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Abstract: The objective of this study is re-evaluation of the long-term record of limnological pa-
rameters in Lake Kinneret (1970–2018) and its drainage basin (1940–2018) aimed at an indication
of the possible impact of climate change on water quality in Lake Kinneret. The methodological
approach is based on indication of significant changes, of temperature increase, decline in rainfall,
causing a reduction in river discharges, and lake water inflows. These climatological changes were
accompanied by a reduction in nitrogen and a slight increase in phosphorus in the lake Epilimnion.
The outcome was Epilimnetic Nitrogen deficiency and Phosphorus sufficiency, which enhanced
domination replacement of Peridinium spp. by Cyanobacterial. We concluded sequel suggested
climate change affected water quality deterioration in Lake Kinneret.

Keywords: lake kinneret; watershed; climate change; nutrients; cyanobacteria

1. Introduction

Lake Kinneret in the Syrian-African rift valley in northern Israel (Figures 1 and 2) is the
only natural freshwater lake in Israel. Kinneret is a warm Monomictic lake stratified from
May to December [1–4] Above 95% of the Israeli natural water resources are utilized. The
total national water supply is 2.11 bcm, of which 0.55 bcm comes from the Kinneret-Jordan
system and 0.7 bcm from desalinization. Lake Kinneret supplies national multi-ecological
services, such as water supply and recreation, and is also exploited for fishing by about
200 licensed fishermen.

Three major rivers (Hatzbani, Banyas, and Dan) flow from the Hermon mountain
region in the northern part of the Kinneret drainage basin. These rivers jointly flow into
River Jordan, which crosses the Hula Valley through two major man-made canals, the
eastern and western canals. At the south end of the Valley, the two canals jointly flow
again as the Jordan River flowing downstream into Lake Kinneret [1–4]. The Jordan River
contributes to about 63% of the Kinneret water budget, and more than 50% of the total
external nutrient inputs come from the Hula Valley region. The drainage basin area of
Lake Kinneret is 2730 km2, and is located mostly to the north of the lake from which the
Hula Valley is about 200 km2. The Kinneret ecosystem has undergone significant changes
in the last 70 years [3]. Some of the changes are natural, while others are anthropogenic.
During the last 25 years, a depletion of Epilimnetic bio-availability of nitrogen and a slight
increase of Epilimnetic phosphorus was documented. The Kinneret Epilimnion has limited
phosphorus. The TN/TP mass ratio in the Epilimnion consequently declined [4]. The
global outcome of climate change in freshwater bodies was Eutrophication accompanied
by water scarcity. Therefore, the susceptibility of drinking water sources to Cyanobacteria
blooms has been significantly enhanced.
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Figure 1. Kinneret Drainage Basin Major Headwaters are Charted: Hermon(Banyas), 
Snir(Hatzbani), Dan, and “others” H = HuriBridge Regional Drainage Sub-units domain. 

Removal of cyanobacteria is efficiently carried out by using chemicals, but decom-
posed toxic Cyanobacteria cells release dissolved toxins. These toxins degrade water 
quality and their elimination is crucial not only for water quality improvement but also 
for recreational enhancement. Lake Kinneret is a popular suitable site for recreation, and 
the nuisance of toxic Cyanobacteria [5–7] is, therefore, a harmful threat. 

This paper attempts to address the recent increase in the level of Cyanobacteria 
biomass in Lake Kinneret. The paper focuses on the impact of climate change on N and 
P availability on phytoplankton composition and the threat of Cyanobacteria on water 
safety.  

Figure 1. Kinneret Drainage Basin Major Headwaters are Charted: Hermon(Banyas), Snir(Hatzbani),
Dan, and “others” H = Huri Bridge; ...... Regional Drainage Sub-units domain.
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Figure 2. Lake Kinneret Map with Sampling Station distribution. 

2. Material and Methods 
The long-term datasets (1970–2018) of Lake Kinneret and its watershed were statis-

tically evaluated. Included parameters were water and air temperature, rainfall regime, 
nutrient dynamics, lake plankton community structure, and river discharges (mcm/y; 106 
m3 annually). Data were obtained from the following sources: Annual Reports, Kinneret 
Limnological Laboratory [5], annual reports of the Israeli National Meteorological Ser-
vice and the Israeli National Hydrological Service (National Water Authority), MIGAL, 
Hula Project Service [8], Interim and Annual Reports by Mekorot Water Supply Com-
pany Ltd. (Nazareth, Israel) Monitoring Unit Jordan District, Agriculture Ministry 
Northern Branch—Upper Galilee Office, and TAHAL Water Planning for Israel.  

Annual temperatures, nutrient concentrations, and plankton densities (1970–2014) 
in the epilimnion, as well as sampling procedures and analytical methods, were taken 
from the Lake Kinneret database [4] of the Kinneret Limnological Laboratory. Data on 
the Jordan River nutrient loads, concentrations, and discharge were taken from the an-
nual and temporal reports published by Mekorot, the National Water Company.  

Statistical analyses (fractional polynomial regression) (FP) were carried out using 
STATA 9.1, Statistics-Data Analysis, Chapter fracpoly-Fractional Polynomial regression; 
StataCorp, 2005, Stata Statistical Software: Release 9. College Station, TX, USA: 
StataCorp LP. pp. 357–370 (See also: Royston, P. and D. G. Altman, 1994.) Regression 
was carried out using Fractional Polynomial of continuous covariates: Parsimonious 
parametric modeling (with discussion), Applied Statistics 43: 429–467. The purpose of 
FPs is to increase the flexibility of the family of conventional polynomial models. Alt-
hough polynomials are popular in data analysis, linear and quadratic functions are se-
verely limited in their range of curve shape, whereas cubic and higher-order curves of-
ten produce undesirable artifacts such as “edge effects” and “waves” (STATA 9).  

Figure 2. Lake Kinneret Map with Sampling Station distribution.
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Removal of cyanobacteria is efficiently carried out by using chemicals, but decom-
posed toxic Cyanobacteria cells release dissolved toxins. These toxins degrade water
quality and their elimination is crucial not only for water quality improvement but also for
recreational enhancement. Lake Kinneret is a popular suitable site for recreation, and the
nuisance of toxic Cyanobacteria [5–7] is, therefore, a harmful threat.

This paper attempts to address the recent increase in the level of Cyanobacteria
biomass in Lake Kinneret. The paper focuses on the impact of climate change on N and P
availability on phytoplankton composition and the threat of Cyanobacteria on water safety.

2. Material and Methods

The long-term datasets (1970–2018) of Lake Kinneret and its watershed were statis-
tically evaluated. Included parameters were water and air temperature, rainfall regime,
nutrient dynamics, lake plankton community structure, and river discharges (mcm/y;
106 m3 annually). Data were obtained from the following sources: Annual Reports, Kin-
neret Limnological Laboratory [5], annual reports of the Israeli National Meteorological
Service and the Israeli National Hydrological Service (National Water Authority), MIGAL,
Hula Project Service [8], Interim and Annual Reports by Mekorot Water Supply Company
Ltd. (Nazareth, Israel) Monitoring Unit Jordan District, Agriculture Ministry Northern
Branch—Upper Galilee Office, and TAHAL Water Planning for Israel.

Annual temperatures, nutrient concentrations, and plankton densities (1970–2014)
in the epilimnion, as well as sampling procedures and analytical methods, were taken
from the Lake Kinneret database [4] of the Kinneret Limnological Laboratory. Data on the
Jordan River nutrient loads, concentrations, and discharge were taken from the annual and
temporal reports published by Mekorot, the National Water Company.

Statistical analyses (fractional polynomial regression) (FP) were carried out using
STATA 9.1, Statistics-Data Analysis, Chapter fracpoly-Fractional Polynomial regression;
StataCorp, 2005, Stata Statistical Software: Release 9. College Station, TX, USA: StataCorp
LP. pp. 357–370 (See also: Royston, P. and D. G. Altman, 1994.) Regression was carried out
using Fractional Polynomial of continuous covariates: Parsimonious parametric modeling
(with discussion), Applied Statistics 43: 429–467. The purpose of FPs is to increase the
flexibility of the family of conventional polynomial models. Although polynomials are
popular in data analysis, linear and quadratic functions are severely limited in their range
of curve shape, whereas cubic and higher-order curves often produce undesirable artifacts
such as “edge effects” and “waves” (STATA 9).

3. Results and Discussion

The hydrological symptoms of climate change included in this paper are rainfall and
discharge decline [9–11] (Figure 3). These conditions resulted in the reduction of water
exchange in the lake and prolongation of water residence time (RT).
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Figure 3. The decline of rainfall and river discharge: (A,B) Annual Rain (mm); (C,D) Jordan Discharge
(mcm/y) (A,C) line scatter; (B,D) FP regression; Two exceptions: 1991–2: 842 mcm/y; 2003–4:
807 (mcm/y) are indicated.

The changes of nitrogen and phosphorus input dynamics through the discharges of
River Jordan are shown in Figures 4–9 [11,12].
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Figure 4. The increase of P form concentrations In relation to discharge: FP regression between annual
(1970–2018) mean 4: concentrations (ppm) of Total Phosphorus (TP), Total Dissolved Phosphorus
(TDP) and Soluble Reactive Phosphorus (SRP) in Jordan waters and annualJordan discharge (mcm/y).



Water 2021, 13, 163 5 of 19

Water 2021, 13, x FOR PEER REVIEW 5 of 20 
 

 

 
Figure 4. The increase of P form concentrations In relation to discharge: FP regression between 
annual (1970–2018) mean 4: concentrations (ppm) of Total Phosphorus (TP), Total Dissolved 
Phosphorus (TDP) and Soluble Reactive Phosphorus (SRP) in Jordan waters and annualJordan 
discharge (mcm/y). 

 

Figure 5. Temporal changes of P loads:FP regression between annual (1970–2018) Load inputs 
(ton) through Jordan discharge of Total Phosphorus (TP),Total Dissolved Phosphorus (TDP) and 
Soluble Reactive Phosphorus (SRP) and years. 

Figure 5. Temporal changes of P loads:FP regression between annual (1970–2018) Load inputs (ton)
through Jordan discharge of Total Phosphorus (TP),Total Dissolved Phosphorus (TDP) and Soluble
Reactive Phosphorus (SRP) and years.
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The replacement of Peridinium domination by Cyanobacteria enhancement is pre-
sented in Figures 10 and 11.
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Figure 11. Biomass cfluctuations of Cyanobacteria and Peridiniun in relation to Residence Time
(RT) length: FP regression between Residence Time length (RT) (Years) and Algal (Peridinium,
Cyanophyta) Biomass (g/m2).

Results given in Figure 9 indicate the impact of RT (Residence Time) length on Peri-
dinium and Cyanobacteria densities whilst Figure 12 represents the temporal changes of RT
length.
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Figure 12. Temporal changes of Residence Time length in Lake Kinneret: FP regression between
Annual means of monthly Residence Time (RT) value (years) and years in Lake Kinneret (1970–2018).

The relations between discharges of River Jordan and DIN (Dissolved Inorganic Nitro-
gen) inputs and their impact on Cyanobacteria are given in Figures 13 and 14. Figure 15
represents the temporal changes of TN (Total Nitrogen) and TP (Total Phosphorus) total
lake standing stocks and mass ratio.
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As part of climate change indication, air and water temperature increases since the
early 1980s are shown in Figures 16 and 17.
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Figure 17. Trend of changes (LOWESS;0.8) of annual means (1969–2008) of Epilimnetic mean temper-
ature.

The hydrological symptoms of climate change included in this paper are rainfall
and discharge decline [9–11] (Figure 3). These conditions resulted in the reduction of
water exchange in the lake and prolongation of water residence time (RT). The changes
of nitrogen and phosphorus input dynamics through the discharges of River Jordan are
shown in Figures 5–9 [11,12]. The replacement of Peridinium domination by Cyanobacteria
enhancement is presented in Figures 10 and 11. Results given in Figure 9 indicate the
impact of RT length on Peridinium and Cyanobacteria densities whilst Figure 12 represents
the temporal changes of RT length. The relations between discharges of River Jordan and
DIN inputs and their impact on Cyanobacteria are given in Figures 13 and 14. Figure 15
represents the temporal changes of TN and TP total lake standing stocks and mass ratio. As
part of climate change indication, air and water temperature increase since the early 1980s
are shown in Figures 16 and 17. Results shown in Figure 3 indicate a temporal decline
in rainfall and the Jordan River discharge between 1980 and 2020. Two exceptions of the
Jordan River discharge are indicated (Figure 3): 842 and 807 mcm/y in the winters of 1991–2
and 2003–4, respectively. Results shown in Figure 2 indicate an increase of TP, TDP and SRP
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concentrations (ppm) in Jordan waters in relation to the river discharge. The increase in SRP
concentration is positively related to the elevation in the discharge range of 200–800 mcm/y
whilst that of TP and TDP is between 200–600 mcm/y. Results shown in Figure 3 for TP
and TDP annual input loads through Jordan waters (ton/y) were decreased since the 1980s
with respect to the decrease in rainfall and discharge (Figure 3). The distribution pattern of
SRP was different and increased between 1970 and 1990, followed by a decline afterwards.

The temporal changes of nitrogen form dynamics supplied by the Jordan discharges
are shown in Figures 6–9. These results indicate an increase in the concentrations of all
nitrogen forms in relation to the river discharge elevation below 600 mcm. Moreover,
temporal changes of nitrogen form loads (tons/y) represent temporal decline since the
mid-1980s except those of organic nitrogen which continually declined between 1970 and
2020. The decline of nitrogen form loads since the mid-1980s is correlated with the rainfall
and discharge decline (Figure 3).

Before the 1990s, algal biomass in Lake Kinneret was dominated by Peridinium, com-
monly accompanied by Chlorophyta and Diatom. After the 1990s, Peridinium domination
was replaced by Cyanobacteria, accompanied by Diatoms and Chlorophyta) [1,4,11].

Documentation of the concentration of cyanobacterial toxins in Lake Kinneret is
shown in Table 1 [4]. It has to be considered that no impact of HFCB toxicity on Kinneret
zooplankton and fishes [13–17] was not indicated.

Table 1. Maximal Concentrations of Microcystins in Lake Kinneret from 2005 to 2018 [5], given in
microgram Microcystins per gram biomass (dry weight) of Microcystis sp. biomass (dry weight) and
microgram per liter of sampled waters (n = number of samples) [5,7].

Year Microgram Per Gram Dw Microgram Per L

2005 22 (n = 1)

2006 539 (n = 3)

2007 366 (n = 5)

2008 494.3 (n = 3)

2009 750.6 (n = 9) 1.31 (n = 6)

2010 169.4 (n = 3) 3.2 (n = 3)

2011 9.4 (n = 1)

2012 135.8 (n = 8) 1.43 (n = 9)

2013 935.1 (n = 7) 1.16 (n = 3)

2014 252.6 (n = 1)

2015 9.8 (n = 3) 1.65 (n = 2)

2016 93.8 (n = 6) 0.7 (n = 4)

2017 116.3 (n = 4) 1.0 (n = 1)

2018 21.7 (n = 5)

Taking into account the maximal level measured in 2016 of 93.8 micrograms per gram
DW when maximal biomass of HFCB documented between January and June was 12 g(ww)
per m2 [4] and 40% DW of WW, the total (Lake Kinneret surface area—168×106 m2) weight
of Microcystins in Lake Kinneret waters was about 76 kg.

The first record of the toxic Aphanizomenon ovalisporum in Lake Kinneret in July
1994 was an indication that the water quality might have been threatened. Nevertheless,
it was not a real surprise. Seven years earlier, the possibility had been predicted. More-
over, blooms of Microcystis spp. were observed several times before then. The bloom
of Aphanizomenon indicated a significant modification accompanied by the cessation of
Peridinium annual bloom. Consequently, this 1994 modification reflected a long-term
change of ecosystem. As in similar widely known changes, the change in the nutrient
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dynamics was likely a major part of the reasons [18–24]. Change in nutrient dynamics was
reasonably justified but further study about the reason for those changes was incomplete.
This paper is a tentative confirmation of the impact of climate change on nutrient dynamics
and consequent modification of Phytoplankton composition. Likely, climate changes of
temperature increase and decline in rainfall and water discharges caused the decline of
Peridinium and Cyanobacteria enhancement [25–29]. It is suggested that rainfall and river
discharge decline caused the reduction of nitrogen supply [29]. The result was that the Peri-
dinium domination was replaced by the Cyanobacteria, including HFCB [17–23]. Change
in patterns of rainfall [15] probably also enhanced the concentration of Cyanobacterial
toxins.

Two additional ecological issues are considered: (1) the impact of Hula Wetlands
drainage [30,31] and (2) the role of externally supplied and internally effective influence
of dissolved and total inorganic nitrogen (DIN or TIN) within the eco-dynamics of the
lake [6,7]. The study of Hula Drainage impact is mostly concerned with soil chemistry, but
also with anthropogenic involvement such as the complete removal of raw sewage and
the restriction of aquaculture (fishpond) area from 1700 ha to 3.5 ha, which significantly
changed water utilization in the Hula Valley. Those changes reduced fluxes of organic
nitrogen from the Hula Valley to the lake. Although [30] did not take into account these
two anthropogenically modified parameters, he suggested that reduction in nitrogen input
might cause the decline of the Epilimnetic N/P mass ratio in the lake and may potentially
favor Cyanobacterial enhancement [23]. Figures 13 and 14 indicate the impact of DIN on
the lake biomass of Cyanobacteria. Figure 11 indicates that the higher the Jordan discharge
increases the higher the DIN load (and input), and the lower the DIN input the lower the
biomass of Cyanobacteria. The reduction in nitrogen (mostly organic and DIN) resulted
in (Figure 15) temporal decline in nitrogen standing stock and Figure 10 confirms the
consequent decline of Peridinium) and Cyanobacteria enhancement. Nitrogen deficiency
was replaced by alternative resource as nitrogen fixation by Cyanobacteria. Figure 14
prominently confirms the temporal decline of DIN input whilst N2-fixers Cyanobacteria
proliferated.

Mass development of Cyanobacteria is quite often associated with Eutrophication and
is a threat to water quality and the ecological stability of the ecosystem. These organisms
can have harmful effects when their biomass is high. Cyanobacteria were found to be
toxic not only to human population and livestock but also to freshwater invertebrates,
although Harmful Cyanobacteria (HFBC) toxication of Kinneret zooplankton was not doc-
umented [18–22]. The impact of hydrological and temperature changes on Cyanobacteria
bloom enhancement as a factor of Eutrophication was widely documented [31]. Two poten-
tial directions of the impact were defined [31]: Nutrient dynamics induce enhancement
of growth rate and physical effect of stratification stabilization. Heat-wave events also
enhanced the biomass of Cyanobacterial. Recent studies indicate that climate change, as
a primary promoter of Cyanobacteria bloom formation, includes not only temperature
elevation but also extreme events (such as rain/wind storm and heat-wave) [32–37]. The
positive relationship between temperature and Cyanobacteria bloom formation enhanced
by physiological processes that accelerate the growth rate [32–34] might be the outcome of a
complex interaction between temperature and nutrients [35]. The impact of Cyanobacteria
bloom formation on water quality includes their physical nuisance and difficulties of their
removal, due to their colonial feature and presence of gelatinous wrap and their toxicity.
Cyanobacteria growth rate and their ability to produce toxins are positively correlated with
temperature elevation and nutrient availability. Cyanobacteria are ubiquitous in inland
aquatic ecosystems. The geographical distribution of Cyanobacteria includes tropical,
sub-tropical and temperate global zones. The diversity, density, toxicity and longevity of
Cyanobacteria vary due to physical conditions (temperature, water mass motion, thermal
structure, light intensity), chemical conditions of nutrient availability, allelopathic-compete
relations, and grazing by fish, zooplankton, and large invertebrates. So far, what happens
in Lake Kinneret?
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The present climate conditions in the Kinneret region are a flexible threat to water
safety. If drought seasons succession continue, there might be a bloom outbreak of harmful
Cyanobacteria (HFCB), and whilst the event of rainy season might export plenty of nitrogen
to the lake, return of the Peridinium domination is possible. Climate change caused a
temperature elevation of air and water, which probably enhanced HFCB standing stock
supported also by the decline of Epilimnetic nitrogen availability. The impact of climate
change intensified dryness, periodical prolongation of the drought season, and irregulari-
ties in the patterns of rainfall. The total volume of rainfall declined, river discharge reduced,
and water input diminished. The reduction of water inputs caused a decline in nitrogen
input. Consequently, there was an Epilimnetic nitrogen insufficiency, which caused the
disappearance of the long-term (1960–1995) documented Peridinium bloom formation
and its replacement by HFCB. The composition of the phytoplankton assemblages was
modified and the question is why? The discharge reduction did not only cause the decline
of nitrogen loads but also its concentration in the Jordan waters. This was reflected by a
modification of the nutrient dynamics in the Kinneret Epilimnion: insufficient nitrogen
but sufficient phosphorus because phosphorus resources are partly other than discharge
mediated. Although the quantity of phosphorus in the Jordan waters has declined, its
Epilimnetic availability remains fairly stable and even slightly increased due to dust depo-
sition [36] and chemical–microbiological supply from the sediments whilst the watershed is
almost the sole nitrogen source. A combined ecological event was documented: warming,
dryness, reduction in water inputs and nutrient availabilities, and modified phytoplankton
composition. HFCB are a nuisance, harmful to water quality and therefore a threat to
public health.

Due to the recent deterioration of water quality, the Kinneret ecosystem services of
aquatic recreation were damaged. Therefore, the bloom dominance of HFCB has economic
implications for the utilization of Lake Kinneret. No discrimination was done between
N2-fixer and non-N2-fixer cyanobacteria, and a general term of harmful Cyanobacteria
(HFCB) was used. Some of the HFCB, such as Microcystis spp., are not N2-fixers. Mi-
crocystis blooms and scum formation are a globally known factor affecting water quality.
These blooms and scum formation recently became common in Lake Kinneret. Nitrogen
is a limiting factor for Peridinium bloom formation. Anthropogenic operations of aqua-
culture restriction and sewage removal also contributed to the decline of nitrogen input
in the watershed. The temperature increase was additional support to the flourishing of
Cyanobacteria. Due to the source nature of N and P, the correlation between their input and
Epilimnetic content is likely more effective for nitrogen than for phosphorus. The positive
correlation between Jordan discharge and phosphorus form (TP, TDP) concentrations and
resulted load capacity is probably due to their flushing mechanism from the soil. The
majority of their moveable portion is removed from the soil by water flushing (rainfall and
irrigation) which therefore is enhanced by an increase of water capacity and consequent
discharge within a range of 200–600 mcm/y as shown in Figure 2 for phosphorus (TP,
TDP) and in Figures 4 and 5 for nitrogen except for nitrate. Enhancement of rainfall and
consequently river discharge above 600 mcm/y is not exceeded by moveable TP and TDP.
On the other hand, SRP migration which is affected by chemo-physical processes, which are
enhanced by soil moisture behave differently: the higher the rainfall, and consequent dis-
charge within a full range (200–800 mcm/y)—the higher the soil moisture which enhances
SRP formation and migration. Nevertheless, the impact of the Hula Reclamation Project
(HRP) on nitrate flux from the Hula Valley into the lake is evaluated from Figures 8 and 9.
Before the 1980s, nitrate load increased (Figure 8), probably resulted from soil deterioration,
whilst its later reduction was probably affected by both, the HRP and rainfall decline
(Figure 8). The elevation of nitrate loads relative to the Jordan discharge increase between
200 and 800 mcm/y indicates the breakable linkage between nitrate and soil particles
resulting in effective flushing capacity.

The limitation of phosphorus in the Kinneret Epilimnion mostly results from Jordan
particulate and dissolved phosphorus dissipates quickly after entering the lake water [1].
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The suspended P particles settle and the dissolved fraction creates un-dissolved P-Ca
complexes which efficiently settle as a result of the high pH and Ca content of the lake
water. Conclusively, as a result of climate change, conditions for Cyanobacteria blooms
in Lake Kinneret have been improved since the mid-1990s, whilst interfering with the
domination of Peridinium blooms.

The potential impact on the Kinneret phytoplankton composition might be through
the Jordan algal import. Algal biomass transported with the River Jordan water inflows
indicates that the maximal summer biomass density of Cyanobacteria varies between
4 and 8 g(ww)/m3 (20–80% of the total phytoplankton biomass in Jordan waters) [1].
Microcystis is common in the watershed, probably as a result of the high availability of
nitrate [17]. Despite the approximated annual input of 2820 tons of algal wet biomass when
the Jordan inflow was 470 mcm/y (Figure 3), Peridinium bloom formation was very little
disordered until the mid-1990s. Previous studies suggested that the timing of the Jordan
floods has an impact on Microcystis distribution in Lake Kinneret [18,19,37]. If the winter
flood comes early before the Peridinium blooms, Microcystis can flourish, utilizing the
flood-imported nitrogen. If the flood comes later, after the initiation of the Peridinium
blooms, the competition for nitrogen is less favorable for Microcystis. The Jordan waters
inject high loads of nitrates and nitrifying bacteria into the lake. Therefore, early rainfall
storms resulting in heavy floods loaded with available nitrogen and nitrifying bacteria
might cause a delay of Peridinium bloom by Microcystis enhancement [37].

The biomass densities of Cyanobacteria before the mid-1990s were enhanced (Figure 10),
varying between 10 and 100 g(ww)/m2 whilst Peridinium blooming declined (Figure 10).
Moreover, during the late winter of 2016, heavy Microcystis scum covered the majority
of the Kinneret surface, resulting in long-term conditions of nitrogen deficiency which
contributed to the diminished Peridinium bloom but favored the Cyanobacteria. Annual
Reports [5] documented 45% of cyanobacteria biomass in the autumn of 2008, with the
summer blooms of Cyanobacteria comprising 28–58% of the total algal biomass. Docu-
mentation of Cylindrospermopsis raciborskii for the years 2003–2006 showed a summer
biomass range of 25–100 g(ww)/m2. About 20–48% of the total algal biomass was at-
tributed to Cyanobacteria in 2009. Throughout the summer of 2011, Cyanobacteria were
dominant (42–55% of the total algal biomass).

Hydrological management design in Lake Kinneret is a crucial issue. Parameters such
as water balance, water supply storage, WL and South Dam control policy are critical but
their consequences on water quality are not less. The results shown in Figure 11 are an
example of the relations between phytoplankton composition and Residence Time (RT)
length. A constraint of anthropogenic management aimed at water storage for supply
accompanied by climate change of advanced dryness dictates close dam policy which
induces RT prolongation. The consequence of RT elongation under rainfall decline, in
Lake Kinneret, indicates (Figures 11 and 12) Peridinium decline and Cyanobacteria (and
Nitrogen Fixation enabled) enhancement. The impact of the increase of salinity and
nitrogen deficiency is suggested [15,38]. The competitive advantage of Cyanobacteria
under nitrogen insufficiency is due to their feature of nitrogen-fixation, especially when
nitrate and ammonium concentrations are low [32]. Nevertheless, climate change [10–12,39]
(Figure 3) condition also included temperature increase. Cyanobacteria bloom formation
is defined as “Blooms Like It Hot” [40]. Fristachi and Sinclair [41] have indicated that
“Blooms of Cyanobacteria tend to be greater and last longer in warmer climates”, and “light,
temperature, hydrological and chemical factors may be involved in Cyanobacterial bloom
formation and toxin production” [42–46]. Cyanobacteria growth is known to be enhanced
by temperature increase. These organisms are known as superior competitors against
other algal groups at high temperatures, higher salinity and in stratified lakes [32–35].
Cyanobacteria are known to have a high rate of phosphorus uptake in comparison with
other phytoplankters, which is an advantageous property in P-limited aquatic ecosystems
such as Lake Kinneret. Amano et al. [34] documented less than 0.1 ppm of P concentration
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as sufficient to induce excessive growth of Cyanobacteria, enabling bloom formation under
oligotrophic conditions [34,35,47].

The SRP and TP Epilimnetic mean concentration value and range in Lake Kinneret are
0.002 and 0.014–0.017 ppm, respectively, while those of ammonium, nitrate and nitrite are
0.014–0.057, 0.002–0.056 and 0.001–0.005 ppm, respectively. The competitive advantages
of Cyanobacteria under such N and P limitation may explain their dominance when TN:
TP mass-ratio is below 29 [38]. The impact of phosphorus increase through sediment
release and dust deposition is significant. The significance of low N:P ratio (Figure 15) for
the formation of Cyanobacteria blooms has been widely documented [33,34,48,49], but
this sole factor among others that enhance Cyanobacteria blooms and is relevant when
the ambient common concentrations are not high. Harris and Baxter [50] demonstrated
the dominance of Cyanobacteria blooms in drought and when there is a decline in the
water level (WL), followed by surface scums when wind velocity diminishes. It has also
been documented [23,50–54] that the dominance of a non-nitrogen fixing cyanobacterium,
such as Microcystis aeruginosa, depends more on TN:TP ratio decline (Figure 15) than on
nitrogen availability alone [47,51]. The decline in TN:TP mass ratio (Figure 15), regional
enhancement of dryness, increased frequency of drought (SPI), and longer residence time
(RT) (Figure 12) were accompanied by the enhancement of Cyanobacteria blooms and
increased Epilimnetic salinity in Lake Kinneret [52].

It is assumed that increased salinity in Lake Kinneret selectively favored Cyanobacte-
ria [38,52,53]. It is also suggested that an event of heavy rainfall that injects an exceptionally
high load of nitrogen into the lake might enhance the growth of Cyanobacteria despite
a slight and short-term decline in salinity [50,54]. Such a situation was recently found
to be relevant to Lake Kinneret when there was an event of heavy rain after a long-term
drought. With the elevation of salinity, water managers achieved water storage by closing
the dam. This prevented long-term salinity decline, potentially favoring Cyanobacteria.
This management of prolonged RT initiated a slowdown of water exchange [11,55–57]
(Figures 11 and 12). These conditions did not enhance nitrogen input, but an increase in
phosphorus bio-availability was possible.

Results shown in Figure 13 confirm the link between the external supply of DIN and
HFCB biomass in the lake: the simultaneous decline of DIN loads and HFCB enhancement.
When plenty of DIN is supplied, it is likely that HFCB has no advantage and other algal
groups compete and are enhanced (Figure 13). Figure 11 indicates a temporal decline in
DIN loads and simultaneous enhancement of Cyanobacteria.

The reduction of recreational ecosystem service capabilities of Lake Kinneret by
Cyanobacterial blooms was indicated [41]. Cyanobacteria responsible for bloom formation
are mostly gas-vacuole species. They tend to promptly appear on the surface of waterbod-
ies, especially under calm weather conditions and reduced turbulence. Change in climate
conditions accelerates the buoyant migration of Cyanobacteria to the surface [58]. Conclu-
sively, climate change was the principal factor of propulsion of the Lake Kinneret ecosystem
from “Peridinium Era” (PE) towards the Cyanobacterial period (CE). In a comprehensive
ecological study about parameters that induce HFCB harmful blooms, Mioni et al. [55] sum-
marized the direct impact of climate change on surface water temperature and the indirect
impact on nitrogen (ammonium and nitrate) and phosphorus (orthophosphate) concen-
trations as key drivers of Cyanobacterial harmful biomass density and toxicity [57,58].
Nitrogen and phosphorus inputs into Lake Kinneret transported by the Jordan discharges
are positively related to the river flow capacity: the higher the rate of the discharge, the
higher the concentrations and loads of the nutrients. A side effect was introduced by the
HRP, which reduced the nitrate flushing capacity of the Hula Valley soil. The dominant and
major impact is due to the climate change expressed by the decline in the regional season of
rainfall and the increased dryness. Nevertheless, a low nitrogen-to-phosphorus (N/P) ratio
alone is not the only indicator for the flourishing of Cyanobacteria but is mostly relevant
when the Inorganic Nitrogen (ION) concentration is lower than the range of 0.05–0.10 ppm.
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The concentration of ION in the stratified Kinneret epilimnion ranges between 0.017 and
0.118 ppm [4]. Therefore, the impact of a low N/P ratio is potentially relevant.

Although climate change evidently creates the nutrient input reduction, the lake
dynamics of the nitrogen and phosphorus are different since the sources of N and P are
dissimilar. The N resources are allochthonous from the watershed, while sources of P
are partly autochthonous (lake bottom sediments) and partly external (atmospheric dust
deposition and erosive flush activity in the watershed) [36,59–61]. Moreover, during the
Peridinium domination, Epilimnetic phosphorus input from the bottom sediments was
mediated by Peridinium-germinated cysts. Therefore, the availabilities of N and P in the
lake are different. The source differs between N and P supply for the lake biota, inducing
response changes by the nutrient consumers, the phytoplankton community. Indicative
nutrients utilization features by Peridinium and Cyanobacteria are: nitrogen is a limiting
factor for Peridinium whilst Cyanobacteria are not highly affected by nitrogen deficiency
due to their ability to maintain atmospheric nitrogen-fixation, and phosphorus is limited
for both. Nevertheless, the replacement of Peridinium by Cyanobacteria was mostly due
to a change in nutrient dynamics as a result of climate change. The conclusion about the
depletion of nitrogen supply was based on recorded data without Se input dynamics. Thus,
it is likely that both, supplied nitrogen and selenium, affected the decline in Peridinium
dominance. Nevertheless, Cyanobacteria dominance likely replaced Peridinium domina-
tion mostly as a result of a change in the dynamics of N and P, which was a result of climate
change. Peridinium is an indigenous component of Kinneret, [1,4,5,14,37] which has also
been found sporadically in River Jordan and Hula Valley waters but its (as well and other
algal species) algal biomass inputs through Jordan waters are negligible [12]. In 1970 and
mid-1980s, raw sewage (app. 29,000 m3 daily) and fishpond (1700 ha) effluents were fluxed
from the Hula Valley into Lake Kinneret. Moreover, even after the implementation of
the newly created shallow Lake Agmon-Hula as part of the peat soil reclamation project
(HRP), the biomass density of Cyanobacteria, and Peridinium spp., in outflow waters was
negligible [9].

The impact of selenium (Se) inputs from the watershed into the lake is not yet fully
understood. It is suggested that in addition to nitrogen deficiency, a decline in Se input
may lead to a decline in Peridinium domination. The Hula peat soils are Se-rich, and
Se is a limiting factor of Peridinium growth. The most available chemical derivate of
Se4+ is the dominant form in the Jordan River waters [36,59,61]. Nevertheless, prior
to the draining of Lake Hula and the surrounding swamps, the chemical trait of the
peat soil was reductive and Peridinium bloomed intensively in the lake, but the soil
conditions are currently oxidative, and, therefore, limitation of Se is not doubtful [36,59–63].
Studies carried out at the University of Uppsala, Sweden [62,63] Lindstrom, 1980; 1982
indicated that Peridinium cinctum can produce heavy blooms (4000 cells per ml) when Se
concentration is low (10–20 ng/L). They suggested that precipitation and runoff discharges
are an important source of Se forms of selenates, selenites and organic Se (bioavailable)
efficiently incorporated by primary producers. Bioactive Se is stable under alkaline and
oxygen-rich conditions, whilst low pH and reductive environment enhance bio-inactivation
of Se [62,63]. Lindstrom [61,62] concluded that high availability of Se in the surface waters
of Kinneret watershed might be a significant promoter of Peridinium heavy [10,11,36,60,61].
Nevertheless, awareness towards the possibility of the presence of Cyanotoxins resulted by
temporary or permanent suitable conditions is critical [64].

4. Future Recommendations

Future management recommendations include: enhancement of external nitrogen
supply through the diversion of Hula Project effluents into the Kinneret inflows; reduction
of external phosphorus inputs through manageable resources: diary and domestic sewage
treatment and agricultural fertilization control in the Hula Valley; introduction of exotic
fish unable to reproduce in the lake and of Microcystis consumers and fishery contributor
such as Silver Carp (Hypophthalmichthys molitrix).
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