation is required. Since these high-dimensional models contain
a large number of uncertain parameters (often greater than O

(
102)), the number of PCE

coefficients (NΨ) that need to be estimated from Equation (4) are also quite large. This
requires a substantial number of model evaluations, up to N = (p + 1)NX [33]. This
computational burden emphasizes the need for a more efficient surrogate such as SPCE to
reduce the number of PCE coefficients and save computational resources. For example, for
FPCE in this study, a total of 286 PCE coefficients are required for all events (computed via
Equation (4) for 10 uncertain parameters and the polynomial degree of 3). For SPCE, the
number of PCE coefficients (SΨ) used varies depending on events from 25 (Event 7) to 34
(Event 2) given N of 500 (Figure 4a) and depending on N (Figure 4b). SΨ increases with N
until about 200, while it does not change much for N greater than 200. SΨ is always less
than 50 for all events. With an appropriate value of N (e.g., 500), the significant multivariate
polynomials Ψα(X) can be fully detected and it is not necessary to use a larger N. Therefore,
the number of PCE coefficients for SPCE is about 8–11 times smaller than that of FPCE for
nine events.
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4.2. The Accuracy of Surrogate Models

Based on the results from Section 4.1, optimum sizes of 2000 and 500 were selected
for N when building surrogate models for FPCE and SPCE, respectively. These surrogate
models were then employed to quantify the uncertainty of hydrologic predictions through
GLUE. The hydrographs of SFM, FPCE, and SPCE are presented with a 90% confidence
range of 1000 behavioral (posterior) hydrographs in Figure 5. The posterior results of
all three models are highly satisfactory for all nine events—their uncertainty ranges are
very narrow and cover observations. The R2 values for 1:1 comparisons between the
ensemble mean results and observations are mostly higher than 0.8, and the R2 values
of two surrogate models and SFM are similar. The accuracy indices NSE and PE also
confirm that both FPCE and SPCE provide a good simulation capability equivalent to
SFM for diverse streamflow events with different return periods (Figure 6 and Table 3).
Additional comparisons between the surrogate models show that SPCE outperforms FPCE.
Ensemble mean values for NSE and PE are as high as about 38% and 34% at the maximum,
respectively (see Table 3 for Event 4). Additionally, the uncertainty ranges of NSE and PE
for both surrogate models have smaller standard deviations (Std) than those for SFM. For
example, in Event 1, the Std values of ensemble NSE for FPCE, SPCE, and SFM are 0.03,
0.03, and 0.06, respectively, while those of PE are 10.92%, 10.46%, and 14.05%, respectively
(Table 3).
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Table 3. Mean and standard deviation (Std) for 1000 values of NSE and PE for SFM, FPCE, and SPCE
for nine events.

Event

NSE [-] PE [%]

Mean Std Mean Std

SFM FPCE SPCE SFM FPCE SPCE SFM FPCE SPCE SFM FPCE SPCE

1 0.80 0.78 0.78 0.06 0.03 0.03 30.09 27.70 31.51 14.05 10.92 10.46
2 0.83 0.69 0.67 0.04 0.04 0.05 18.90 36.19 37.61 11.84 11.66 11.65
3 0.74 0.85 0.84 0.05 0.02 0.02 56.69 42.00 45.55 15.50 7.76 6.62
4 0.43 0.47 0.65 0.13 0.03 0.06 39.52 38.17 25.00 10.07 5.75 10.59
5 0.82 0.67 0.74 0.05 0.03 0.04 28.11 25.29 32.27 11.73 12.42 10.23
6 0.81 0.77 0.81 0.05 0.03 0.03 17.26 16.10 19.29 13.81 11.82 10.41
7 0.86 0.85 0.89 0.05 0.02 0.02 21.86 22.23 21.19 13.80 10.62 9.25
8 0.72 0.82 0.87 0.09 0.03 0.02 34.54 23.79 20.39 13.91 11.13 10.88
9 0.79 0.79 0.86 0.05 0.02 0.02 37.09 22.94 27.75 20.88 16.84 12.07

These ensemble results imply that the likelihood function and cutoff threshold must
be carefully selected, which directly affect the prediction accuracy [14,42]. For example,
since we chose NSE in this study to represent the goodness-of-fit between simulation and
observation, the ensemble of NSE has a satisfactory value higher than 0.7 for most events
(Figure 6). However, the peak error (PE) is relatively large, ranging from 40% (Event 6) to
78% (Event 3). That is, depending on the likelihood function preferred, one can control
an outcome in streamflow prediction. If using a likelihood function that can represent
the accuracy of the overall shape, peak size, time of arrival, and total flow volume of a
streamflow event, it will make more informed decisions that better reflect each streamflow
characteristic.

Second, to obtain more accurate ensemble results, more likelihood functions with
tighter cutoff thresholds can be used. However, instead of attaining higher-accuracy
ensemble results, there is a sacrifice of significantly increasing the number of random runs.
For example, instead of using the 1% cutoff threshold used in this study, if we apply a
cutoff threshold of 0.8 for the NSE likelihood function (this value is often considered as
satisfactory [55]), the number of ensemble behavior sets decreases sharply (see the number
of behavior runs for 100,000 and 10,000,000 prior runs in Table 4). The finding that there are
only a very small number of ensembles signifies that random searches must be enhanced
to obtain results that meet this level of accuracy. This is particularly noticeable for Event 4.
With 10,000,000 random runs, SPCE could get only 88 behavior runs while FPCE could
not attain even one behavior run. Additionally, an interesting aspect can be found that the
acceptance rate of the behavior set is inconsistent with the size of the random run. For
example, for Event 2, both FPCE and SPCE only provide one satisfactory result in 100,000
random runs, but after 10 million runs (increasing by 100 times), the number of behavior
sets obtained in FPCE is 45, increasing by only 45 times. For Event 3, FPCE can provide
more behavior sets than SPCE (about 0.1% vs. 0.06%). However, when increasing the
number of random runs to 10,000,000 the difference in this rate is reduced (≈0.095% vs.
0.075%). Similar phenomena can be observed for other events as well. Having a behavior
set of varying rates according to the number of random samples and events indicates
that as many random runs as possible are needed to ensure the overall uncertainty of the
parameters. However, it is still challenging to perform a large number of simulations in a
high-dimensional problem due to the limitation of computational performance. The fact
that a large number of iterations are required to achieve the desired accuracy justifies the
use of the surrogate model. Even in a simple model like SFM, the CPU runtime required
to perform 100,000 random runs was about a month, so applying the model to practical
problems is unreasonable. However, for SPCE, even 10,000,000 random simulations take
only a few hours to run. The surrogate model consisting of the summations of polynomials
has a great advantage for Monte-Carlo type repeated simulations. We will cover the
computation time of each model in more detail in Section 4.4.



Water 2021, 13, 203 12 of 19

Table 4. The number of behavior runs obtained through GLUE for three models (SFM, FPCE, and
SPCE), based on the likelihood function of NSE with its acceptance threshold of 0.8. Column (a) and
column (b) present results obtained from 100,000 and 10,000,000 random runs, respectively.

Event
(a) (b)

SFM FPCE SPCE FPCE SPCE

1 104 14 11 1196 1456
2 142 1 1 45 103
3 20 104 62 9520 7503
4 0 0 1 0 88
5 104 0 5 15 521
6 111 8 32 679 3306
7 181 115 219 11,147 21,771
8 36 35 84 2783 8251
9 91 13 217 1710 21,708

4.3. The Sensitivity of Uncertain Parameters

The sensitivity of each of the 10 parameters of SFM, FPCE, and SPCE was analyzed
from the posterior (behavior) parameter distributions obtained by GLUE, as depicted in
Figure 7. In general, parameters that have pointed distributions are relatively sensitive
and identifiable, while parameters with flat-shaped distributions are insensitive and more
uncertain. From a visual inspection of Figure 7, it can be seen that the parameters α, Kbas,
Pbas, and Pchn are highly sensitive to the value of the objective function, NSE, because their
distributions are relatively narrow. The remaining parameters have broader distributions,
so they cannot be specified by any certain value. Additionally, marginal differences can be
observed in the posterior distributions between the three models. The sensitivity results
of SPCE are more analogous to those of SFM than for FPCE, especially for insensitive
parameters (Figure 7). Several posterior parameter distributions obtained from FPCE have
a narrower shape than those obtained from both SFM and SPCE—see Kbas, Pbas, and Tlbas
for Event 1; α, f1, Rsa, Kbas, Pbas, and Tlbas for Event 4; and Pbas and Tlbas for Event 7.

Similar interpretations can be drawn with quantitative sensitivity analysis using the
Sobol’ index (Figure 8). We confirm that the four parameters α, Kbas, Pbas, and Pchn are
the most sensitive parameters to the likelihood function, NSE, in all events. Specifically,
the sensitivities of Kbas and Pbas are the largest for most events, and α and Pchn are the
next most sensitive parameters. For events with smaller return periods (e.g., Events 4 and
5), Pchn becomes more sensitive than the severe streamflow events. For medium to large
streamflow (e.g., Events 1, 3, 7, and 9), the Sobol’ index values of the four above-mentioned
sensitive parameters in SPCE are more similar to those in SFM than in FPCE (Figure 8).

Identification of principal parameters through SA can improve efficiency in the process
of optimizing parameters [56]; through the analysis of the interactions, influences, and
correlations among parameters, we can support a better understanding of the process
mechanisms of hydrological systems [14,49,57,58]. Besides these benefits, SA helps to
construct a more efficient surrogate model embracing only a subset of principal parameters.
Thus, the number of PCE coefficients and the size of the experimental design could be
reduced, minimizing the complexity of the model.
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Figure 7. Posterior distributions of 10 model parameters for three streamflow events ((a) Event 1, (b) Event 4, (c) Event
6). In each subplot, probability density functions (PDFs) are drawn by using the kernel density estimation for the 1000
behavior parameters obtained through GLUE. The range on the x-axis matches the original range values for each parameter
presented in Table 2. Results for high, medium, and low return periods are only demonstrated for simplicity.
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4.4. The Efficiency of Surrogate Models

To investigate efficiency performance, all simulations were implemented under the
same computer configuration (CPU Intel(R) Xeon(R) CPU E5-4660 v4 at 2.20 GHz). The
total time required for executing the (surrogate) models includes building time and runtime.
The building time consists of the time for evaluating the experimental design and the time
for estimating the PCE coefficients; the runtime refers to the time for performing ensemble
simulations (Figure 9 and Table 5). Note that the total runtime of SFM includes only
the runtime, that is, the building time is zero. Table 5 shows the comparisons of the
total runtime to obtain 100,000 ensemble runs among models for nine streamflow events.
Although the total runtime may vary depending on the duration of the event, SFM took
12–30 days to perform 100,000 ensemble runs, while it took 6.1–14.3 h for FPCE and only
1.5–3.6 h for SPCE to produce the same number of ensembles. In other words, the degree
of efficiency improvement can be up to about 50 times for FPCE relative to SFM and up to
about 200 times for SPCE. The efficiency increases for greater than 100,000 ensemble runs
(Figure 9b). For example, SPCE can complete even 10,000,000 ensemble runs within 2–4 h,
whereas SFM can take up to several years. When comparing the total runtime between
the surrogate models, SPCE is about four times faster than FPCE. The main reason for
such a difference in efficiency is that the size of the experimental design required in SPCE
is smaller (N = 500 vs. 2000 in FPCE). Thus, the time to secure the experimental design
is about four times shorter than that of FPCE (Table 5 and Figure 9a). Additionally, with
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fewer polynomial terms used, the runtime of SPCE is faster than that of FPCE by about
12–14 times (see (ii) in Table 5). The ability of SPCE to perform thousands of model runs in
a very short wall time enables computational problems that require a significant number
of iterative calls, such as local or global optimization, data assimilation, and sensitivity
analysis, to be solved efficiently [13].
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Figure 9. (a) Building time of FPCE and SPCE versus the size of experimental design (N) for nine streamflow events. The
building times at the optimal N = 2000 for FPCE and at N = 500 for SPCE are used for sub-figure (b) (see the stem plots
and zoom-in sub-boxes in sub-figure (a)). (b) Total runtime needed for carrying out the number of model (SFM, FPCE, and
SPCE) runs (from 1 to 1,000,000 on x-axis) for the nine events. Note that the intercepts of FPCE and SPCE in sub-figure (b)
are equal to the building times computed in sub-figure (a), and the intercepts of SFM are zero.

Table 5. Comparisons of the total runtime for nine streamflow events. The total runtime consists of
(i) the building time and (ii) the running time. In surrogate models (FPCE and SPCE), the additional
building time consists of (i-1) the time to secure the experiment design (i.e., the optimal 2000 runs for
FPCE and 500 for SPCE) and (i-2) the time to compute the PCE coefficients. (ii) The latter runtime
refers to the time for performing 100,000 ensemble model (SFM, FPCE, and SPCE) simulations. The
unit of values is in seconds.

Event

SFM FPCE SPCE

Total
(ii)

Total
(i) + (ii)

(i)
(ii) Total

(i) + (ii)
(i)

(ii)
(i-1) (i-2) (i-1) (i-2)

1 2,569,231 51,473 51,385 27 61 12,894 12,846 43 5
2 2,448,715 49,066 48,974 29 63 12,287 12,244 39 4
3 1,728,473 34,634 34,569 21 44 8679 8642 33 4
4 1,610,260 32,260 32,205 17 38 8078 8051 24 3
5 1,144,300 22,923 22,886 11 26 5745 5722 21 2
6 2,514,114 50,373 50,282 29 62 12,622 12,571 46 5
7 1,338,584 26,818 26,772 14 32 6716 6693 20 3
8 1,098,940 22,016 21,979 11 26 5514 5495 17 2
9 1,102,654 22,090 22,053 11 26 5531 5513 16 2
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5. Conclusions

This study combined SPCE with LAR to allow for efficient construction of a surrogate
model and fast quantification of its uncertainty for hydrological predictions. The essence
of LAR is to learn and retain only the most significant polynomial basis terms, resulting
in a sparse set of PCE coefficients that could be estimated more straightforwardly. The
advantages of SPCE were investigated in comparison to the performance of a surrogate
model (FPCE) constructed using ordinary least square regression (OLS). Both FPCE and
SPCE were developed to surrogate a storage function-based hydrological model (SFM) and
then applied to quantify the uncertainties of hydrologic predictions for nine streamflow
events for the ‘Hongcheon’ watershed located in South Korea. The principal outcomes
highlighting the robustness and effectiveness of SPCE are summarized as follows:

• The performance of SPCE is superior to FPCE because SPCE can build a more accurate
surrogate model (i.e., smaller LOO) with an experimental design of one-quarter the
size (i.e., 500 versus 2000).

• Streamflow results obtained through GLUE demonstrated that SPCE could sufficiently
capture the uncertainty of the streamflow, which is comparable to that of SFM (see
high degree of agreement for NSE and PE).

• Sensitivity analysis attained through visual inspection of the posterior parameter
distributions and mathematical computation of the Sobol’ index has been of great
success for SPCE to capture the parameter sensitivity of SFM in middle to high flow
predictions. In all models and in all events, the four parameters α, Kbas, Pbas, and Pchn
were most sensitive to the likelihood function, NSE.

• The computational power of SPCE is about 200 times faster than SFM and about
four times faster than FPCE when executing 100,000 ensemble runs. This efficiency
enhancement of SPCE is particularly important when larger ensemble runs are needed.

Although this approach was applied to a lumped model with only 10 parameters, it
is effective in maximizing efficiency, especially when applied to more physically based
distributed models for high-dimensional problems within complex domains. The SPCE
presented in this study is expected to quickly and robustly build a surrogate model with
a more compact experimental design compared to FPCE. Ultimately, the approach will
benefit ensemble hydrologic forecasting studies, which must provide information and
alerts in real time.
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Appendix A. Sobol’ Indices

The metric of likelihood function NSE formulated in Equation (17) is examined to
analyze the Sobol’ indices. Specifically, the total variance, D(NSE) is decomposed as:

D(NSE) =
NX

∑
a=1

Da + ∑
a<b

Dab + . . . + D1...NX (A1)
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where Da is the variance of NSE due to the changes of the a-th model parameter, Xa,
denoting the first-order contribution to D(NSE); Dab is the variance of NSE due to the
pairwise interactions of a-th and b-th parameters, referring to the second-order contribution.

In this work, we outline an overall interaction of each parameter through the main
(total-order, STotal) sensitivity indices:

STotal,a(NSE) = 1− Dã
D

(A2)

where STotal,a is the main sensitivity indices based on the changing of parameter Xa, and Dã
is the variance averaged over the contributions resulting from all parameters except for Xa.
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