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Abstract: The urbanization process is the hallmark of the population’s economic activities and land-
use types, including population-, economic-, and landscape-urbanization. The question of how to
classify the stations into urbanized and suburbanized stations is important for detecting the contribu-
tion rates of urbanization to precipitation extremes. This study used the fuzzy c-means clustering
method to classify different urbanized level stations by population, economy, and impervious surface
in the Suzhou-Wuxi-Changzhou urban agglomeration. Based on the change trends of six extreme
precipitation indices, the contribution rates of urbanization to the precipitation extremes were esti-
mated. The results show that the increasing indices were the intensity indices, while the decreasing
indices were the duration indices during 1980–2015. Moreover, high urbanization tended to have a
higher contribution to the most extreme precipitation indices, especially the intensity indices, than
urbanization in the medium-size cities, indicating the urbanization leads to the phenomenon of
extreme precipitation enhancement. The results of the three kinds of classification methods were
different, especially the classification by the impervious area. This paper investigated the spatiotem-
poral changes in precipitation extremes and the contribution of urbanization to extreme precipitation,
which will provide support for the development of urban agglomeration in the future.

Keywords: contribution rate; extreme precipitation; urbanization impacts; clustering method;
Yangtze River Delta

1. Introduction

Extreme rainfall events are one of the most frequent natural disasters around the
world, which brings huge economic losses to human society. The changing of extreme
rainfall is not only caused by the internal forces of the climatic system (e.g., solar radiation),
but also by human activities (e.g., changes of land cover types and emission of greenhouse
gases) [1,2]. With the increasing population and the expanding impervious surfaces,
the urbanization process is an important human activity [3,4]. The dense population in
urban agglomerations is sensitive and vulnerable to climatic disasters. Therefore, it is
essential to detect the impact of urbanization on the variations of extreme rainfall in flood
risk management.

Many studies showed that the urbanization process had a significant influence on the
formation and changes of extreme precipitation [5–7]. Horton (1921) firstly found that the
frequency of heavy rain in urban areas was higher than that in suburbs through observed
data in multiple cities [8]. Subsequently, the Metropolitan Meteorological Experiment
(METROMEX) was carried out in the United States and found that the rainfall intensified
significantly in the city center and its downwind regions [9,10]. With the development of
meteorological radar and satellite, obtained remote sensing data has provided observed
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data with higher spatial and temporal resolution. Shepherd and Burian (2003) found
that the summer rainfall increased by 28% in the range of 30–60 km downwind regions
from the city based on satellite rainfall data [11]. At the same time, the improvement of
computer technology has provided a numerical simulation technology (e.g., the weather
research and forecasting model, WRF) to detect quantitatively the physical mechanisms of
urbanization on rainfall in New York [12], Europe [13], Singapore [14], and China [15,16].
These studies have concluded that the development of urbanization has had a certain
impact on rainfall, but the contribution rates of urbanization on the extreme precipitation
is still an open question.

Regarding the contribution of urbanization on extreme rainfall, physical modeling and
statistical analysis are popular methods currently [17–20]. For example, Yang et al. (2019)
explored the temporal and spatial distribution of rainfall based on the WRF model in
large urbanized regions [21]. Unfortunately, the physical modeling process has some
limitations, such as the existing uncertainties of the model parameters, the requirement of
high-resolution data, and the relatively large computational cost. Conversely, the statistical
analysis using observed data requires a simple computing process and applies to a smaller
region [22]. Previous studies compared the variations of the rainfall characteristics (e.g., the
intensity and duration of rainfall events) between different urbanized development stages
in the same stations [23,24], and between different stations during the same period [25–28].
In these studies, the classification of the stations into urban and rural stations usually based
on the administrative attributes. However, the classification of the stations into urban and
rural stations has a determining influence on the study results. The urbanization process is
the hallmark of population economic activities and land-use types, including population
urbanization, economic urbanization, and landscape urbanization [29,30]. This study
will classify the observed stations according to the different urbanization (i.e., population
urbanization, economic urbanization, and landscape urbanization) by objective clustering
criteria, which is the novelty of this study.

Suzhou-Wuxi-Changzhou urban agglomeration (abbreviated as SXC) has become
one of the regions with the fastest and highest urbanized development in eastern China.
The overall aim of this work is to estimate the contribution rates of urbanization on the
extreme precipitation based on different classification results of the stations. The sections
of this study are three-fold: we (1) classify the rainfall stations into highly urbanized
stations, town stations, and rural stations by population, economy, and impervious surface
through a clustering method, (2) detect the variation trend of the extreme precipitation
indices from 1980 to 2015, and (3) estimate the contribution rates of urbanization on the
extreme precipitation. Our results will provide a reference for flood prevention and disaster
reduction in this area.

2. Materials and Methods
2.1. Study Region

The Suzhou-Wuxi-Changzhou urban agglomeration (32.17◦ N–30.71◦ N, 119.27◦ E–
121.05◦ E) is located in the core region of the Yangtze River delta and covers an area of
17,199 km2 (Figure 1), including Suzhou, Wuxi, and Changzhou in Jiangsu province. As
one of the largest urban agglomeration in eastern China, the SXC region has a massive
population and developed economy during the past decades. Taking Suzhou as an example,
the resident population increases from 5610.2 thousand in 1990 to 6500.1 thousand in 2015.
The gross domestic product increases from RMB 20,214 million yuan in 1990 to RMB
1,450,407 million yuan in 2015. The rapid urbanization process has brought dramatic
changes in the land cover, resulting in floods or other water disasters [31,32]. The SXC
region is a typical region for detecting the influences of the urbanization process on
extreme precipitation.
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Figure 1. The location of the study region (a) and spatial distribution of meteorological stations (b).

2.2. Datasets

After being quality-controlled, daily precipitation data were obtained from Taihu
Hydrological Yearbooks during 1980–2015. The distribution of meteorological stations
is shown in Figure 1. Considering the local climate in the SXC urban agglomeration, six
extreme precipitation indices (Table 1) were calculated from daily precipitation data during
1980–2015 [33,34]. Specifically, CDD and CWD denote the duration indices; PRCPTOT
denotes the total precipitation, and other indices denote the precipitation intensity.

Table 1. Definitions of extreme precipitation indices.

Index Description Definition Unit

CDD Consecutive Dry Days
Maximum number of

consecutive days (daily
precipitation < 1 mm)

d

CWD Consecutive Wet Days
Maximum number of

consecutive days (daily
precipitation ≥ 1 mm)

d

SDII Simple Daily Intensity Index Annual precipitation divided
by the number of wet days mm/d

Rx1day Maximum One-Day
Precipitation

Maximum daily precipitation
amount mm

Rx5day Maximum Five-Day
Precipitation

Maximum five-day
precipitation amount mm

PRCPTOT Total Wet-Day Precipitation Annual precipitation amount mm

The population dataset (POP) and gross domestic product (GDP) dataset for 2015
were downloaded on the website of the Chinese Resource and Environment Data Cloud
Platform, with a spatial resolution of 1 km. The impervious surface map for 2015 was
obtained from the global artificial impervious area (IAP) Dataset with a spatial resolution
of 30 m [35] (http://data.ess.tsinghua.edu.cn). Moreover, the IAP dataset was resampled
as a spatial resolution of 1 km, which accords with POP and GDP datasets.

2.3. Methods

The flowchart of our methods is shown in Figure 2.

http://data.ess.tsinghua.edu.cn
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2.3.1. Clustering Method for Classification

Selecting an optimal clustering method for classifying meteorological stations is
important to get reliable results for our study aims. The fuzzy c-means (FCM) is a kind of
fuzzy clustering algorithms with an unsupervised learning classification algorithm. The
FCM algorithm has a simple process and a fine partition it usually produces [36,37]. Thus,
this study used the fuzzy c-means clustering method to classify different urbanized level
stations by population, economy, and impervious surface in the Suzhou-Wuxi-Changzhou
urban agglomeration.

Assuming {aij} are the values of a matrix A, the membership matrix of the dataset can
be initialized as [37]:

∑C
I=1 aij = 1, ∀j = 1, . . . , n (1)

where aij is a membership value, i is the row number and j is the column number.
The dissimilarity function in the FCM algorithm can be defined as:

J(A, c1, c2, . . . , cc) = ∑c
i=1 ∑n

j=1 am
ij D2

ij (2)

where ci is the cluster centroid; Dij is the Euclidian distance between the ith centroid and
jth data point; n is the number of the clusters, and m is a weighting exponent which takes a
value between 1 and ∞.

To minimize the dissimilarity functions by simulating the center vectors, an iterative
optimization algorithm is defined as:

ci = ∑n
j=1 am

ij xi/ ∑n
j=1 am

ij (3)

aij =
1

∑c
k=1 (

Dij
Dkj

)
2

m−1
(4)

where xi is the ith data point, and k is the iteration step. θ is a termination criterion that has
been defined. The interaction will stop when {||aij

k+1 − aij
k||} ≤ θ.
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2.3.2. Trend Changes

The nonparametric Mann-Kendall statistical test (MK test) is a popular trend test in
extreme precipitation [38].

In the MK test, for a dataset X = x1, x2, . . . , xn, the statistic S is calculated by [39]:

S = ∑n−1
i=1 ∑n

j=i+1 sgn
(
xj − xi

)
(5)

sgn
(

xj − xi
)
=


1 xj > xi
0 xj = xi
−1 xj < xi

(6)

where n is the dataset length, xi(j) is the ranked value of the dataset.
The variance of an independent and identically distributed series with zero mean is

defined as:
var(S) = n(n− 1)(2n + 5)/18 (7)

The Z value of the MK test can be estimated by:

Z =


S−1√
var(S)

, S > 0

0, S = 0
S+1√
var(S)

, S < 0
(8)

A positive value shows an increasing trend, while a negative value shows a decreas-
ing trend.

The Sen’s slope β denotes the changing degree of the trend, which is estimated as:

β = Median
[(

xj − xi
)
/(j− i)

]
(9)

where 1 < i < j < n, β is Sen’s slope.

2.3.3. Contribution of Urbanization to Precipitation Extremes

The weather stations were classified into three classifications: level 1, level 2, and
level 3 through the fuzzy clustering algorithm. Specifically, level 1 indicates the stations
distributed in rural regions; level 2 denotes the stations distributed in suburban regions,
and level 3 represents the stations distributed in highly urbanized regions.

The contribution rates of urbanization to extreme precipitation are the percent pro-
portion of urbanization on the trends of precipitation extremes. The trends of extreme
precipitation indices in the three levels of stations are estimated by Sen’s slope. 4j1 denotes
the contribution rate of urbanization to extreme precipitation, and its equations are as
follows [40].

4 j1 =

∣∣∣∣∣ β j − β1

β j

∣∣∣∣∣× 100%, j = 2, 3 (10)

where βj (j = 2, 3) denotes the slopes of the trends of extreme precipitation indices for
stations in level 2 and level 3 stations; β1 denotes the slope of the trends for stations in
level 1. If 4j1 > 0, urbanization increases the extreme precipitation indices; if 4j1 < 0,
urbanization decreases the extreme precipitation indices; if4j1 = 0, urbanization has no
effects on the extreme precipitation indices; and if 4j1 = 100%, the trend of the extreme
precipitation indices is completely caused by urbanization. Especially, in the calculation
process,4j1 > 100% indicates that urbanization has a strong impact on the trend of extreme
precipitation, and the extra trend might be caused by other unidentified factors. In this
case,4j1 should be set to 100%.
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3. Results and Discussion
3.1. Classification of Stations in Different Urbanized Levels

The stations were clustered into three urbanization levels in accordance with economic
urbanization, population urbanization, and land urbanization, respectively. The lowly
urbanized stations have relatively low population density, low GDP, and high permeable
surface area. Conversely, the highly urbanized stations have dense population density,
high GDP, and high impervious surface area. The characteristics of the medially urbanized
stations are in between. Specifically, level 1 indicates the stations distributed in rural regions;
level 2 denotes the stations distributed in suburban regions, and level 3 means the stations
distributed in highly urbanized regions. Figure 3a–c depicts the spatial distributions of
GDP, POP, and IAP.
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Figure 3d–f shows the results of the classification stations. The observed stations
in each urbanized level have the same local climate characteristics, which are well dis-
tributed over the region. The results of classification by population are similar to those
of classification by GDP. Stations in Level 3 are within Changzhou, Suzhou, Wuxi, and
Kunshan for the three cluster references. Cities such as Changzhou, Suzhou, and Wuxi are
large cities in the Yangtze River Delta and contributed a massive population and economy
to the urbanization process. Meanwhile, Changshu and Kunshan experienced relatively
low urbanization growth with relatively lower GDP and higher IAP. Stations in Level 2
have the largest amount and are located in the surrounding regions of the level 3 stations.
Moreover, the stations in level 1 clustered by impervious surfaces have a smaller number
of stations than that by economy and population. This is because the impervious surfaces
of Changzhou, Suzhou, and Wuxi have been expanding recently, whereas the GDP and
population are relatively low in the boundary of the impervious surface.

3.2. Spatiotemporal Changes of Precipitation Extremes

The spatial patterns of six extreme precipitation indices were interpolated by the
inverse distance weighting method. As shown in Figure 4, CDD has a similar distribution
with SDII, which has the lowest values in Changzhou city. The spatial pattern of Rx1day
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is similar to that of Rx5day and CWD, which has high values in the western Changzhou
region and low values in the southern Suzhou region. Otherwise, the spatial distribution
of PRCPTOT is contrary to Rx1day and Rx5day. Moreover, it was found that the intensity
of extreme precipitation is high in the western Changzhou region and low in the southern
Suzhou region. The total amount of extreme precipitation has a contrary distribution to the
intensity of extreme precipitation.
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Figure 5 describes the temporal trends of the precipitation extremes for the stations in
three urbanized levels during 1980–2015. CDD and CWD indices had decreasing trends,
and the others had increasing trends. Furthermore, the decreasing indices were both
the duration indices, while the increasing indices were the intensity indices. The largest
increasing trend was observed for Rx1day by population classified reference and the largest
decreasing trend was seen for CDD by impervious surface classified reference. The trends
for CDD, CWD, and Rx1day for GDP classified reference, CWD for population classified
reference were all statistically significant in level 3. The change trends of Rx1day are
significantly increasing in the three types of stations.
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3.3. Contribution Rates of Urbanization on Precipitation Extremes

The contribution rates of urbanization to extreme precipitation in three-level stations
by different classification references are shown in Table 2. For the results of classification by
population, urbanization has significant impacts on CDD, Rx1day, and Rx5day in level 3
stations, and have more impacts on extreme precipitation in level 1 stations than that in
level 2 stations, except SDII. Specifically, urbanization has a high influence on SDII in
level 2 stations, reach to 84.79%. Urbanization has a low influence on CDD and PRCPTOT
in level 2 stations, reach to 12.25% and 9.14%, respectively. Urbanization has little influence
on Rx1day in level 2 stations, just 0.85%. The results of classification by GDP are similar to
those of classification by population. However, the results of classification by impervious
surfaces are different from those of classification by population and GDP. Urbanization has
significant impacts on CDD and Rx5day in level 3 stations and no significant impacts on
CWD and SDII. Urbanization has significant impacts on PRCPTOT, Rx1day, and SDII in
level 2 stations.

Table 2. The effects of urbanization on extreme precipitation in three-level stations by different classification references.

Unit/% CDD∆2-
1

CDD∆3-
1

CWD∆2-
1

CWD∆3-
1

PRCPTOT∆2-
1

PRCPTOT∆3-
1

RX1∆2-
1

RX1∆3-
1

RX5∆2-
1

RX5∆3-
1

SDII∆2-
1

SDII∆3-
1

POP 12.3 100 75.9 84.2 9.1 58.1 0.8 100 48.7 100 84.8 35.7
GDP 64.9 41.4 38.3 81.6 25.1 32.4 0.8 100 4.45 26.3 82.8 38.3
IAP 82.4 100 28.5 0 100 42.1 100 88.5 42.6 100 100 0

By comparing the contribution rates of urbanization on extreme precipitation by three
kinds of classifications, we found that the contribution rates of urbanization to extreme
precipitation in level 3 stations are higher than those in level 2 stations except CDD and
SDII, which means the contribution rates of most extreme precipitation indices are higher in
the city than that in the rural region, indicating the urbanization lead to the phenomenon of
extreme precipitation enhancement. The results of the three kinds of classification methods
are different, especially the classification by the impervious area. This is because the rural
regions usually have many impervious surfaces due to urbanization while these regions
have low population density and economic development. It may be revealed that the
classification by impervious surface is not suitable for this study.

3.4. Discussion

Our results found that high urbanization tended to have a higher contribution to
most extreme precipitation indices, especially the intensity indices, than urbanization in
the medium-size cities, indicating the urbanization lead to the phenomenon of extreme
precipitation enhancement. To validate our results, we figured out the frequency of the
year when the top 50 maximum daily rainfalls occurred during 1980–2016 in the four
typical stations (i.e., Changzhou, Baishaoshan, Wuxi, and Ganlu). Changzhou and Wuxi
stations denote the highly-urbanized stations, while Baishaoshan and Ganlu stations
denote the lowly-urbanized stations. From Figure 6 it can be seen that the occurrence of
the high intensity is higher in the highly-urbanized stations than in the lowly-urbanized
stations from 1980 to 2016, which can validate our results. Thus, using the differences of
observations to reflect the contribution of urbanization on extreme precipitation is relatively
reliable and realistic.

Moreover, our method is feasible to the region with dense stations, not applicable to
the region with sparse stations. The spatial and temporal changes in local precipitation
are affected by a variety of factors, such as the urban heat island effect, canopy barrier
effect, and aerosol emissions. Meanwhile, the local climate is not the determining factor in
the formation of extreme precipitation under the global climate background. Therefore, a
more comprehensive investigation on the influence mechanism of urbanization on extreme
precipitation from a global perspective is needed in further research.
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4. Conclusions

To detect the contribution rates of urbanization to precipitation extremes, this paper
used the difference between stations with different urbanized levels in the SXC region. We
found some conclusions as follows.

(1) It is feasible to classify the stations in different urbanized levels determined by
population, economy, and land type via the fuzzy c-means clustering method. However,
the classification by impervious surface is not suitable for this study.

(2) During 1980–2015, different extreme rainfall indices have different trends in our
region. The intensity indices (e.g., PRCPTOT, SDII, Rx1day, and Rx5day) showed increasing
trends, while the duration indices (e.g., CDD and CWD) showed a decreasing trend during
1980–2015.

(3) According to the contribution rates of urbanization to precipitation extremes, we con-
clude that high urbanization tended to have a higher contribution to most extreme precipitation
indices, especially the intensity indices, than urbanization in the medium-size cities, indicating
that the urbanization leads to the phenomenon of extreme precipitation enhancement.

The extreme precipitation has a complex relationship with many factors, such as the
urban heat island effect, canopy barrier effect, and aerosol emissions. So the influence
mechanism of urbanization on extreme precipitation remains to be more comprehensive
and deeper analysis in future work.
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Abbreviations

SXC Suzhou-Wuxi-Changzhou Urban Agglomeration
WRF Weather Research and Forecasting Model
GDP Gross Domestic Product
RMB Renminbi
CDD Consecutive Dry Days
CWD Consecutive Wet Days
SDII Simple Daily Intensity Index
Rx1day Maximum One-Day Precipitation
Rx5day Maximum Five-Day Precipitation
PRCPTOT Total Wet-Day Precipitation
IAP The Global Artificial Impervious Area Dataset
POP Population Dataset
FCM The Fuzzy C-Means method
MK Test Mann-Kendall Statistical Test
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