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Abstract: Due to the complicated terrain conditions in montane catchments, runoff formation is fast
and complicated, making accurate simulation and forecasting a significant hydrological challenge.
In this study, the spatiotemporal variable source mixed runoff generation module (SVSMRG) was
integrated with the long short-term memory (LSTM) method, to develop a semi-distributed model
(SVSMRG)-based surface flow and baseflow segmentation (SVSMRG-SBS). Herein, the baseflow
was treated as a black box and forecasted using LSTM, while the surface flow was simulated
using the SVSMRG module based on hydrological response units (HRUs) constructed using eco-
geomorphological units. In the case study, four typical montane catchments with different climatic
conditions and high vegetation coverage, located in the topographically varying mountains of the
eastern Tibetan Plateau, were selected for runoff and flood process simulations using the proposed
SVSMRG-SBS model. The results showed that this model had good performance in hourly runoff and
flood process simulations for montane catchments. Regarding runoff simulations, the Nash–Sutcliffe
efficiency coefficient (NSE) and correlation coefficient (R2) reached 0.8241 and 0.9097, respectively.
Meanwhile, for the flood simulations, the NSE ranged from 0.5923 to 0.7467, and R2 ranged from
0.6669 to 0.8092. For the 1-, 3-, and 5-h baseflow forecasting with the LSTM method, it was found
that model performances declined when simulating the runoff processes, wherein the NSE and
R2 between the measured and modeled runoff decreased from 0.8216 to 0.8087 and from 0.9095 to
0.8871, respectively. Similar results were found in the flood simulations, the NSE and R2 values
declined from 0.7414–0.5885 to 0.7429–0.5716 and from 0.8042–0.6547 to 0.7936–0.6067, respectively.
This means that this new model achieved perfect performance in montane catchment runoff and
flood simulation and forecasting with 1-, 3-, 5-h steps. Therefore, as it considers vegetation regulation,
the SVSMRG-SBS model is expected to improve runoff and flood simulation accuracy in montane
high-vegetation-covered catchments.

Keywords: SVSMRG-SBS model; LSTM; surface flow; baseflow; semi-distributed hydrological model;
montane catchment; runoff simulation; flood simulation

1. Introduction

High mountains are known as the world’s natural “water towers” as they are usually
the origin of large rivers [1], providing freshwater for upstream and downstream popula-
tions. Mountains provide more than 80% of terrestrial freshwater resources while covering
24% of the total land area [2]. However, the topography, vegetation, soil, climate, and
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snow conditions of montane watersheds vary greatly due to the influence of altitude [3].
Thus, they are generally considered to be an unknown process in the hydrological cy-
cle [4]. Vegetation cover is closely related to the water cycle, wherein vegetation cover
type affects evapotranspiration [5], and root mode, leaf area index (LAI) [6,7], stomatal
conductance [8], and interception and transpiration [9] impact runoff. Meanwhile, the
macropores, formed by vegetation growth and death, animal activities, soil expansion
and contraction, provide important pathways for water and solutes [10]. The cracks and
channels allow rapid movement of precipitation [11], accelerate the response speed of
groundwater, and replenish groundwater before the soil water reaching the field capacity.
The macropores change the formation of groundwater and the proportions of different
runoff components. Moreover, snow and glaciers in alpine areas appear as temporarily
stored and dynamically distributed water [3,12], impacting the runoff process. Therefore,
in montane high-vegetation-covered catchments, the hydrological process is complicated
and unclarified, particularly the complex groundwater movement resulting in a less clear
runoff formation mechanism.

Hydrological models are effective tools for studying the water cycle mechanism
of basins. In recent decades, data-driven, lumped, semi-distributed, and distributed
hydrological models, have been widely adopted to simulate the hydrological processes of
small montane basins [13]. Data-driven models generally include neural networks (NNs)
and statistical methods. Over the past two decades, the use of artificial NNs (ANNs) for
runoff and flood forecasting in mountainous areas has developed rapidly [14]. Araghinejad
et al. [15] presented a new performance function for NN integration and a probabilistic
method based on a K-nearest neighbor regression that was applied to the flood peak
forecast of the Red River in Canada and the seasonal runoff forecast of the Zayandeh-
rud River in Iran to improve the accuracy of hydrological forecasting. Wu et al. [16]
proposed a support vector regression (SVR) model based on artificial intelligence (AI) to
predict flash floods with different lead times in montane catchments. This model had
good predictive performance within one to three hours. Sezen et al. [17] compared the
hydrological processes simulated by data-driven models and lumped hydrological models
in a karst basin and found that the lumped conceptual hydrological model (the Genie Rural,
a 4-parameter Journalier (GR4J)) was superior to ANNs, deep neural networks (DNNs),
and regression tree (RT) models. However, the data-driven ANN model was slightly
better than the GR4J in simulating hydrological decline in the subbasins. Nevertheless,
owing to the poor consideration of spatial heterogeneity of precipitation and underlying
surface as well as the demand for long-term historical observed data, lumped hydrological
models have limitations regarding montane catchments [13]. In recent years, with the
development of modern technologies, such as geographic information systems (GIS),
remote sensing (RS), and global positioning systems (GPS), the distributed hydrological
models have been employed widely in montane catchments [18]. For instance, Water Flow
and Balance Simulation Model (WaSiM-ETH), a distributed hydrological model combined
with meteorological observation and prediction, was used in the Lago Maggiore, an alpine
watershed, to conduct flood forecasting [19]. Although the WaSiM-ETH model could
determine the continuous runoff hydrographs, inherent limitations of high-resolution
flood and runoff forecasting in complex mountain terrain remain existed. Moreover, high-
precision meteorological data are required. A motion wave-based distributed hydrological
model with surface and subsurface flow components (DHM-KWSS) has also been used to
reproduce runoff processes in montane basins [20]. However, the DHM-KWSS model was
unable to explain long-term runoff during the dry season. In addition, the block-wise use
of TOPMODEL with the Muskingum–Cunge method (BTOPMC) was employed in the Fuji
River Basin of Japan [21]. This model was integrated with the Uncertainty Quantification
Python Laboratory (UQ-PyL) to determine the parameters and was only used in areas
where the UQ exercises were performed. Overall, the aforementioned distributed models
are deficient in depicting runoff processes, especially flood processes in mountainous
areas because they do not consider complex terrain, high vegetation coverage, and snow
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and glacier melting. Although parameters with physical mechanisms could make the
hydrological process more rational, they rely on the long-term observed data to calibrate,
which is difficult to obtain for ungauged montane areas. For some cases, the parameters
are difficult to fit to models [22]. Moreover, the internal mechanism of hydrology is difficult
to discover for some subjective reason [23]. Nowadays, because of the simple structure
and free-assumptions, it is a new way to adopt ANNs models in indistinct hydrological
simulation and prediction [24–26]. Lee et al. [27] found that the long short-term memory
(LSTM) model could be used to stochastically simulate hydrological and climatic variables
as it better reproduces the variability and related structure at large time scales, as well as
the core statistics of the original time domain. Compared with other NNs, the LSTM is
better at using time-varying characteristics of time series data [23]. Therefore, coupling the
LSTM with hydrological models is a good way to simulate and predict complex runoff and
flood processes. However, these studies treated the runoff processes or flood processes as a
whole using ANNs without any hydrological mechanism. At present, a large number of
hydrological models can be simulated for surface flow. We expect that the baseflow with
complex physical mechanisms will be replaced by black box models, and the surface flow
that can be described by physical mechanisms will be simulated by hydrological models.

In this study, due to the complex runoff generation mechanisms in small montane
catchments, the black box method (i.e., the LSTM) and the SVSMRG module are coupled.
It has great significance for: (1) simulating and forecasting runoff or flood processes in
montane catchments; (2) providing a method to simulate complex, multi-sourced runoff
coupled with black box models. The aims of this study include three parts. The first
one is to propose a semi-distributed model (spatiotemporal variable source mixed runoff
generation module-based surface flow and baseflow segmentation (SVSMRG-SBS)) that
considers complex terrain and high vegetation coverage. Specifically, surface flow is
simulated according to the division of hydrological response units (HRUs), and complex
baseflow is simulated by the black box method (LSTM). The second one is to apply the
SVSMRG-SBS model to four montane high-vegetation-covered catchments with different
climatic conditions to validate its effectiveness. The last one is to improve the accuracy of
runoff and flood simulation and forecasting in montane catchments.

2. Materials and Methods
2.1. Study Regions

Mount Gongga (101◦30′–102◦15′ E, 29◦20′–30◦20′ N) is located on the southeastern
edge of the Qinghai–Tibet Plateau and the middle–south section of the Mount Daxue
Range [28]. Its highest peak is Mount Hengduan, with a summit of 7556 m above sea
level (asl) [29]. The geological structure of Mount Gongga is extremely complex, compris-
ing diverse landforms, dense valleys, and developed water systems. The study region,
the Huangbengliugou (HBLG) catchment (101◦58′–102◦00′ E, 29◦34′–29◦36′ N), which
is attached to the eastern slope of Mount Gongga, is situated in the Hailuogou (HLG)
forest watershed (Figure 1) and belongs to the HLG’s primary tributary. HBLG covers
7.76 km2 at elevations ranging from 2891 m to 5368 m asl and is characterized by a variety
of typical vertical vegetation zone spectra [30]. The vegetation coverage is 90.72% and the
main soil texture type is silty clay. The land use and soil texture types are summarized in
Tables 1 and 2, respectively.

HBLG is on the windward slope of the southeast monsoon and belongs to the sub-
tropical mountainous humid monsoon climate. The annual average relative humidity is
above 90% and the annual average temperature is 4.2 ◦C, with maximum and minimum
temperatures of 23.2 ◦C and −14 ◦C, respectively, at 2947.8 m asl [31]. Due to the influence
of monsoons and topography, HBLG is wet and rainy, with an average annual precipitation
of 1910 mm, wherein 80% of the total amount occurs from May to October [32]. The annual
average number of precipitation days reaches 261 days. Most of the rainfall intensity is low
while the duration is long, wherein 33.33% of the field rainfall intensity is 1.0–1.5 mm/h,
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and 24.24% is 1.5 mm/h [33]. In summary, HBLG is a montane high-vegetation-covered
catchment with complex underlying surfaces and large vertical changes in terrain.

Legend N 
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Figure 1. The Huangbengliugou (HBLG) catchment.

Table 1. Land use types.

Catchment Type Area (km2) Proportion (%)

Huangbengliugou (HBLG)

Woodland 0.62 7.99
Shrubland 2.27 29.25

Grass 4.15 53.48
Rock 0.72 9.28

Dayi (DY)

Woodland 179.65 65.62
Grass 37.43 13.67

Housing construction 7.22 2.64
Cultivated land 49.28 18.00

Waters 0.20 0.07

Guankou (GK)

Woodland 354.38 57.01
Grass 159.76 25.70

Housing construction 1.46 0.23
Cultivated land 103.47 16.65

Waters 0.20 0.03
Wetland 2.34 0.38

Hanwangchang (HWC)
Woodland 168.84 42.06

Grass 39.21 9.77
Cultivated land 193.34 48.17

Table 2. Soil texture types.

Catchment Type Area (km2) Proportion (%)

Huangbengliugou (HBLG) Silty Clay 6.35 81.85
Rock 1.41 18.15

Dayi (DY)
Loamy clay 11.8 4.31
Sandy clay 88.75 32.42
Clay loam 173.23 63.27

Guankou (GK)

Sandy clay 254.82 40.99
Clay loam 147.29 23.70
Silty loam 24.94 4.01

Sandy loam 18.33 2.95
Sandy clay loam 176.23 28.35

Hanwangchang (HWC)

Sandy clay 42.40 10.56
Clay loam 124.14 30.93

Sandy loam 14.10 3.51
Sandy clay loam 220.75 55.00
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In this study, an additional three montane catchments with high vegetation cov-
erage in the Sichuan province (Figure 2) were selected to verify the effectiveness of
the proposed SVSMRG-SBS model. These catchments are Dayi (DY, 103◦17′–103◦32′ E,
30◦34′–30◦44′ N), Guankou (GK, 103◦41′–103◦56′ E, 31◦05′–31◦26′ N), and Hanwangchang
(HWC, 103◦54′–104◦11′ E, 31◦27′–31◦42′ N). Their corresponding land use and soil texture
types are summarized in Tables 1 and 2, respectively.
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0 150 300 
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25°0'0"N 
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Figure 2. The Dayi (DY), Guankou (GK), and Hanwangchang (HWC) catchments.

2.2. Data

The observed hourly precipitation and runoff data of HBLG were derived from the
Gongga Alpine Ecosystem Observation and Research Station (GAEORS), established by the
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences. The Alpine
Meteorological Station (101◦59′ E, 29◦34′ N) is located 3000 m asl on the eastern slope of
Mount Gongga, and obverses hydrologic features, including precipitation, evaporation,
and temperature. The precipitation data are from 2001 to 2015. Meanwhile, the runoff data
were obtained from the Sanying Hydrological Station (102◦00′ E, 29◦34′ N) for 2001 to 2015,
of which data from 2004, 2010, 2011, 2012, and 2014 are missing.

The DY precipitation data were obtained from the Wushan (103◦24′ E, 30◦41′ N) and
Xinyuan (103◦20′ E, 30◦37′ N) rainfall stations. The flood event data were derived from
the DY Hydrological Station (103◦31′ E, 30◦35′ N). The data sets were from 1980 to 2012.
Moreover, the precipitation data of GK were obtained from the Baiguoping (103◦52′ E,
31◦20′ N) and Dabao (103◦47′ E, 31◦14′ N) rainfall stations, and the flood event data were
obtained from the GK hydrological station (103◦51′ E, 31◦05′ N). These data sets cover 1968
to 2012. Finally, the HWC precipitation data were taken from the Qingping (104◦07′ E,
31◦33′ N) and Tianchi (104◦08′ E, 31◦29′ N) rainfall stations, and the flood event data were
obtained from the HWC Hydrological Station (104◦10′ E, 31◦28′ N). These data sets cover
1994 to 2011. The time resolutions of the precipitation, runoff and flood event data sets
were hourly.

The attribute data (watershed boundaries, river channels, and confluence nodes) of
the four catchments were all generated using digital elevation models (DEMs). DEM
data were obtained from the National Aeronautics and Space Administration (NASA,
https://www.nasa.gov/) at a resolution of 12.5 m × 12.5 m in HBLG, whereas for DY, GK,

https://www.nasa.gov/
https://www.nasa.gov/
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and HWC were derived from the Geospatial Data Cloud (http://www.gscloud.cn/) at a
resolution of 30.0 m × 30.0 m.

2.3. The Model Description

Baseflow in montane areas is largely affected by vegetation, and snow and glacier
melt water, and its physical generation mechanism is intricate, making it difficult to
accurately describe using current hydrological models. In this study, the baseflow was
simulated using the LSTM. In addition, surface flow was simulated using the SVSMRG
module. Then, a semi-distributed hydrological model (i.e., SVSMRG-SBS) for simulating
and forecasting runoff processes and flood processes in montane catchments with high
vegetation coverage was formed. In this model, surface flow, which includes infiltration-
excess runoff, saturation-excess runoff, preferential flow, and interflow, considers the
unevenness of precipitation and the underlying surface, and baseflow, which refers to the
outflow from the underground reservoir, uses the LSTM without a physical mechanism.
The model structure is shown in Figure 3.

Figure 3. Schematic diagram of the spatiotemporal variable source mixed runoff generation module-
based surface flow and baseflow segmentation (SVSMRG-SBS) model structure.

http://www.gscloud.cn/
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The SVSMRG-SBS model includes plane, vertical, and interval mixing. Plane mixing
refers to the division of different eco-geomorphic units into different HRUs in consid-
eration of uneven underlying surfaces, which correspond to different runoff formation
mechanisms. There are four major HRU types: (1) rapid responding units (RRUs), which
respond rapidly to rainfall and usually generate major infiltration-excess runoff, such
as bedrock, fractured areas with bare soil, and subsidence areas; (2) disconnected rapid
responding units (DRRUs), which are similar to RRUs, but lack hydraulic connection
with the surrounding areas, wherein its discharge contributes less to the outlets; (3) delay
responding units (DRUs), which refer to the relatively slow response speed to rainfall, and
are usually grassland and woodland, wherein runoff formations are multiple components
and their combinations, for instance, infiltration-excess runoff, saturation-excess runoff,
and interflow; and (4) small contribution units (SCUs), which have a small contribution
to runoff generation, and are usually cultivated lands. Runoff components are mainly
saturation-excess runoff and interflow. These HRUs are subdivided into three types: fast,
medium, and slow. Vertical mixing refers to the hydrological process in which the genera-
tion mechanisms of infiltration-excess runoff and saturation-excess runoff may be mixed
in consideration of the dynamic balance of soil water. In addition, interval mixing refers
to the formation of infiltration-excess runoff and saturation-excess runoff in the varying
processes of instantaneous infiltration rate and infiltration capacity, soil water content,
and water storage capacity. The summary of SVSMRG-SBS model characteristics is listed
in Table 3.

Table 3. Summary of SVSMRG-SBS model characteristics.

Content Description

SVSMRG-SBS model

Composition Precipitation-runoff simulation; evapotranspiration; surface flow; interflow;
groundwater; etc.

Temporal resolution Hourly; daily; combination of hourly and daily
Spatial resolution Small catchments

Characteristic Modular structure; a semi-distributed hydrological model with a mix of plane,
vertical and interval

Application
Simulation of the spatiotemporal transition process of infiltration-excess and
saturation-excess runoff formation in small catchments under short-duration

and heavy rainfall conditions

2.3.1. Runoff Generation Modules

Herein, the runoff generation modules include surface flow and baseflow, where sur-
face flow considers the unevenness of precipitation and underlying surface, and baseflow
is simulated using the black box model–LSTM.

(1) Surface flow;

(a) interception and filling.

Regarding interception:
In the intercept process, precipitation is divided into interception and net rain. Inter-

ception is related to the vegetation coverage density and intercept capacity, and is divided
into summer and winter interception.

Summer interception is calculated as follows:

itpc = (Is
c − Ic)× AHRU × ds (1)

pip =

{
p− itpc

AHRU×ds
, p > itpc

AHRU×ds

0.0, p ≤ itpc
AHRU×ds

(2)

pitp = p× (1.0− ds) + (pip × ds) (3)
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where itpc is the effective intercept capacity (mm·m2), Is
c is the intercept capacity of the

main vegetation types in summer (mm), Ic is the intercept capacity of the vegetation
coverage density (mm), AHRU is the area of the HRU (m2), pip is the intercept rainfall (mm),
p is the precipitation (mm), ds is the vegetation coverage density in summer (-), and pitp is
the net rainfall after interception (mm).

Meanwhile, winter interception is calculated as follows:

itpc = (Iw
c − Ic)× AHRU × dw (4)

pip =

{
p− itpc

AHRU×dw
, p > itpc

AHRU×dw

0.0, p ≤ itpc
AHRU×dw

(5)

pitp = p× (1.0− dw) + (pip × dw) (6)

where Iw
c is the intercept capacity of the main vegetation types in winter (mm), dw is the

vegetation coverage density in winter, while the other parameters are the same as that in
Equations (1)–(3).

Regarding filling:
The filling calculation is as follows:

PE = pitp − per f d ×W f d (7)

where PE is the net rainfall (mm), per f d is the percentage of the basin area of depression
(%), and W f d is the average water storage capacity of the depression (mm).

(b) Infiltration

The model simulates the spatiotemporal transformation process of the infiltration-
excess runoff and saturation-excess runoff in the HRUs in the vertical direction. Different
conceptual reservoirs are used to simulate topsoil and subsoil layers, of which the topsoil is
generalized into impermeable and permeable areas, and the permeable areas are separated
into preferential and non-preferential flow areas. The infiltration-excess runoff formation
in topsoil is simulated by the non-linear infiltration calculation method of the unsaturated
zone. Meanwhile, the preferential flow areas of topsoil and subsoil are calculated based on
the saturation-excess runoff formation mechanism. The preferential flow areas represent
the area of proportional distribution of the infiltration-excess runoff and saturation-excess
runoff areas in the HRUs. The underground reservoir is replaced by the LSTM to determine
the baseflow, as detailed in Section 2.3.1–(2).

Regarding infiltration-excess runoff:
The infiltration-excess runoff formation is composed of the total net rain that falls on

both pervious and impervious areas.
The net rain falling on impervious area generates surface runoff Rh1 immediately as:

Rh1 = PE× perip (8)

where perip is the percentage of impervious area (%).
For the net rainfall on pervious areas, if the rain intensity is stronger than the infiltra-

tion capacity, it will generate the infiltration-excess runoff Rh2 as follows:

Rh2 = MAX(PE× (1.0− perip)− Fcap, 0) (9)

where Fcap is the infiltration capacity (mm).
Thus, the total infiltration-excess runoff Rh is:

Rh = Rh1 + Rh2 (10)

Regarding saturation-excess runoff:
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The relationships between the water content of the topsoil and subsoil with soil depth
and time are as follows:

Su,max = Hl × θs (11)

Sp,max = Su,max × perp (12)

Smax = H × θs (13)

Su, f c = Hl × θ f c (14)

Sp, f c = Su, f c × perp (15)

S f c = H × θ f c (16)

Su,0 = Hl × θ0 (17)

Sp,0 = Su,0 × perp (18)

S0 = H × θ0 (19)

where Su,max is the maximum water content of the topsoil (mm), Hl is the topsoil depth
(mm), θs is the saturated soil water content rate, Sp,max is the maximum water content of
the preferential flow aquifer (mm), perp is the percentage of preferential flow area, Smax
is the maximum soil water content (mm), H is the whole soil depth (mm), Su, f c is the
field capacity of the topsoil (mm), θ f c is the field capacity rate, Sp, f c is the field capacity
of preferential flow aquifer (mm), S f c is the field capacity (mm), Su,0 is the initial water
content of topsoil (mm), θ0 is the initial soil water content rate, Sp,0 is the initial soil water
content of the preferential flow aquifer (mm), S0 is the initial soil water content (mm).

After the infiltration-excess runoff formation process, the actual infiltration amount F
of the topsoil is:

F = PE×
(
1.0− perip

)
− Rh2 (20)

The infiltration amount of the preferential flow area of the topsoil Fp is:

Fp = perp × F (21)

Thus, the soil water content of the preferential flow aquifer Sp is:

Sp = MIN(Sp,0 + Fp, Sp,max) (22)

The first saturation-excess runoff Rd1 of the preferential flow aquifer is calculated
as follows:

Rd1 = MAX(0, Sp,0 + Fp − Sp,max) (23)

The topsoil water content Su is:

Su = MIN(Su,0 + F, Su,max) (24)

Water content of the soil S is calculated as follows:

S = MIN(S0 + F, Smax) (25)

The subsoil water content Sl is calculated as follows:

Sl = S− Su (26)

The second saturation-excess runoff Rd2 is:

Rd2 = MAX(0, Sp + F× perp − S f c × perp) (27)
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The total saturation-excess runoff is:

Rd = Rd1 + Rd2 (28)

Regarding preferential flow:
Preferential flow Rp generated in the preferential flow area of the topsoil is:

Rp = Sp × kp1 + S2
p × kp2 (29)

where kp1 is the linear outflow coefficient of the preferential aquifer, and kp2 is the non-
linear outflow coefficient of preferential.

Regarding interflow:
Interflow Ri generated by the subsoil layer is:

Ri = Sl × ki1 + S2
l × ki2 (30)

where ki1 is the linear outflow coefficient of interflow, which includes the linear outflow
coefficient of slow interflow ksi1 and the linear outflow coefficient of fast interflow k f i1, and
ki2 is the non-linear outflow coefficient of interflow, which includes the non-linear outflow
coefficient of slow interflow ksi2 and non-linear outflow coefficient of fast interflow k f i2.

Regarding baseflow:
The outflow of the groundwater reservoir is baseflow Rg, which is simulated by the

LSTM, as detailed in Section 2.3.1–(2).

(2) Baseflow

The long short-term memory (LSTM) is a variant of the recurrent neural network
(RNN), which is designed to avoid gradient vanishing and exploding during the process
of NN training [34]. On the basis of the RNN structure, a memory block is added to the
LSTM to store the information of long-term dependencies. Accordingly, the LSTM model
is an effective model used for time-series and sequential data applications. Because time
series forecasting has obvious characteristics of periodicity and time delay, the LSTM has
been successfully applied in various forecasts, such as water table depth forecasting [35],
runoff forecasting [36], and streamflow forecasting [37].

The baseflow consists of trained baseflow and predicted baseflow. Since there is no
measured baseflow data, the trained baseflow is calculated via the digital filtering method
called Boughton–Chapman (F4) [38] with observed or flood data series to obtain predicted
baseflow in this paper.

2.3.2. Flow Routing Modules

(1) Overland flow routing

Overland flow routing adopts a kinematic wave for description [39]. The inflow of
overland is from both pervious and impervious areas. The former adopts the total amount
of saturation-excess runoff and infiltration-excess runoff as the inflow, while the latter
adopts net rainfall. The partial differential equation of each slope runoff field described by
the kinematic wave is as follows:

∂h
∂t

+
∂q
∂x

= Rd + Rh (31)

where h is the surface water depth (m), q is the surface discharge per unit width (m2/s), t
is the time (s), x is the distance to the downstream of the runoff field (m).

The relationship between h and q is as follows:

q = αhm (32)
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where α and m are functions representing the characteristics of the slope runoff field. See
the values given by [39].

(2) Channel flow routing

Channel flow comes from the upstream unit inflow confluence and the lateral inflow
per unit channel length, described by the kinematic wave [40]. The partial differential
equation is as follows:

∂A
∂t

+
∂Q
∂x

= q (33)

The following is the assumed relationship between river cross-sectional flow Q and
river cross-sectional area A:

Q = αAm (34)

where A is the cross-sectional area (m2), Q is the cross-sectional flow (m3/s), q is the
lateral inflow per unit length of channel (m2/s), t is the time (s), x is the distance to the
downstream (m), and α and m are the kinematic wave parameters (see [39] for details).

For overland flow, as initial and boundary conditions a discharge and flow depth
equal to zero is assumed. In addition, for channel flow, the initial discharge value is set as
0.028 m3/s.

2.3.3. Coupling of Baseflow and Surface Flow

In this model, the total flow Rt is the sum of surface flow and baseflow, where the
surface flow uses the SVSMRG module, and baseflow uses the LSTM method. Rt is
calculated as follows:

Rt = Rd + Rh + Rp + Ri + Rg (35)

2.4. Evaluation Indicators of Model Calibration and Validation

Statistic metrics include NSE and R2, which are defined as follows:

NSE = 1−

n
∑

t=1
(Qs,t −Qo,t)

2

n
∑

t=1
(Qo,t −Qo)

2
(36)

where NSE is the Nash–Sutcliffe efficiency coefficient and the optimal value is 1, Qs,t and
Qo,t are the simulated and observed runoffs at t (m3/s), respectively, Qo is the arithmetic
mean observed runoff (m3/s), and n is the sample size.

R2 =

n
∑

i=1
(Qo,t −Qo)

2
(Qs,t −Qs)

2

n
∑

i=1
(Qo,t −Qo)

2 n
∑

i=1
(Qs,t −Qs)

2
(37)

where R2 is the correlation coefficient and the optimal value is 1, Qs is the arithmetic mean
of the simulated runoff (m3/s), and the other parameters are the same as in (36).

2.5. Evaluation Indicator of Sensitivity Analysis

In this study, a relative sensitivity method based on a perturbation analysis (see 3.4 for
details) was employed. The formula of relative sensitivity (RS) is as follows:

RS =

n−1
∑

i=1

(Qi+1−Qi)/Qb
(Pi+1−Pi)/100

n− 1
(38)

where RS is the relative sensitivity (0 ≤ |RS| ≤ 0.05, Insensitive (I); 0.05 < |RS| ≤ 0.20,
General sensitive (II); 0.20 < |RS| ≤ 1.00, Sensitive (III); |RS| > 1.00, Extremely sensitive
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(IV)), Qi and Qi+1 are the i-th and i+1-th simulated results, respectively (m3/s), Qb is the
calibrated result (m3/s), and Pi and Pi+1 are the i-th and i+1-th adjustment percentages of
the parameters, respectively.

3. Results and Discussion
3.1. Model Setup

The DEM with a resolution of 12.5 m × 12.5 m was performed for hydrological
analysis of the HBLG. Then, the river channels and confluence nodes were generated, and
the upstream and downstream topological relationships were verified. The catchment is
divided into 19 HRUs (Table 4), as shown in Figure 4.

Table 4. Divisions of hydrological response units (HRUs).

Catchment HRU Area (km2) Proportion (%)

Huangbengliugou (HBLG) Rapid Responding Units (RRUs) Medium 4.31 56.00
Slow 3.45 44.00

Dayi (DY)

RRUs
Fast 39.23 14.33
Slow 157.52 57.53

Delay Responding Units (DRUs) Fast 15.13 5.53
Slow 61.90 22.61

Guankou (GK)

RRUs
Fast 0.94 0.15

Medium 34.68 5.58
Slow 136.87 22.02

DRUs
Fast 39.60 6.37

Medium 60.47 9.73
Slow 349.05 56.15

Hanwangchang (HWC)

RRUs
Medium 114.06 28.41

Slow 15.61 3.89

DRUs
Medium 63.77 15.89

Slow 207.95 51.81Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 3 of 5 
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3.2. Calibration and Validation

The periods of calibration and validation were from 2001 to 2007 and from 2008 to
2015, respectively. Because there were a few soil texture types in the HBLG, calibration
was conducted according to the HRUs, which were derived from the shuffled complex
evolution (SCE) algorithm. The key parameters were divided into six components: the
responding parameters of infiltration-excess runoff, saturation-excess runoff, interflow,
overland flow routing, channel flow routing, and others (Table 5). In the calibration, NSE
and R2 values were 0.8240 and 0.9252, respectively, while in the validation, NSE and R2

values were 0.8241 and 0.9097, respectively. The main parameter values for calibration and
validation are summarized in Table 6.

Table 5. The key parameters and ranges of the spatiotemporal variable source mixed runoff generation module-based
surface flow and baseflow segmentation (SVSMRG-SBS) model.

Component Name Description Range Unit

Infiltration-excess runoff
ks Saturated hydraulic conductivity 4×10−8–6×10−6 m/s
H Soil depth 0.500–2.000 m

Saturation-excess runoff Hp Largest proportion of the area of saturation-excess runoff 0.050–1.000 -

Interflow

ks2g Maximum drainage coefficient from soil to underground reservoir 0.050–1.000 m/d
ksi1 Linear outflow coefficient of slow interflow 0.000–1.000 -
k f i1 Linear outflow coefficient of fast interflow 0.000–1.000 -
ksi2 Non-linear outflow coefficient of slow interflow 0.000–2.000 -
k f i2 Non-linear outflow coefficient of fast interflow 0.000–2.000 -

Overland flow routing

αo f p

Kinematic parameters

Custom -
mo f p Custom

Tb 4.000–20.000
Tp 1.000–9.000 -

Channel flow routing αchan Kinematic parameters Custom -
mchan Custom -

- θ0 Initial soil water content rate 0.010–0.500 -

Table 6. Model parameters of Huangbengliugou (HBLG), Dayi (DY), Guankou (GK), and Hanwangchang (HWC).

Parameter HBLG Soil Texture DY GK HWC Parameter HBLG Soil Texture DY GK HWC

ks , (m/s) 2.78 × 10−7

Sandy loam 3.18 × 10−7 1.66 × 10−6

H, (m) 0.122

Sandy loam 1.527 0.588
Sandy clay loam 2.31 × 10−6 5.50 × 10−6 Sandy clay loam 0.604 1.352

Loamy clay 8.49 × 10−8 Loamy clay 0.907
Clay loam 9.96 × 10−8 7.72 × 10−6 1.49 × 10−7 Clay loam 0.519 0.517 0.612
Sandy clay 1.79 × 10−7 3.27 × 10−6 1.23 × 10−6 Sandy clay 0.624 0.616 0.918
Silty loam 4.69 × 10−6 Silty loam 0.846

Hp 0.823

Sandy loam 0.677 0.095

ks2g ,
(m/d) 0.292

Sandy loam 0.851 0.377
Sandy clay loam 0.088 0.903 Sandy clay loam 0.058 0.947

Loamy clay 0.191 Loamy clay 0.767
Clay loam 0.152 0.883 0.595 Clay loam 0.970 0.086 0.060
Sandy clay 0.993 0.113 0.087 Sandy clay 0.997 0.260 0.118
Silty loam 0.908 Silty loam 0.924

ksi1 -

Sandy loam 0.298 0.152

k f i1 0.579

Sandy loam 0.163 0.722
Sandy clay loam 0.485 0.070 Sandy clay loam 0.021 0.707

Loamy clay 0.123 Loamy clay 0.703
Clay loam 0.722 0.500 0.197 Clay loam 0.978 0.967 0.225
Sandy clay 0.989 0.991 0.138 Sandy clay 0.984 0.143 0.871
Silty loam 0.861 Silty loam 0.104

ksi2 -

Sandy loam 0.466 0.218

k f i2 0.100

Sandy loam 1.712 1.595
Sandy clay loam 0.049 0.035 Sandy clay loam 0.592 0.337

Loamy clay 0.042 Loamy clay 0.409
Clay loam 0.022 0.074 0.277 Clay loam 0.174 0.522 1.262
Sandy clay 0.049 0.148 0.062 Sandy clay 0.758 1.246 1.934
Silty loam 0.572 Silty loam 1.188

θ0 0.299

Sandy loam 0.027 0.082 αo f p 0.400 - 1.295 1.242 1.142
Sandy clay loam 0.189 0.094 mo f p 1.804 - 0.713 1.278 0.366

Loamy clay 0.011 Tb - - 7.000 8.000 13.267
Clay loam 0.014 0.056 0.146 Tp - - 3.000 3.000 3.681
Sandy clay 0.016 0.205 0.098 αchan 1.804 - 1.522 1.940 1.243
Silty loam 0.021 mchan 0.266 - 1.618 1.494 1.409
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3.3. Application of the SVSMRG-SBS Model in Other Catchments

To verify the applicability of the SVSMRG-SBS model in montane catchments with
high vegetation coverage, this study selected the DY, GK, and HWC catchments to construct
models for hourly flood events (Figure 4). In total, there were 19 HRUs, 40 HRUs, and
25 HRUs for DY, GK, and HWC, respectively. The areas and proportions of HRUs are
summarized in Table 4, and their generation is shown in Figure 4.

Regarding DY, the data series was from 1980 to 2012, wherein 1980 to 1998 was used for
calibration and 1999 to 2012 was used for validation. For GK, the data series covered 1968
to 2012, wherein 1968 to 1997 was for calibration and 1998 to 2012 was for validation. For
HWC, the data series covered 1994 to 2011, wherein 1994 to 2003 was used for calibration
and 2004 to 2011 was used for validation. Unlike the HBLG, there were various soil texture
types in these catchments. Thus, the parameters were calibrated according to the soil
texture types instead of HRUs using the SCE algorithm. The calibrated model parameters
are summarized in Table 6.

3.4. Sensitivity Analysis of the SVSMRG-SBS Model

An uncertainty analysis for the hydrological models was an inevitable requirement to
ensure that the predicted results were meaningful [41]. Moreover, sensitivity analyses are
important for determining the uncertainty of hydrological models. A sensitivity analysis
could also be used to determine the key parameters and help understand the model
structure. In this study, the perturbation analysis approach was used for the sensitivity
analysis. Specifically, the relative optimal value of a parameter was scaled by a certain ratio
for different objective functions to perform simulated results.

First, we determined the objective function. In this study, NSE and R2 were used as
the objective functions with the same periods for both runoff and flood validation processes.
Second, we determined the parameter scaling ratios. Sensitivity analyses were performed
on the aforementioned 15 parameters (Table 5), wherein they were enlarged and reduced
by 10%, 30%, and 50%. Finally, standardized sensitivity curves were employed to express
the sensitivities of different objective functions, which considered the change rate of a
parameter relative to its optimal value on the abscissa and NSE or R2 as the ordinate.
In addition, n calculated results were selected, of which the |RS| value was calculated
using the two adjacent calculated results, and the average value of n− 1 was used as the
|RS| value. Due to space limitations, the standardized sensitivity curves of the interflow
responding parameters are shown in Figure 5, and the |RS| values are listed in Table 7.

Table 7. Results of sensitivity analysis.

Component Parameter
|RS|

HBLG Class DY Class GK Class HWC Class

Infiltration-excess runoff
ks, (m/s) 0.011048 I 0.045560 I 0.018622 I 0.005364 I

H, (m) 0.006538 I 0.082515 II 10.421367 IV 0.007548 I

Saturation-excess runoff Hp 0.088706 II 0.000000 I 0.305498 III 0.507296 III

Interflow

ks2g,
(m/d) 0.001150 I 0.061162 II 0.023771 I 0.012148 I

ksi1 - - 0.095774 II 0.128043 II 0.028547 I
k f i1 0.021598 I 0.084709 II 0.003732 I 0.048260 I
ksi2 - - 0.001750 I 0.021730 I 0.037775 I
k f i2 0.000048 I 0.030997 I 0.023556 I 0.058604 II

Overland flow routing

Tb - - 0.005058 I 0.001621 I 0.000123 I
Tp - - 0.003648 I 0.000992 I 0.000007 I

αo f p 0.000906 I - - - - - -
mo f p 0.008076 I - - - - - -

Channel flow routing αchan 0.145577 II 0.710289 III 1.010506 IV 0.537620 III
mchan 0.126248 II 16.168209 IV 39.060842 IV 44.882414 IV

- θ0 0.019601 I 0.000917 I 0.019723 I 0.048090 I
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Table 7 summarizes that, in general, whether it is a runoff or flood process, the respond-
ing parameters of channel flow routing are relatively sensitive, whereas the responding
parameters of overland flow routing and θ0 are relatively insensitive. (1) Runoff process:
The overall sensitivities corresponding to the parameters are low, ranging from 0.000048 to
0.145577, with the exception of Hp, αchan, mchan, and other component parameters, which
are insensitive. Class I accounts for 72.73% of the total parameters, and class II accounts for
the remaining 27.27%. (2) Flood process: In addition to αo f p, mo f p, and θ0, each component
has relatively sensitive parameters, with a variation range of 0 to 44.882414. Among all the
parameters, classes I to IV account for 61.54%, 15.38%, 10.26%, and 12.82%, respectively.
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Regarding each component, the responding parameter of infiltration-excess runoff ks is
more sensitive than H for the runoff process, while the opposite behavior for flood process.
This is mainly because precipitation intensity during the flood process is generally strong,
and the flood process rises and falls steeply, and thus ks changes insensitively. Meanwhile,
the runoff process is relatively slow, causing ks to be more sensitive. The corresponding
parameter sensitivities of interflow are closely related to the soil texture types of each
catchment. Regarding HBLG, the soil texture type is mainly silty clay with a dense struc-
ture. Hence, there is more interflow drainage than that of the groundwater downward
recharge. Thus, the outflow coefficient is more sensitive than the drainage coefficient to
the underground reservoir. The laws of the other three catchments are similar. The slow
outflow coefficients of DY and GK are more sensitive than the fast outflow coefficients
because the sum of the RRUs (slow) and DRUs (slow) of these two catchments is 80.14%
and 78.17%, respectively, making the former more sensitive. Meanwhile, the fast outflow
coefficient of HWC is more sensitive than the slow outflow coefficient. Although the sum
of the RRUs (slow) and DRUs (slow) and the sum of the RRUs (fast) and DRUs (fast) are
55.70% and 44.30%, respectively, the sum of the sandy clay loam and clay loam is 85.92%
as it has a dense texture and responds strongly to precipitation, causing the fast outflow
coefficient to be more sensitive. The laws of standardized sensitivity curves (Figure 5) are
roughly the same as the |RS| values, but the parametric sensitivities vary for distinct
objective functions, which is primarily reflected on the responding parameters of interflow
in the four catchments. Using DY as an example, the parametric sensitivities with NSE as
the objective function are: ksi2 < k f i2 < ks2g < k f i1 < ksi1, whereas when R2 is the objective
function, they are: ksi2 < ks2g < k f ii < k f i2 < ksi1.

In summary, the sensitive parameters of the runoff processes are Hp, αchan, and
mchan, and H, Hp, ksi1, k f i1, αchan, and mchan for the flood processes. That is, there are
differences in the sensitive parameters and sensitivities between the runoff and flood
processes. Meanwhile, there are differences in the parametric sensitivities due to different
soil texture types during the flood processes. Consequently, when using the SVSMRG-SBS
model to simulate the hydrological processes, not only should the influences of different
soil texture types on the parameters be considered but also the influences of different time
durations on parametric sensitivities should be considered.

3.5. Runoff and Flood Simulation and Forecasting of SVSMRG-SBS Model

During the dry season (November to mid-May of the following year) in montane
catchments, river discharge is mainly derived from groundwater, including glacier melting
flow. During the flood period (May 16 to the end of October), river discharge is derived
from groundwater and precipitation. Therefore, flow from November 1 to May 15 of the
following year comes from the baseflow, whereas the flow from May 16 to October 31
comes from the sum of baseflow and surface flow in the SVSMRG-SBS model. Furthermore,
based on the LSTM, a previous 24-h observed flow was trained to obtain the baseflow at the
current time (t = 0) and the predicted baseflow at 1, 3, 5 h ahead of time (t = 1, t = 3, and t = 5,
respectively). Regarding runoff, the flow and baseflow data series from March 1, 2001 to
March 1, 2002 were trained to predict the baseflow from 2002 to 2015 in HBLG. Conversely,
there was only a short data series of flood events. Then, the first 200 flood and baseflow
data points were adopted for training and predicting the baseflow of the remaining years
for DY, GK, and HWC. The trained baseflow was calculated via the Boughton–Chapman
(F4) method, among which the filtering parameters f1 and f2 and iteration N were set to
0.95, 0.15, and 3.00, respectively. The results are summarized in Figure 6 and Table 8.
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For calibration, the NSE and R2 values reached 0.8240 and 0.9252, respectively, for
the runoff simulations, and the NSE values were above 0.7182 and the R2 values were
above 0.7759 for the flood simulations. The SVSMRG-SBS model was thus proved to be
effective. For validation, the NSE and R2 values reached 0.8241 and 0.9097 for the runoff
simulations, while the NSE ranged from 0.5923 to 0.7467, and the R2 ranged from 0.6669 to
0.8092 for flood simulations. For the scenario of 1, 3, and 5 h baseflow forecasting, the
model performance declined when forecasting runoff processes, as is clear when the NSE
and R2 between the measured and modeled runoff decreased from 0.8216 to 0.8087 and
from 0.9095 to 0.8871, respectively. Similar to the flood simulations, the NSE and R2 values
declined from 0.7414–0.5885 to 0.7429–0.5716 and from 0.8042–0.6547 to 0.7936–0.6067,
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respectively. However, this decline was slight in each catchment. When t = 5, the NSE of
HWC was only 0.5716 and the R2 was only 0.6067, as a result of the poor flood data series.
As forecasting time increases, the data series decreases, causing the SVSMRG-SBS model
performance to decrease.

Table 8. The values of Nash–Sutcliffe Efficiency Coefficient (NSE) and Correlation Coefficient (R2)
during calibration and validation periods (t = 0, 1, 3, and 5).

Catchment Period
NSE R2

t = 0 t = 1 t = 3 t = 5 t = 0 t = 1 t = 3 t = 5

Huangbengliugou (HBLG) Calibration 0.8240 0.8199 0.8081 0.8007 0.9252 0.9214 0.9051 0.8861
Validation 0.8241 0.8216 0.8268 0.8087 0.9097 0.9095 0.9036 0.8871

Dayi (DY) Calibration 0.8372 0.8365 0.8312 0.8244 0.8636 0.8615 0.8538 0.8456
Validation 0.7467 0.7414 0.7354 0.7429 0.8092 0.8042 0.7931 0.7936

Guankou (GK) Calibration 0.7182 0.7184 0.7166 0.7208 0.7759 0.7720 0.7639 0.7589
Validation 0.7201 0.7155 0.7116 0.7187 0.7425 0.7369 0.7285 0.7296

Hanwangchang (HWC) Calibration 0.8292 0.8312 0.8323 0.8302 0.8687 0.8689 0.8641 0.8598
Validation 0.5923 0.5885 0.5765 0.5716 0.6669 0.6547 0.6226 0.6067

Firstly, contrast the results with results using only hydrological models: Montaldo
et al. [42] used the FEST04 model, a topographically based distributed hydrologic model
(TDM), and a simplified version of TDM-SDM model to predict two main floods (November
1996 and June 1997) in an alpine basin—the Toce basin (area 1534 km2). The results showed
that the SDM model demonstrates satisfactory simulation performance of both floods
(NSE = 0.91 for the 1996 event, NSE = 0.89 for the 1997 event). Moreover, NSE = 0.73
for the 1996 event, NSE = 0.84 for the 1997 event of the TDM model, and NSE = 0.72 for
the 1996 event, NSE = 0.94 for the 1997 event of the FEST04 model. Taschner et al. [43]
used the enhanced TOPMODEL to simulate the “Whitsun flood” (20th May 1999–23rd
May 1999) in the Bavarian alpine forelands—the Ammer watershed (area 709 km2). The
results showed that the enhanced model delivers a satisfying simulation with NSE = 0.89.
Grillakis et al. [44] used HBV model in five mountainous basins—Zelezniki (area 104 km2),
Vester (area 213.8 km2), Zminec (area 306.5 km2), Suha (area 568.9 km2), and Medvode
(area 645.7 km2) to calibrate and validate past rainfall-runoff events (1st January 2004–31st
November 2007). For calibration, the NSE values ranged from 0.82 to 0.96, and the R2

values ranged from 0.86 to 0.96. For validation, the NSE values ranged from 0.47 to 0.90,
and the R2 values ranged from 0.58 to 0.91. Shi et al. [45] used the HBV model to predict
the floods in Tangjing catchment (area 267 km2) with 50 floods occurring between 1980
and 1999 for calibration and 20 floods occurring between 2000 and 2004 for validation.
The NSE values ranged from 0.697 to 0.847, 0.669 to 0.822, and 0.645 to 0.868 for the
large-sized, medium-sized, and small-sized floods, respectively. The simulation results
of these studies are close to our study, but some results are slightly better than ours. The
reason is that the selected flood events of above studies are few and our simulation results
are the average of all the flood events. Moreover, contrast the results with results using
hydrological models and ANNs hybrid models: Young and Liu [46] used four models
(The Hydrologic Engineering Center’s-Hydrologic Modeling System, (HEC-HMS), single
ANN, Extended Auto-Regressive Moving Average (ARMAX), and HEC-HMS-ANN) to
predict runoff discharge in the southern Taiwan–Sandimen basin (area 401.78 km2) with
three typhon events (Bilis, Krosa, and Sinlaku). The results showed that the NSE ranged
from 0.412 to 0.957 of the HEC-HMS model. Meanwhile, the predicted runoff discharge
of 1, 2, 4, and 6 h ranged from 0.995 to 0.850 of the single ANN, from 0.996 to 0.533 of the
ARMAX model, and from 0.993 to 0.824 of the HEC-HMS-ANN. It indicated that as the
forecast time increases, the simulation accuracy decreases and is in good agreement with
our results. However, the HEC-HMS-ANN hybrid model simulated results are slightly
better than ours. It may be due to two reasons: (1) the mean elevation of the Sandiment
basin is 1262 m asl. To some extent, the underlying surface heterogeneity, vertical zonality
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of soil and vegetation are not as complicated as the mountainous areas—the HBLG, DY,
GK, and HWC; (2) there was only three typhon events which may make for better results.

In addition, Figure 6 shows that the simulated flow is generally lower than the
observed flow. This may be because the baseflow recharge is only briefly considered, and
precipitation recharge is ignored in the dry season. This may be enhanced in future study.

4. Conclusions

This study analyzed hydrological processes in montane catchments with high vegeta-
tion coverage and revealed that the baseflow formation mechanism of these catchments
is complex, and easily affected by factors such as topography, underlying surface, and
glacial melting water, which caused inaccurate runoff and flood simulations and forecast-
ing. Therefore, baseflow was regarded as a black box and simulated using the LSTM,
and the surface flow was simulated with a hydrological mechanism according to the eco-
geomorphic units. Then, a semi-distributed hydrological model (the SVSMRG-SBS model)
was proposed. It provided a method to simulate complex, multi-sourced runoff coupled
with black box models. The model was found to have good performance regarding runoff
and flood simulations. Note that the influences of different soil texture types and time
durations on parameters must be considered. Then, the predicted 1-, 3-, and 5-h baseflow
for runoff and flood forecasting were performed. Our findings showed that the simulation
accuracy decreased with increasing forecast time and decreasing data series.

In this model, the LSTM was used instead of the groundwater reservoir to forecast
baseflow, wherein only baseflow recharge was considered in the dry season, and precipita-
tion recharge was ignored. This resulted in lower simulation performance. Therefore, this
must be further improved to complete the model. Furthermore, the SVSMRG-SBS model is
suitable for simulation of the spatiotemporal transition process of infiltration-excess and
saturation-excess runoff formation in small montane catchments, where the topography
and landforms are diverse and runoff generation mechanisms are complex, especially in
short duration and heavy rainfall conditions.
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