

Supplementary Materials

Effects of Climatic Drivers and Teleconnections on Late 20th Century Trends in Spring Freshet of Four Major Arctic-Draining Rivers

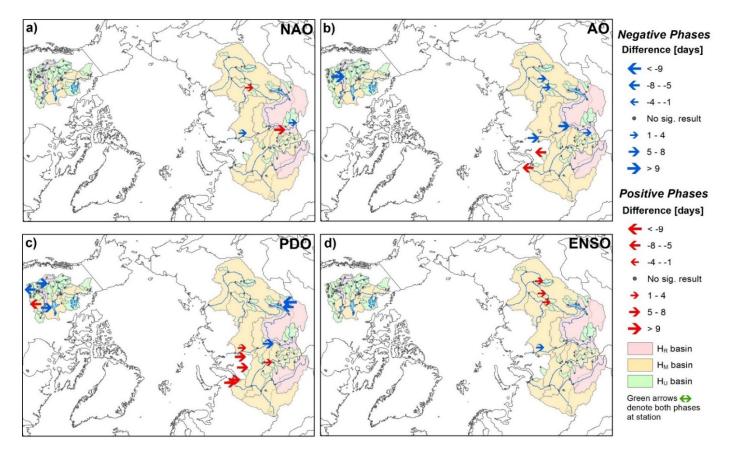
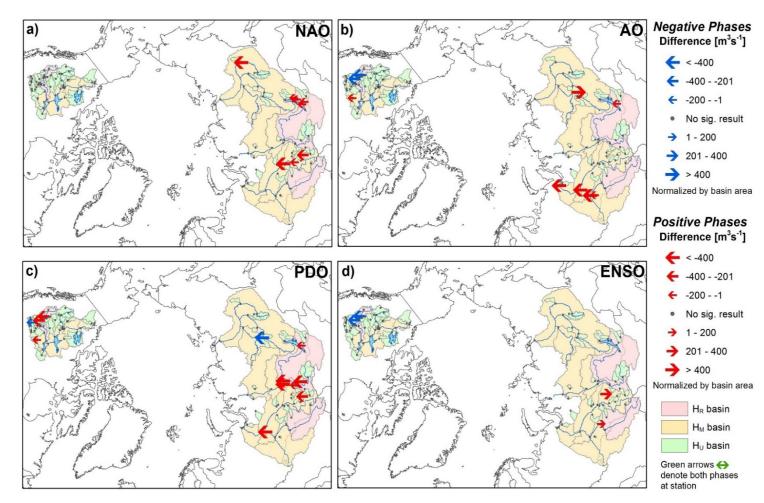
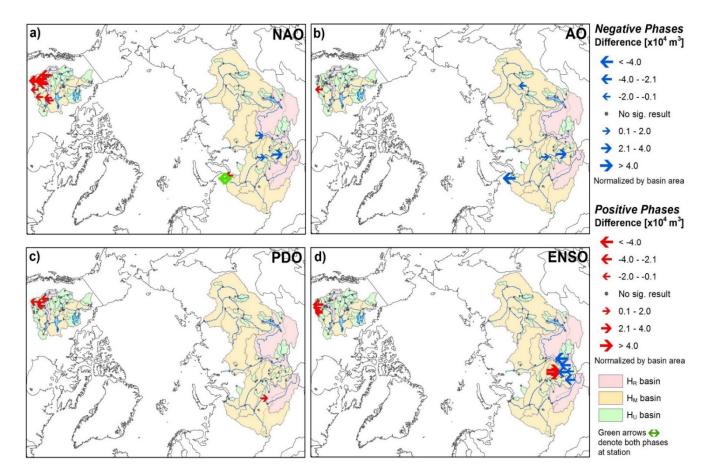

Roxanne Ahmed ¹, Terry Prowse ^{1,2}, Yonas Dibike ^{1,2,*} and Barrie Bonsal ^{1,3}

Table S1. Characteristics of drainage sub-basins identified in Figure 2. Note: M = Mackenzie, O = Ob, L = Lena, Y = Yenisei, Hu = unregulated, HR = Regulated and HM = minimally regulated. Stations IDs in *italic* have data during t_2 (1980-2000) only.

Label	Basin	ID	Lat. (°N)	Long. (°E)	D.A. (km ²)	% Infilled	Classification	Region
1	М	07AD002	53.42	-117.57	9765	0.0%	Hu	South
2	М	07DA001	56.78	-111.4	132585	0.0%	Hu	East
3	М	07GJ001	55.71	-117.62	50300	0.0%	Hu	South
4	М	07KC001	59.11	-112.43	293000	0.0%	Hr	East
5	М	07NB001	59.87	-111.58	606000	0.0%	Нм	East
6	М	10BE001	59.41	-126.1	104000	0.0%	Hu	West
7	М	10CD001	58.79	-122.66	20300	0.0%	Hu	West
8	М	10ED002	61.75	-121.22	275000	0.0%	Hu	West
9	М	10JC003	65.13	-123.55	146400	15.60%	Hu	North
10	М	10FA002	61.14	-119.84	9270	0.0%	Hu	East
11	М	10FB005	61.45	-121.24	1310	0.0%	Hu	West
12	М	10GC003	61.9	-121.61	2050	0.0%	Hu	North
13	М	10KA001	65.27	-126.84	1594500	11.80%	Нм	North
14	М	07OB001	60.74	-115.86	51700	0.0%	Hu	East
15	М	07TA001	63.11	-116.97	13900	0.0%	Hu	East
16	М	07AA001	52.86	-118.11	629	0.0%	Hu	South
17	М	07AA002	52.91	-118.06	3872	0.0%	Hu	South
18	М	07AF002	53.47	-116.63	2562	0.0%	Hu	South
19	Μ	07AG003	53.6	-116.27	826	0.0%	Hu	South
20	Μ	07BB002	53.6	-115	4402	0.0%	Hu	South
21	Μ	07BC002	54.45	-113.99	13014	0.0%	Hu	South
22	Μ	07BE001	54.72	-113.29	74602	0.0%	Hu	South
23	Μ	07BF002	55.45	-116.49	1152	0.0%	Hu	South
24	М	07BJ001	55.32	-115.42	1900	0.0%	Hu	South
25	Μ	07BK007	55.26	-114.23	2100	0.0%	Hu	East
26	Μ	07CD001	56.69	-111.26	30792	0.0%	Hu	East
27	М	07EC002	55.92	-124.57	5560	0.0%	Hu	South
28	Μ	07EE007	55.08	-122.9	4930	0.0%	Hu	South
29	Μ	07FB001	55.72	-121.21	12100	0.0%	Ηυ	South
30	Μ	07FC001	56.28	-120.7	15600	0.0%	Hu	South
31	М	07FC003	56.68	-121.22	1770	0.0%	Ηυ	South
32	Μ	07FD001	55.96	-120.56	3630	0.0%	Ηυ	South
33	Μ	07FD007	55.86	-120.03	2860	14.00%	Hu	South
34	М	07GE001	55.07	-118.8	11300	0.0%	Hu	South


35	Μ	07GG001	54.75	-117.21	1040	0.0%	Hu	South
36	М	07GH002	55.46	-117.16	11100	0.0%	Hu	South
37	М	07HA001	56.24	-117.31	194374	0.0%	Hr	South
38	М	07HA003	56.06	-117.13	1968	0.0%	Hu	South
39	М	07HC001	56.92	-117.62	4679	0.0%	Hu	East
40	М	07JD002	57.87	-115.39	35800	0.0%	Hu	East
41	Μ	07LE002	59.15	-105.54	50700	4.80%	Hu	East
42	М	07MB001	58.97	-108.18	9120	0.0%	Hu	East
43	М	07OC001	58.6	-118.33	10370	1.30%	Hu	East
44	Μ	10AB001	60.47	-129.12	12800	0.0%	Hu	West
45	М	10AC005	59.12	-129.82	882	0.0%	Hu	West
46	М	10BE004	58.85	-125.38	2540	0.0%	Hu	West
47	Μ	10BE007	59.34	-125.94	1170	0.0%	Hu	West
48	М	10CB001	57.23	-122.69	2180	0.0%	Hu	South
49	М	10EA003	61.53	-125.41	8560	0.30%	Hu	West
50	М	10EB001	61.64	-125.8	14500	0.0%	Hu	West
51	М	10ED001	60.24	-123.48	222000	2.50%	Hu	West
52	М	10GC001	61.87	-121.36	127000	0.0%	Нм	East
53	М	10LA002	66.79	-133.09	18750	1.10%	Hu	North
54	М	10LC014	67.456	-133.75	1679100	2.00%	Нм	Outlet
55	М	10MC002	67.26	-134.89	70600	6.30%	Hu	North
56	М	10ED003	61.33	-122.09	542	0.0%	Hu	West
57	0	11801	66.63	66.6	2950000	2.60%	Нм	Outlet
58	0	11056	58.2	68.23	1500000	0.80%	Нм	West
59	0	11048	55.02	73.3	769000	0.0%	Hr	West
60	0	10031	61.07	68.9	2690000	5.60%	Нм	East
61	0	10021	58.3	82.88	486000	0.0%	Нм	South
62	0	10062	51.28	87.72	16600	9.90%	Hu	South
63	0	10126	51.02	84.32	3480	5.60%	Hu	South
64	0	10176	53.73	84.95	15900	5.10%	Hu	South
65	0	10219	55.32	84.1	15700	5.10%	Hu	South
66	0	10277	53.33	87.23	7080	5.10%	Hu	South
67	0	10317	55.38	91.62	14700	12.20%	Hu	South
68	0	10387	56.2	87.78	9820	5.10%	Hu	South
69	0	10407	56.18	86.4	3460	7.70%	Hu	South
70	0	10428	57.78	82.63	25000	5.10%	Hu	South
71	0	10444	56.85	83.07	2560	5.10%	Hu	South
72	0	10466	59.37	82.83	6500	5.10%	Hu	East
73	0	10478	59.22	78.22	31700	9.40%	Hu	East
74	0	10489	59.85	81.95	24500	5.10%	Hu	East
75	0	11309	55.45	78.32	12200	5.10%	Hu	West
76	0	11353	56.38	75.25	16400	0.0%	Hu	West
77	0	11496	57.13	69.22	2140	2.60%	Hu	West
78	0	11556	66.87	65.78	1240	0.60%	Hu	North
79	0	11558	66.03	68.73	15100	2.90%	Hu	North
80	0	11574	64.93	77.8	31400	0.20%	Hu	North
81	Y	9803	67.43	86.48	2440000	0.0%	Нм	Outlet
82	Y	9092	61.1	90.08	1760000	0.0%	Нм	North

83	Y	9002	51.72	94.4	115000	0.0%	Hu	South
84	Y	8091	58.35	93.55	1040000	0.0%	Hr	South
85	Y	9079	58.45	92.15	1400000	0.0%	Hr	West
86	Y	7156	51.95	106.35	565	0.0%	Hu	East
87	Y	7172	51.53	104.07	959	0.0%	Hu	South
88	Y	7015	55.85	110.15	20600	0.0%	Hu	East
89	Y	7024	53.6	109.6	19800	0.0%	Hu	East
90	Y	7036	52.92	108.73	5050	0.0%	Hu	East
91	Y	7072	50.3	108.63	15600	0.0%	Hu	East
92	Y	7102	51.2	106.97	38300	0.0%	Hu	East
93	Y	9207	52.65	90.1	14400	0.0%	Hu	West
94	Y	9252	53.8	92.87	31800	0.0%	Hu	West
95	Y	9372	59.12	93.48	15100	0.0%	Hu	North
96	Y	9422	65.65	90.12	9100	0.0%	Hu	North
97	Y	9425	65.98	84.27	10100	5.10%	Hu	North
98	L	3821	70.68	127.39	2430000	0.0%	Нм	Outlet
99	L	3329	63.95	124.83	452000	2.00%	Нм	West
100	L	3156	60.98	115.5	32600	2.60%	Hu	West
101	L	3157	60.17	116.8	27600	0.30%	Hu	South
102	L	3277	60.68	135.03	24200	2.60%	Hu	East
103	L	3291	59.67	127.05	23900	2.60%	Hu	South
104	L	3202	60.9	120.8	16600	10.30%	Hu	West
105	L	3210	61.05	128.65	12200	10.30%	Hu	South
106	L	3219	58.97	126.27	49500	10.30%	Hu	South


Figure S1. Teleconnection relationships between March through May (**a**) NAO (**b**) AO (**c**) PDO and (**d**) ENSO and freshet pulse dates F_P during the 1962–2000 period. Blue arrows indicate F_P is affected by the negative phase of a teleconnection index while red arrows indicates F_P is affected by the positive phase of the index at a 5% significance level. The direction of the arrows indicate whether F_P is delayed (pointing right) or advancing (pointing left) while the size of the arrow represents the magnitude.

During t1, NAO and ENSO show little influence in any of the basins during either phase, although some stations exhibited later pulse dates during the negative phase of each oscillation. The negative phase of AO (associated with cooler SAT anomalies) was shown to relate to later pulse dates in some Eurasian and Mackenzie stations while the positive phase was related to earlier pulse dates in two northern Ob basin stations. Positive phase of PDO was correlated with delayed pulse dates in the northern Ob and Yenisei regions. In the Mackenzie basin, negative PDO associated with lower SAT anomalies was correlated with later pulse dates in two stations while positive PDO was correlated with an earlier occurrence of pulse dates in one station.

Figure S2. Teleconnection relationships between March through May (**a**) NAO (**b**) AO (**c**) PDO and (**d**) ENSO and peak freshet magnitude F_M during the 1962–2000 period. Blue arrows indicate F_M is affected by the negative phase of a teleconnection index while red arrows indicates F_M is affected by the positive phase of the index at a 5% significance level. The direction of the arrows indicate whether F_M is increasing (pointing right) or decreasing (pointing left) while the size of the arrow represents the magnitude.

During t₁, NAO and AO in their positive phases were associated with lower peak freshet magnitudes, particularly in Eurasian basins. NAO exhibited a strong influence in the eastern Ob and Yenisei regions while AO was mostly detectable in northern and western Ob. Similarly, PDO in its positive phase was associated with lower F_M except most results were located in high-relief regions of the southern Mackenzie and western Yenisei. These findings were consistent with positive SAT anomalies associated with the positive phases of these indices. They were also consistent with positive correlations of temperature with decreased F_M. Meanwhile, ENSO demonstrated little effect on F_M.

Figure S3. Teleconnection relationships between December through February (**a**) NAO (**b**) AO (**c**) PDO and (**d**) ENSO and freshet volume V_2 during the 1962–2000 period. Blue arrows indicate V_2 is affected by the negative phase of a teleconnection index while red arrows indicates V_2 is affected by the positive phase of the index at a 5% significance level. The direction of the arrows indicate whether V_2 is increasing (pointing right) or decreasing (pointing left) while the size of the arrow represents the magnitude.

Regional patterns were most pronounced during t₁, with strong influence of positive phases of PDO, AO, NAO and ENSO (El Niño) reflecting positive Central Pacific SST anomalies resulting in warmer, drier winter conditions for the southern Mackenzie basin and correspondingly decreased freshet volumes. In the Eurasian basins, negative NAO and AO were related to increased volumes in some southern Ob basins. This is likely due to regional variation in precipitation anomalies associated with these indices, where negative phases can lead to increased winter precipitation anomalies in southern portions of the Eurasian basins. PDO generally did not exhibit any significant relationships in Eurasian basins. ENSO, meanwhile, showed increased volume during El Niño (wetter winters, regionally) in two Ob sub-basins, while nearby in southern Ob and western Yenisei alpine regions, La Niña (drier winters, regionally) showed significant relationships with decreased freshet volumes.