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Abstract: Chemical disinfection of surface waters has been proven effective in minimizing the risk of
contamination by water-borne pathogens. However, surface waters contain natural organic matter
(NOM) which, upon chemical disinfection, is readily converted into hazardous disinfection-by-
products. Hence, NOM removal from these waters is critical. Chemical coagulation is a readily
implementable technology to minimize these undesired side-effects by NOM removal. Herein,
capabilities of ferric chloride (FeCl3) and polyaluminum chloride (PACl) as pre-treatment for NOM
abatement from natural raw surface water have been benchmarked. Excitation-emission fluorescence
matrix (EEM) spectroscopy characterization of NOM fractions demonstrated high removal efficiency.
A two-level full factorial design was employed to analyze the effects of coagulant dosage and initial
pH on the removal of turbidity, humic acid-like substances and fulvic acid-like substances from
the raw water. Higher removal of ~77% NOM was attained with PACl than with FeCl3 (~72%).
Optimization through response surface methodology showed that the initial pH—coagulant dosage
interaction was significant in removing NOM and turbidity for both PACl and FeCl3. These results
identify the opportunity for coagulation technologies to prevent and minimize disinfection-by-
products formation through NOM removal.

Keywords: coagulation; excitation-emission fluorescence matrix; full factorial design; natural organic
matter; physical water treatment; raw surface water

1. Introduction

Natural organic matter (NOM) is a complex mixture of organic compounds consisting
of aromatic, aliphatic, phenolic, and quinolic functional groups [1]. In surface water, NOM
accounts for 50–80% of humic substances [2]. Disinfection by-products (DBPs) can be
formed when NOM reacts with active chlorine species during the drinking water treatment
process [3–5]. Trihalomethanes and haloacetic acids are two popular groups of halogenated
DBPs currently regulated by various drinking water standards [6]. Thus, minimizing NOM
content prior to disinfection treatment can be identified as an urgent need to avoid DBP
yield [7]. Different technologies such as photocatalysis [8], electrochemical treatments [9],
the Fenton process [10], adsorption [11], ionic exchange [12] or coagulation [13] have been
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explored to remove NOM from drinking water sources prior to disinfection. However,
coagulation treatment presents the most techno-economically viable option, and it is
therefore the most widely used in drinking water treatment plants worldwide.

Coagulation–flocculation is a process in drinking water treatment which aims to
remove turbidity, color, and pathogens from raw water [14,15]. Coagulation is a physical-
chemical process that involves the destabilization of repulsive forces between negatively
charged organic matter by positively charged metals (aluminum or iron), resulting in the
subsequent agglomeration and settling of organic pollutants [16]. Iron and aluminum
salts in monomeric or polymeric forms are the typical coagulants used in large-scale drink-
ing water treatment [17,18]. Iron-based coagulants, typically ferric chloride (FeCl3), have
been found to reduce dissolved organic carbon by about 29–70% [19]. Aluminum-based
coagulants, on the other hand, are the most common coagulants in the drinking water
industry [20]. Polyaluminum chloride (PACl) can address the drawbacks of the tradi-
tional alum, (Al2(SO4)3), since it is less sensitive to pH and temperature variation [21].
Moreover, PACl has high amounts of positively charged polycations which are very ef-
fective in neutralizing the negatively charged colloidal particles, thus increasing colloidal
destabilization [22,23].

Previous research articles demonstrated excellent performance on NOM abatement
by coagulation treatment. Aluminum salts have been the most employed coagulant
source [19,24,25]. Recent reports suggest that residual aluminum (III) concentrations
may be associated with neurodegenerative diseases such as Alzheimer’s [26]. In this work,
we benchmark the performance of iron (III) and aluminum (III) regarding their capabilities
to remove NOM due to the relevance of transitioning to the use of alternative coagulants
non-containing aluminum. Furthermore, the interaction between different variables is not
discussed in the literature that evaluates the effect of discrete aspects one at a time. In
the present study, a two-level full factorial design was utilized to benchmark the removal
of NOM fractions by chemical coagulation with FeCl3 and PACl coagulants. This study
enables understanding of the principles of different variables’ interaction and their syn-
ergies on the enhancement of NOM abatement by coagulation. An excitation-emission
fluorescence matrix (EEM) was used to characterize the NOM fractions before and after
coagulant application. The contributions of initial pH and coagulant dosage in NOM
removal were evaluated. The effects of each factor, as well as the interaction effects, the
adequacy of the model to describe the experimental data, and the optimum values of the
parameters were also examined.

2. Materials and Methods
2.1. Chemicals and Raw Surface Water

Ferric chloride (FeCl3, 99.99%), which is a yellowish solid with a hexagonal crystalline
structure that is used as iron (III) coagulant source, was provided by Sigma-Aldrich. Polya-
luminum chloride (PACl, 30%), an inorganic polymer difficult to structurally characterize
with a suggested Keggin ion structure and is used as an aluminum (III) coagulant source,
was supplied by Nanning Chemical Engineering Co. Ltd., Guangxi, China). Both salts were
dissolved in water, yielding iron hydroxides and aluminum hydroxides commonly used in
coagulation treatments for drinking water. Hydrochloric acid (HCl, 37%, ENSURE) and
sodium hydroxide (NaOH, 98%, Shimakyu’s Pure Chemicals) were used as received. Stock
solutions were prepared by dissolving known amounts of reagents in deionized water
(18.2 MΩ cm, Millipore). The raw surface water used in all experiments was obtained from
a water treatment plant in Taiwan which had an initial water quality summarized in Table 1.

2.2. Coagulation Experiments

Coagulation tests were conducted in a jar test apparatus (PB-700, Phipps & Bird). The
initial pH of the water sample was adjusted according to the experimental design using
0.50 M NaOH and 0.50 M HCl. The water sample was subjected to 1 min rapid mixing at
100 rpm to ensure homogeneous distribution of the NOM particles in solution. Coagulant
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was added to the water sample and the solution was subjected to rapid mixing at 100 rpm
for 1 min, followed by a flocculation process through slow mixing at 30 rpm for 15 min,
and sedimentation for 30 min. Aliquots of 10 mL samples were collected during treatment
for further analysis and characterization.

Table 1. Characteristics of raw surface water.

Parameter Value

pH 4.8 ± 0.1
Turbidity (NTU) 9.5 ± 0.2

Zeta potential (mV) −17.6 ± 0.6
Fulvic acid-like substances: Ex/Em = 200 − 250/380 − 550 (au) 2830 ± 60
Humic acid-like substances: Ex/Em = 250 − 400/380 − 550 (au) 2260 ± 50

A full factorial design was used to understand the influence of operational variables
and the interaction between factors during the coagulation process. The response surfaces
generated were employed to identify optimum operational parameters [27]. The effect
of each factor on the response was determined by the design along with the interaction,
which is the effect of a factor that varies with the change in the level of other factors [28].
The two-level full factorial experimental design considered two levels per factor coded as
‘high’ and a ‘low’ level of ‘+1’ and ‘−1’, respectively. The experimental matrix consisted
of 2 k runs where k is the number of factors/variables evaluated. However, a potential
concern in the use of two-level full factorial design (FFD) is the assumption of linearity in
the effect of the factors: (A) initial pH and (B) coagulant dosage. The variables and levels of
the experimental design are presented in Table 2, where A and B are the equivalent values
in coded forms. Protection against curvature is done by adding center points, whereby
the design also obtains an independent estimate of error [29]. In addition, the method can
easily be upgraded to response surface designs for optimization of process parameters [30].
The FFD was carried out using Design-Expert 6.0.8.

Table 2. Experimental ranges and level of the factors in the factorial design.

Variables Coded Symbols Coded Levels

−1 1
Initial pH A 6 8

Coagulant dose (mg L−1 Al or Fe) B 10 40

2.3. Analytical Methods

Initial pH was determined using a pH meter (PC-310, Suntex, Hong Kong, China).
Turbidity was measured by a turbidity meter (2100 Q, Hach, Loveland, CO, USA). A zeta
potential analyzer (ZetaPlus, Brookhaven, NY, USA) was utilized to determine the zeta
potential of the water samples. An excitation emission fluorescence matrix (EEM) was
employed to evaluate the NOM fractions (F-4500FL spectrophotometer, Hitachi, Tokyo,
Japan). EEM spectroscopy is a sensitive and selective technique that can rapidly process
data on NOM fractions without sample preparation [31]. EEM can analyze the structure
and functional groups in a molecule, and determine the difference between sources of
chromophoric dissolved organic material that has similar wavelengths [32]. Excitation
emission matrix peaks are divided into five regions—aromatic proteins such as tyrosine
and tryptophan are located in region I and region II, fulvic acid-like substances (FLS) can
be found in region III, microbial by-product-like materials in region IV, and humic acid-like
substances (HLS) in region V [33]. Fluorescence intensity decreases with increasing macro-
molecular size. The presence of fluorescence peaks is associated with linearly condensed
aromatic rings and other unsaturated bond systems and has a high degree of conjugation
with macromolecules. The difference between the initial and final EEM peak intensities
can be linked to NOM removal efficiency of emerging water treatment solutions [34]. Al-
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though pH adjustment may alter the fluorescence intensities, it does not affect the removal
efficiency of the coagulation/flocculation process, as reported by earlier studies [35]. EEM
plots were created by scanning excitation wavelength from 200 to 400 nm and emitting
fluorescence from 280 to 550 nm with 10 nm steps. The steps for excitation and emission
were set at 10 nm and the scan speed at 500 nm s−1. A fluorometer’s response to a blank
solution was subtracted from the fluorescence spectra recorded for each sample to account
for the Raleigh scattering.

The decrease in the fluorescence intensity peaks in the excitation-emission matrix was
used as an indicator of NOM removal efficiency in the experiment. In previous studies,
peak intensities were also used as an indication of NOM fraction removal [32,34]. Equation (1)
was utilized to determine the NOM fraction removal (%):

NOM fraction removal (%) = ((F0max − FSmax)/F0max) × 100 (1)

where F0max is the maximum intensity of each fluorescence component of raw water NOM,
and FSmax is the maximum intensity of each fluorescence component of water NOM of the
sample after sedimentation [35].

3. Results and Discussion
3.1. Natural Organic Matter Fractions Removal by Coagulation Treatment

Figure 1 shows the EEM contour plots before and after treatment using FeCl3 and
PACl. The red-colored regions in sections III and V correspond to fulvic and humic acid-like
species, respectively [33]. Transition to lighter colors (i.e., yellow and green) is associated
with a notorious decrease in the concentration of these species. The high intensity in region
III prior to treatment denotes a large presence of fulvic-like species in raw water samples
(cf. Figure 1a,c). Likewise, in region V, the red spot located at the lower left side near
region III denotes significant amounts of humic-like species. Intensity reduction of EEM
signals was evident after the coagulation process where the peaks identified in the regions
III and V which correspond to fulvic and humic acid-like disappeared after coagulation
treatment independently of the coagulant species employed. The significant reduction
in intensity after treatment, depicted by the EEM contours after coagulation treatment,
allows us to infer effective NOM abatement with a better performance associated to iron
(III) salts [18,35].

3.2. Model Fitting and Statistical Analyses

Table 3 summarizes the experimental results of the 2 k full factorial design obtained
for the removal of turbidity, humic, and fulvic acid-like species at the different coded levels.
Similar results were observed for the duplicate of the central point at pH 7 and coagulant
dose of 25 mg L−1 with less than 2% error (runs 3 and 6), which corroborates that the pure
error of coagulation experiments is negligible. The data for the experimental matrix were
then modeled and statistically validated.

Table 3. Experimental design table for the factors and responses.

Removal%

Run Coded Values HLS FLS Turbidity

pH Coagulant Dose (mg L−1) FeCl3 PACl FeCl3 PaCl FeCl3 PACl

1 6 10 64.90 77.02 53.51 75.27 63.45 69.23
2 6 40 62.70 48.97 72.00 49.97 76.87 64.52
3 7 25 51.74 67.91 64.34 58.64 73.94 72.12
4 8 10 40.54 60.47 46.00 67.94 66.56 71.96
5 8 40 69.55 78.46 73.87 75.63 84.05 80.98
6 7 25 50.49 69.37 63.08 60.14 74.13 71.98
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Figure 1. Excitation emission fluorescence matrix (EEM) contour plots of raw water before and after coagulation treatment: 
(a) natural raw water prior FeCl3 treatment, (b) after FeCl3 treatment, (c) natural raw water prior PACl treatment, (d) after 
PACl treatment. 
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Figure 1. Excitation emission fluorescence matrix (EEM) contour plots of raw water before and after coagulation treatment:
(a) natural raw water prior FeCl3 treatment, (b) after FeCl3 treatment, (c) natural raw water prior PACl treatment, (d) after
PACl treatment.

Analysis of variance (ANOVA) was utilized to determine the statistical significance
of the factors and their corresponding goodness of fit. Table 4 presents the values for
the regression coefficients (RC), sum of squares (SS), standard error (SE), F-value (F), and
p-value (p). The p-value is the probability value that determines the significance of the
effect of each factor in the model [36]. Fisher’s test was used to determine the significance
of the variables where the degree of significance was ranked based on the value of the
F-ratio—the larger the value of F, the smaller the value of “Prob > F”. This translates to the
greater significance of the corresponding model and the individual coefficient [36]. The
confidence level used to determine the statistical significance of the factors is 95%, which
means that the p-value should be less than or equal to 0.05 for the effect to be statistically
significant [37]. Upon elimination of the insignificant terms, the final empirical models
based on statistical analyses were defined.



Water 2021, 13, 146 6 of 14

Table 4. Statistical analysis of the results of the factorial experimentation.

Response Factor RC SS SE F-Value p-Value

FeCl3 PACl FeCl3 PACl FeCl3 PACl FeCl3 PACl FeCl3 PACl

A −4.38 3.19 76.65 40.70 0.44 0.52 98.11 38.19 0.064 0.102
HLS B 6.70 −2.56 179.68 26.21 0.44 0.52 230.01 24.69 0.042 0.127

Removal AB 7.80 11.56 243.52 534.07 0.44 0.52 311.70 504.10 0.036 0.028
Curvature 92.02 7.46 0.77 0.89 117.78 7.00 0.059 0.230

A −1.41 4.58 7.95 84.00 0.45 0.53 10.02 74.66 0.195 0.070
FLS B 11.59 −4.40 537.31 77.53 0.45 0.53 676.89 68.91 0.025 0.070

Removal AB 2.34 8.25 22.00 272.09 0.45 0.53 27.71 241.85 0.120 0.041
Curvature 7.46 61.38 0.77 0.92 9.39 72.34 0.201 0.075

A 2.57 4.79 26.47 91.45 0.067 0.057 1466.54 7183.51 0.017 0.008
Turbidity B 7.73 1.08 238.36 4.65 0.067 0.057 13233.08 363.49 0.005 0.033
Removal AB 1.02 3.43 4.14 47.10 0.067 0.057 229.43 3679.75 0.042 0.011

Curvature 2.26 0.20 0.12 0.098 125.32 15.72 0.057 0.157

The response surface equation defined for the use of FeCl3 as coagulant for each
response is defined by Equations (2)–(4):

Humic acids removal (%) = 9.42 + 6.70B + 7.80AB (2)

Fulvic acids removal (%) = 61.35 + 2.34AB (3)

Turbidity removal (%) = 72.73 + 7.73B (4)

Meanwhile, identical modelling approaches were employed to define the model
equation for the coagulation treatment using PACl. Equations (5)–(7) describe the response
surfaces for the removal of humic-like species, fulvic-like species, and turbidity.

Humic acids removal (%) = 66.27 + 8.25AB (5)

Fulvic acids removal (%) = 67.20 + 4.58A + 4.40B + 8.25AB (6)

Turbidity removal (%) = 71.67 + 4.79A + 1.08B + 3.43AB (7)

It can be seen in Table 5 that the values of adj- R2 are greater than 0.98, which indicates
that the variability of new data is expected to be about 98%. At 95% confidence level, the
coefficients of determination (R2) for all responses obtained from coagulants FeCl3 and
PACl were more than 0.99. The value of R2 is a measure of the proportion of total variability
by the model, where values close to 1 and at least 0.80 mean that the model is a good fit [38].
This implies that the generated model was sufficient in closely estimating the experimental
HLS, FLS, and Turbidity removal efficiency [39]. Previous studies suggested the use of
adj-R2, a statistic that is adjusted for the size of the model, i.e., the number of factors, to
evaluate the adequacy of the model in order to prevent the potential problem wherein the
value of R2 tends to increase as factors are added to the model [36]. Adequate precision,
included in Table 5, pertains to the signal to noise ratio and typically has a value greater
than 4, which implies that the signal is desirable. On the other hand, the coefficient of
variation (CV) is the standard deviation calculated as a percentage of the mean, with values
no greater than 10% [36]. It was observed that all statistical results presented in Table 5
demonstrate the good adequacy of the estimated model to fit all the responses. This was
also further revealed by the predicted–observed plots in Figure 2, which enables inferring
the fair agreement of predicted responses to the experimental data for both coagulants,
FeCl3 and PACl.
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Table 5. Statistical validation from analysis of variance for the surface response models.

Responses

Statistics HLS Removal FLS Removal Turbidity Removal

FeCl3 PACl FeCl3 PACl FeCl3 PACl

R2 0.9988 0.9987 0.9965 0.9912 0.9995 0.9985
R2

adj 0.9953 0.9948 0.9858 0.9647 0.9978 0.9940
Adeq. Precision 59.06 42.30 29.14 15.36 119.09 54.21

CV (%) 1.15 1.23 1.42 1.64 0.27 0.69
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3.3. Effect of Initial pH, Coagulant Dosage, and Their Interaction

Figure 3 illustrates the percentage of contribution of each term defined by Equations (2)–(7)
on the NOM removal performance using different coagulants (i.e., FeCl3 or PACl). Note
that the results refer to the effects of initial water pH (A) and coagulant dosage (B) on the
coagulation process.
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Figures 4 and 5 show the contour plots of the main factors, initial water pH and
coagulant dosage, and interaction effects on the NOM removal percentage after using FeCl3
and PACl coagulants, respectively. As shown in Figure 3a, high percentage contributions
of coagulant dosage were obtained for FLS and turbidity removals (93.36% and 87.90%,
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respectively) when FeCl3 was used as the coagulant. This trend is attributed to the initial
pH being set at near neutral levels, where charge neutralization occurs. This implies that,
for all pH values considered, all runs were expected to yield high removal efficiencies. It
was observed in Figure 4 that the removal efficiency improved as the coagulant dosage
was increased. This is attributed to the increase in the amount of FeCl3 that hydrolyzed
to positive ferric species and subsequently interacted with the negatively charged NOM
fractions to form larger complexes [2]. NOM fraction removal efficiency was reported
to be constant at a coagulant dosage greater than 40 mg L−1 [25]. At a high coagulant
dosage, FeCl3 could not effectively remove NOM because only a portion of Fe could interact
with NOM to form Fe–NOM complexes. Meanwhile, the excess of iron dosed will form
negatively charged Fe(OH)3 flocs and Fe(OH)4

− instead of desired Fe-NOM complex [40].
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On the other hand, when using PACl, the NOM removal was mainly due to the
interaction of initial pH and coagulant dosage (AB) as deduced from Figure 2b. Note
that Figure 5 also shows high interaction effects on the parameters considered when
PACl coagulant was used. It is evident in the contour plots that pH affected the removal
efficiencies. The highest removal percentages were recorded at 40 mg L−1 coagulant
dosage and an initial pH of 8, with values of 76% and 81% for fulvic acids and turbidity,
respectively. It can be noted that the removal of fulvic at pH 6 and 8 are almost the same,
which may be due to the solubility of fulvic acids in both alkali and acidic regions, while
humic acids are only soluble in the alkali region [41]. High PACl dosage is not effective
in removing turbidity and NOM fractions because only a portion of Al reacts with NOM
fraction to form an Al–NOM fraction complex. This is due to the formation of polymer
bridges between particles that caused the destabilization of Al-NOM complex, resulting in
the repulsion between particles at excessive dosage [42].

Analysis of turbidity evolution shows interesting trends in the function of coagulant
species employed and operational conditions of coagulation treatment, as can be seen
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in Figure 6. The turbidity spiked up upon addition of FeCl3 coagulant and 1 min rapid
mixing, gradually reduced during the flocculation process of 30 min slow mixing, and
dropped to near zero at the end of the 30 min sedimentation. Increase in turbidity can be
explained by the formation of iron hydroxide flocs after coagulant addition, which removes
suspended solids during its settlement [43,44]. Analysis of zeta potential changes during
treatment shows a gradual change from initial negative values of −17.09 ± 1.03 to zero.
These results that show a gradual increase in zeta potential towards zero can be attributed
to charge neutralization.

Interestingly, a spike in zeta-potential at high doses of FeCl3 of 40 mg L−1 can be
observed, which can be explained by the positive zeta potential of iron hydroxide flocs [40].
The iron coagulation process is controlled by charge neutralization mechanism, which is
said to occur at pH 6 and >7 where NOM is most negative [28]. This trend demonstrates
the dual role of pH not only on the coagula formation but also on the natural speciation of
NOM in function of the pH. NOM is composed by a complex mixture of fulvic and humic
acids of different molecular weights and different functional groups that are susceptible
to be deprotonated (i.e., carboxylic groups) [19,45,46]. The ratio of the different charged
and non-charged species is determined by the respective pKa value of each organic acid. A
higher density of negatively charged species will require higher doses to induce removal
mechanisms ruled by charge destabilization and adsorption/complexation. The addi-
tion of positive coagulant disrupts the negatively charged NOM fractions and produces
coagulant-NOM flocs [19,46], which also assists in the removal of solids from the suspen-
sion. The removal is therefore dependent not only on the formation of metal hydroxides
as coagulants but also on the charge distribution of organic species in as a function of pH.
Identical mechanisms are associated for PACl coagulant agent [47,48]. Generally, charge
neutralization occurs at around neutral pH when aluminum salts are used. At neutral
pH, the cationic hydrolysis products are only a small portion of the total soluble Al, while
aluminate ions are the dominant form. Colloidal hydroxide particles are suggested to be
effective charge-neutralizing species and may be positively charged up to pH 8, which
explains the high removal up to pH 8 [29]. At neutral pH, coagulants are said to be prone to
further hydrolysis and polymerization into medium polymer species. A quick comparison
between turbidity abatement can be conducted between the results described in Figure 6a,b.
Note that independent of experimental conditions, FeCl3 outperforms PACl in turbidity
reduction. However, PACl presents better performance on the abatement of NOM (i.e., hu-
mic and fulvic acid-like species), which highlights the use of PACl as an efficient approach
to minimize the risk of disinfection by-products formation through NOM oxidation during
disinfection steps. Therefore, these results encourage the use of PACl to remove NOM from
raw waters.
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3.4. Optimization of Process Parameters

In order to improve the coagulation process, optimization of parameters was defined
from the contour surfaces. The desirability function method was used to determine the most
desirable condition in the responses [28]. This method can combine multiple responses to
generate a response called desirability function. Desirability function ranges from 0 to 1,
with the desired value closest to 1 [36].

The initial pH and coagulant dosage were set within a range, whereas the removal
responses were set to maximum levels. Figure 7 shows the desirability plot for all the
responses, with an overall desirability of 1 at an initial pH of 8 and a coagulant dosage of
40 mg L−1. Optimized experiments allowed for attaining a maximum removal of 69.6% of
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humic acids, 73.9% of fulvic acids, and 84.0% of turbidity when using FeCl3 as the coagulant.
On the other hand, for PACl slightly higher removals of NOM, with percentage removals
of 78.5% for humic acids, and 75.6% for fulvic acids, and lower turbidity reduction of 80.9%
were attained. These results suggest superior performance of PACl as the coagulant to trap
and precipitate NOM during coagulation treatment.
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4. Conclusions

Factorial design was used to evaluate FeCl3 and PACl coagulants in removing NOM
fractions from raw surface water by chemical coagulation. Humic and fulvic acid-like
species were successfully characterized by an excitation-emission fluorescence matrix
(EEM), both qualitatively and quantitatively. The effects of coagulant dosage and initial
pH were also determined. The FeCl3 coagulant dosage had the highest contribution to
NOM and turbidity removal. This was explained by the hydrolyzation of FeCl3 to positive
ferric ion and the interaction with the negatively charged NOM fractions at a pH range
between 6 and 8. For PACl, initial pH had the highest contribution on the removal of
turbidity, while coagulant dosage and initial pH had the highest contribution for HLS and
FLS treatment. This trend correlation was attributed to the solubility of humic-acid like
species in alkaline media and the solubility of fulvic acid-like species at acidic and alkali
conditions. The optimum operational condition was determined to be at an initial pH of
8.0 and coagulant dosage of 40 mg L−1. The optimum removals when FeCl3 was used
were 69.55, 73.87, and 84.05% for humic acids, fulvic acids, and turbidity, respectively. On
the other hand, optimum removals of 78.46, 75.63, and 80.98% for HLS, FLS, and turbidity,
respectively, were obtained for PACl. These results identify PACl as the desired coagulant
species to minimize NOM content in raw water prior to disinfection treatments.
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