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Abstract: Precise multi-time scales prediction of groundwater level is essential for water resources
planning and management. However, credible and reliable predicting results are hard to achieve
even to extensively applied artificial intelligence (AI) models considering the uncontrollable error,
indefinite inputs and unneglectable uncertainty during the modelling process. The AI model ensem-
bled with the data pretreatment technique, the input selection method, or uncertainty analysis has
been successfully used to tackle this issue, whereas studies about the comprehensive deterministic
and uncertainty analysis of hybrid models in groundwater level forecast are rarely reported. In this
study, a novel hybrid predictive model combining the variational mode decomposition (VMD) data
pretreatment technique, Boruta input selection method, bootstrap based uncertainty analysis, and
the extreme learning machine (ELM) model named VBELM was developed for 1-, 2- and 3-month
ahead groundwater level prediction in a typical arid oasis area of northwestern China. The historical
observed monthly groundwater level, precipitation and temperature data were used as inputs to
train and test the model. Specifically, the VMD was used to decompose all the input-outputs into
a set of intrinsic mode functions (IMFs), the Boruta method was applied to determine input variables,
and the ELM was employed to forecast the value of each IMF. In order to ascertain the efficiency
of the proposed VBELM model, the performance of the coupled model (VELM) hybridizing VMD
with ELM algorithm and the single ELM model were estimated in comparison. The results indicate
that the VBELM performed best, while the single ELM model performed the worst among the three
models. Furthermore, the VBELM model presented lower uncertainty than the VELM model with
more observed groundwater level values falling inside the confidence interval. In summary, the
VBELM model demonstrated an excellent performance for both certainty and uncertainty analyses,
and can serve as an effective tool for multi-scale groundwater level forecasting.

Keywords: uncertainty analysis; groundwater level prediction; hybrid predictive model; variational
mode decomposition; Boruta technique; extreme learning machine

1. Introduction

Groundwater, a significant water supply for agricultural, drinking, domestic and in-
dustrial purposes, plays a vital role in the sustainable development of society and ecology
in arid regions where the rainfall is extremely scarce [1,2]. As the most critical factor, the
groundwater level is fit to quantify the groundwater resource. However, the dwindling of
groundwater level caused by external pressure of population increase, economic develop-
ment, climate change and pollution over-exploitation is threatening the sustainability of
water resources in arid areas [3,4]. Therefore, deriving accurate and specific groundwater
level estimation is essential for policy makers and planners to evaluate and manage the
groundwater resources as well as prevent over-abstraction more effectively.
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Generally, the groundwater level can be assessed by physically-based and data-based
models. In the physically based models, a detailed interaction of various physical pro-
cesses that control the hydrologic behavior of the groundwater system is involved using
a simplified control equation [5]. To achieve this, proper initial and boundary conditions
calculated by numerical methods are indispensable [6]. Nevertheless, a large quantity
of hydrogeological data and the physical properties of groundwater such as hydraulic
conductivity, volumetric water content and matric potential are hard to access even with
expensive site investigations. Moreover, the computational costs derived from partitioning
of the physical domain required for the numerical solution is extremely high [7,8]. Besides,
limitative insight of the researchers about the physical process of groundwater flow re-
stricts application of the models from a practical perspective. Thus, satisfactory results
from the numerical groundwater models may be constrained considering these facts. As a
result, an alternative artificial intelligence (AI) model, which formulates groundwater level
nonlinearity merely by relying on the historical data or broader exogenous data as inputs,
is necessary and significant under such conditions.

In recent years, a wide variety of AI models, such as the Artificial Neural Network
(ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS), Support Vector Machine (SVM),
Extreme Learning Machine (ELM) and genetic programming (GP), has been extensively
recommended and applied to investigate hotspots in hydrologic research, mainly focusing
on rainfall, runoff, reference evapotranspiration, flood, water quality and groundwater
level forecast [9–15]. In terms of groundwater level prediction, the applicability and
potential of these AI methods have been confirmed [16]. Among these models, the ELM,
as a typical representative of AI models, has received increasing attention in hydrological
modeling due to the fast learning speed and strong generalization capability. Compared
with the traditional ANN methodology, the ELM algorithm does not need prior tuning of
meta-parameters like input weights and hidden layer biases [10]. Thus, a global solution
and more accurate prediction are able to be attained.

However, deficiencies still exist in groundwater modelling despite the effectiveness and
applicability of the conventional AI methods. Firstly, the complexity of the groundwater
dynamic system itself makes it difficult to distinguish and recognize groundwater features
accurately [17]. In addition, uncertainties from non-stationary inputs caused by trends or
seasonal variation of the data may largely affect the model’s performance if no preprocessing
procedure is applied [18,19]. Under such circumstances, linking data pretreatment process
with the conventional AI models can be considered as an effective attempt at careful analysis
of the dynamic characteristics and precise accuracy of these models.

In recent years, a number of studies have verified and reported the superiority and
availability of AI models coupled with data preprocessing techniques [4,18,20–26]. In
review of this, the wavelet transformation (WT) algorithm, empirical mode decomposition
(EMD) and ensemble empirical mode decomposition (EEMD) are three commonly used
techniques that can decompose original time series into various sub-series components and
extract valuable information concealed in the datasets [27–29]. Several successful applica-
tions of the WT, EMD and EEMD have also been conducted in hydrological forecasting,
as described in Napolitano et al. [30], Kisi et al. [31], Feng et al. [32], Rezaie-balf et al. [33],
Hadi et al. [34], Yu et al. [35], and Rezaie-Balf et al. [36]. These data pre-processing meth-
ods reliably obviate the shortcoming of AI models in dealing with the nonstationary and
nonlinear signals by decomposing these time series into a set of simpler components to
attain a deeper insight into the features [22,37]. Therefore, the prediction precision can be
improved to a greater extent. Despite this, the weaknesses of these data pre-processing tech-
niques, for instance, the high dependence of wavelet decomposition on the mother wavelet
functions [38], the disadvantages in mode mixing and the lack of the strict mathematical
theory of the EMD method [39], the large amount of computation cost, the uncontrollable
modal components, and the unremovable noise of the EEMD [17] may affect the accuracy
of predicting results.
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The variational mode decomposition, newly proposed by Dragomiretskiy and Zosso. [40],
is a completely non-recursive variation model for signal decomposition. This method has
attracted much attention due to its solid theoretical foundation, strong noise robustness
and precise component separation [41]. The hybrids AI and VMD models have successfully
been employed in power quality events recognition [42], short-term load forecasting [43],
time frequency analysis of Mirnov coil [44], stock price and movement prediction [45],
short-term wind power generation forecasting [46], wind speed forecasting [47], and solar
radiation forecasting [48]. In the hydrological domain, runoff and rainfall-runoff predic-
tions were mainly focused upon. Seo et al. [49] proposed VMD-based ELM (VMD-ELM)
and VMD-based least squares support vector regression (VMD-LSSVR) models for daily
rainfall-runoff modeling in the Geumho River Watershed, South Korea. The results showed
that the VMD-ELM and the VMD-LSSVR models presented the best performance when
compared with the VMD-based ANN (VMD-ANN), discrete wavelet transform (DWT)-
based single models (DWT-ELM, DWT-LSSVR, and DWT-ANN) and single models (ELM,
LSSVR, and ANN). He et al. [41] simulated daily runoff by using the deep neural networks
(DNN) coupled with VMD (VMD-DNN) in the Zhangjiashan hydrological station of Jing
River, China. The results confirmed the superiority and novelty of the proposed hybrid
model in daily runoff forecasting. Furthermore, the good stability and representativeness
of the deep belief network (DBN) coupled with VMD in short-term runoff prediction
were also reported by Xie et al. [17]. Despite the demonstrated significant potential and
advantages of the AI coupled VMD methods, the use of these models in groundwater level
prediction is rarely recorded, especially in the arid environment where groundwater has
high irregularity, complex nonlinearity and multi-scale variability. It is, thus, important
for groundwater level prediction to use the VMD based hybrid models to provide reliable
scientific references in such conditions.

Especially, the uncertainty residing in the stochastic AI algorithms remains a problem
that cannot be ignored when conducting these models. Therefore, uncertainty analysis is an
indispensable procedure to get reliable simulation results since these models are susceptible
to input data, and incapable of reproducing the same results even in identical situations.
However, the uncertainty of hybrid models in the estimation process is often neglected
in most cases, regarding the fact that the deterministic analysis of hybrid models is the
main focus. The bootstrap method coupled with a resampling technique can be an effective
method for uncertainty analysis due to the advantages of the more convenient computation
process relative to derivatives and the Hessian-matrix involved in the delta method, or the
Monte Carlo simulations involved in the Bayesian approach, and has been successfully
used in a wide range of problems in hydrological modeling [50–53]. The applications
of combining a machine learning method based on data decomposition technology and
a bootstrap resamples method are described in detail in [51,52,54]. These researchers
developed a hybrid wavelet-bootstrap-neural network (WBNN) model for forecasting
hourly flood, daily discharge, and medium term urban water demand, respectively, and
confirmed the superiority of the bootstrap method in assessing uncertainty. However,
the uncertainty of the AI coupled decomposition ensemble models is usually ignored
especially in groundwater level prediction. Therefore, the uncertainty analysis based on
the bootstrap method was conducted to assess the precision of the hybrid models.

According to the above considerations, the main objective of this study is to propose
a hybrid model combining the signal decomposition (VMD) with feature extraction (Boruta)
and ELM (VMD-Boruta-ELM, briefed as VBELM) for the accurate simulation of 1, 2 and 3
month-ahead groundwater level. Specifically, the VMD was first used to decompose the
time series of groundwater level, rainfall and temperature into various multiple intrinsic
narrow-band sub-components called IMFs; then the feature selection was carried out by
using the Boruta method to reduce input dimensions and to extract input variables of each
IMF; next, the obtained IMFs of input parameters were imported into the ELM model
to derive a corresponding forecast; last, all the predicted IMFs were summed as final
output result. In addition, the single ELM model and the coupled VELM model without
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Boruta method were also developed for comparison. Moreover, uncertainty analysis was
performed for the VBELM model by the bootstrap sampling technique for the purpose of
more accurate and reliable groundwater level prediction results.

2. Methodologies
2.1. Data Decomposition (VMD)

The VMD is established based on the Wiener filtering theory, Hilbert transform
theory, and frequency shifting theory by adaptively decomposing a sophisticated signal
into several band-limited IMFs (BLIMFs) with varying amplitude and frequency [44].
According to the VMD, the original signal f (t) is decomposed into amplitude-modulated-
frequency-modulated (AM-FM) signals in band-limited modes uk; the equation can be
described as:

uk(t) = Ak(t) cos(∅k(t)) (1)

where uk(t) denotes the kth mode IMFs, and Ak(t) is the instantaneous amplitude and
phase. Besides, the derivative of ∅k(t) is ωk(t) which is called the instantaneous frequency.

There are three steps to estimate the bandwidth of uk(t),

Step 1: Compute the related analytic signal of uk(t) by using the Hilbert transform to
obtain a unilateral frequency spectrum.

Step 2: Shift frequency spectrum of uk(t) to the baseband by mixing with an exponent
tuned to the respective computed central frequency.

Step 3: Estimate the bandwidth through H1 Gaussian smoothness of the demodulated signal.

The objective of the optimization is to minimize the sum value of the estimated
bandwidth. The constrained variational problem can be expressed as:

min
{uk}, {ωk}

{
K

∑
k=1
||∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jωkt||22

}
, s.t.

K

∑
k=1

uk(t) = f (t) (2)

where {uk} represents the decomposed modes, and can be expressed as {u1, u2, . . . . . . , uK};
{ωk} is the corresponding center frequencies, namely {ω1, ω2, . . . . . . , ωk}; k and t denote
the number of modes and time, restively; and δ(t) denotes the Dirac function. The expression(

δ(t) + j
πt

)
∗ uk(t) can transform uk(t) into the analytical signal to form a unilateral frequency

spectrum. Using e−jωkt the spectrum of each mode can be shifted into the baseband, and ωk is
the center frequency of uk.

To transform the above constrained variational problem into an unconstrained opti-
mization problem, the quadratic penalty term and Lagrangian multiplier are considered;
the augmented Lagrange function is given as follows:

L({uk}, {ωk}, λ) = α
K
∑

k=1
||∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt||22

+|| f (t)−
K
∑

k=1
uk(t)||22 + 〈λ(t) f (t)−

K
∑

k=1
uk(t)〉

(3)

where || f (t)−∑K
k=1 uk(t)||22 is a quadratic penalty term used to guarantee the good con-

vergence velocity, and α and λ denote the balancing parameter of data fidelity constraint
and Lagrange multiplier, respectively.

In the VMD algorithm, the optimization technique called alternate direction method
of multipliers (ADMM) is adopted to seek out the saddle point of the augmented Lagrange
function [55]. Based on the ADMM optimization approach, the uk and ωk can be updated
in two directions to complete the analysis process of VMD, and the solution for uk and ωk
is shown as [56]:

ûn+1
k =

ŷ(ω)−∑i 6=k ûi(ω) +
λ̂(ω)

2

1 + 2α(ω−ωk)
2 (4)
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ω̂n+1
k =

∫ ∞
0 ω

∣∣∣ûn+1
k (ω)

∣∣∣2dω∫ ∞
0

∣∣∣ûn+1
k (ω)

∣∣∣2dω

(5)

where ŷ(ω), ûi(ω), λ̂(ω) and ûn+1
k (ω) denote the Fourier transform of y(t), ui(t), λ(t) and

un+1
k (t), respectively.

2.2. Feature Selection of Input Variables (Boruta)

Input variable selection is crucial to the development of AI models and is particularly
relevant in water resources modeling [57]. In the current study, the Boruta method is
employed to search for important predictors. Developed by Kursa et al. [58], the algorithm
is a wrapper around the Random Forest classification algorithm implemented by the
Boruta package in the R environment and is a promising feature selection algorithm that
incorporates the interactions between the features [59]. The classification performed in this
method is fulfilled by voting of multiple unbiased weak classifiers—decision trees [60].
The method has been successfully used and is strongly recommended [61].

The algorithm steps can be summarized as follows [60]:
Firstly, create shuffled copies of all features which are called Shadow Features to add

randomness to the given data set and remove correlations between shadow variables and
the response.

Then, train a random forest classifier in the extended information system and evaluate
the importance of each feature using Mean Decrease Accuracy.

Next, determine the maximum Z score (computed by step 2) among shadow attributes
(MZSA), and compare it with the corresponding shadows. Mark the attributes as “impor-
tant” (tagged “Confirmed”) when its importance significantly higher than MZSA, otherwise
regard as “unimportant” (tagged “Rejected”) and remove from the information system.

Finally, the Boruta algorithm ends when all attributes are confirmed or rejected or it
reaches a specified limit of random forest runs. Noted that unassigned inputs after reaching
limitation are classed as “Tentative” and obtain final decision (confirmed or rejected) by
comparing the respective median Z scores with the median Z-scores of the best shadow
variable [61].

2.3. Prediction Model (ELM)

The ELM proposed by Huang et al. [62] is a single-hidden layer feedforward network
(SLFN) with a number of nodes that can be randomly generated in the hidden layer. The
ELM method is easy to use and no parameters need to be tuned except for determining
network architecture, for instance, the inputs and number of hidden layer neurons, there-
fore avoiding many complications faced by the gradient-based algorithms such as learning
rate, learning epochs, and local minima [19,63]. Apart from the faster learning speed and
better generalization performance, the ELM algorithm does not have problems such as
local minima and over-fitting [64].

SLFNs functions with n hidden nodes and activation function g(x) can be repre-
sented as:

fn
(

xj
)
=

n

∑
i=1

βigi
(
xj
)
=

n

∑
i=1

βig
(
ωixj + bi

)
= ti, j = 1, 2, .. . . . , N (6)

where βi is the weight vector connecting the ith hidden node and the output node, ωi
is the weight vector linking the input layer to the ith hidden node, bi is the threshod of
the ith hidden node, and ωixj denotes the inner product of vector ωi and xj. In order to
comprehend further the computation process, Equation (6) can be rewritten as follow:

Hβ = T (7)

where H is the hidden layer output matrix, and β represents the output weight matrix.
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In total, the steps of ELM algorithm can be summarized as: (a) randomly generate
input weights ωi and threshod bi before training; (b) calculate the hidden layer output
matrix H; (c) calculate the output weight matrix β = H+T, where H+ is called the Moore–
Penrose generalized inverse of the hidden layer matrix H [65].

2.4. Uncertainty Analysis (Bootstrap)

The bootstrap is a resampling technique for statistical inference and also a computa-
tional, data-driven simulation method that generates multiple realizations from one dataset
of a distribution or process [66]. It is commonly used to estimate confidence intervals,
bias and variance of an estimator or to calibrate hypothesis tests. In terms of assessment
of confidence intervals, the bootstrap is a widely accepted and reliable method relative
to others [54]. Moreover, unlike Monte Carlo solutions relying on definite probability
distribution, the bootstrap can estimate unknown sampling distribution using the data and
computer power. The essential idea of the bootstrap approach is based on resampling with
replacement of the available dataset and training of an individual network in each resam-
pled instance of the original dataset [52]. The precision of a bootstrap estimate depends
on the number of bootstrap replicates randomly resampled from the original dataset; the
number of bootstrap samples should be at least 1000 samples as suggested by Efron and
Tibshirani [67]. In this study, we randomly resample each IMF with replacement 1000 times,
keeping the ratio between the training and testing data sets constant; training and testing
the model obtains 1000 outputs of each IMF, and all output results are correspondingly
summed as final result.

Given a set of independently and identically distributed random sample Tn = {(x1, y1),
(x2, y2), . . . . . . , (xn, yn)} consisting of a predictor vector xi and the corresponding output
variable yi, n is a random dataset sample drawn from an unknown probability distribution
F. Each (xi, yi) is randomly sampled with replacement from the original datasets. The set
of S bootstrap samples generated and which can be denoted as T1, T2, . . . , Ts, . . . , TS, S
represents the total number of bootstrap samples and the value is 1000 in the present study.
Each Ts is employed to train the VBELM model, and the output obtained is represented
as gVBELM (xi, ωb/Ts) which is evaluated using the observation pairs that are not included
in a bootstrap sample Ts. Afterwards, the performance of the VBELM model in these
validation datasets is averaged as an estimate of the generalization error of the VBELM
model developed on Tn. This generalization error can be estimated by E0 [68]:

E0 =
∑S

s=1 ∑i∈As

[
yi − gVBELM

(
xi,

ωs
Ts

)]2
∑S

s=1 #(As)
(8)

where xi denotes the input vector, ωs denotes the weight vector, As is the set of indices
for the observation pairs not included in the bootstrap sample Ts and #As is the number
of observation pair indices in As. The VBELM estimate y(x) is given by the mean of the S
bootstrapped estimates [52]:

y(x) =
1
S

S

∑
s=1

gVBELM(xi, ωs/Ts) (9)

The variance of the outputs of each VBELM is expressed as:

σ2(x) =
∑S

s=1 ∑i=As

[
yi − gVBELM

(
xi,

ωs
Ts

)]2
S− 1

(10)

The 95% confidence interval is used in this study for intuitive evaluation of uncertainty.
It is determined by finding the 2.5th (XL) and 97.5th (XU) percentiles of 1000 outputs.
The ratio of observed values within the 95% confidence interval is calculated to judge the
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uncertainty of the final model; the higher the ratio is, the smaller the uncertainty is, and
vice versa. This is represented as:

Bracketed by 95PPU =
1
n

Count(N|XL ≤ N ≤ XU)× 100 (11)

where n indicates the number of the observed data. N increases with observations falling be-
tween the corresponding XL and XU increase; the “Bracketed by 95PPU” denotes the num-
ber of observed data bracked by 95% confidence interval, this value is equal to 100 when
all of the observed data are within the range of XL ≤ N ≤ XU.

Besides, the d-factor is applied for computing the average width of the confidence
interval, which can be evaluated as [69]:

d− f actor = dx/σx (12)

dx =
1
n

n

∑
i=1

(XU − XL) (13)

where dx is the average distance between the upper (97.5th) and lower (2.5th) bands, and
σx is the standard deviation of observations. The better results indicate that the width of
confidence interval is narrow, namely a d-factor value which is close to 0.

3. Model Development

In light of the foregoing discussion, a hybrid VBELM model integrating modal de-
composition, feature selection and AI methods was proposed for monthly groundwater
level prediction. As for the input data, the antecedent groundwater level and weather data
were employed in most studies [4,8,33]. In the present study, the past total precipitation (P),
average temperature (T) and groundwater level (GW) were used as inputs to predict future
groundwater level. The maximum time lag was identified as 3, namely that the time series
of P, T and GW for the past three months (1 time step represents 1 month) were employed
to forecast the GW at the t + 1, t + 2 and t + 3 timescales Equation (14).

GWt+∆t = f (Pt2, Pt1, Pt,Tt2, Tt1, Tt, GWt2, GWt1, GWt) (14)

where t denotes the current time, ∆t is the lead-time period, and 1-, 2- and 3- time steps
were selected in this study. t2 and t1 denote the prior 2- month time step and the prior
1- month time step, respectively.

For model construction, firstly, the VMD technique was adopted to decompose the
original precipitation, temperature and groundwater series (for both training and testing
sets) into the same number of IMFs with corresponding low–high frequency components
to obtain stationary subseries. Secondly, the Boruta feature selection algorithm was used to
select appropriate input components for each IMF during the training phase in order to
build concise and efficient models. Thirdly, the ELM model was applied to simulate all IMFs.
Finally, the predicted IMFs were obtained by aggregating the results of all obtained IMF
components. This process was carried out for deterministic analysis. In terms of uncertainty
analysis, each selected IMF by Boruta was randomly resampled 1000 times (see Section 2.4;
running the ELM model obtains 1000 outputs for each IMF series. The prediction results
of all IMFs are aggregated 1000 times to obtain the final 1000 outputs used as uncertainty
analysis. The schematics of the process are illustrated in Figure 1.
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Figure 1. The schematic structure of the proposed forecasting modeling.

Note that the input and output data were normalized with a mean of 0 and a vari-
ance of 1 before running the model in order to eliminate influence of the dimensions.
The equation used is as follows:

xnew = (x− µ)/σ (15)

where xnew is the normalized dimensionless data, and µ and σ are the average and standard
deviation respectively.

4. Case Study
4.1. Study Area and Hydrological Data

The present study was carried out in the Zhangye basin, which is in the middle reaches
of the Heihe River, northwest China (Figure 2), and holds an area of about 1.08 × 104 km2.
It is a corridor plain between the Qilian and the Arkin mountains in the south, and the
Mazong, the Heli, and the Longshou mountains in the north. The region belongs to a typical
continental arid climate characterized by scarce but concentrated precipitation, intense
evaporation and strong solar radiation, with the average annual air temperature changing
from 3 to 7 ◦C year−1, the mean precipitation ranging from about 50–150 mm·year−1, and
the mean potential evaporation rate varying from 2000 to 2200 mm·year−1. The terrain of
the study area gradually drops from the southeast to the northwest with a slope varying
from 25% to 4%. The landform is divided into two types: the piedmont alluvial–proluvial
Gobi plain in the south and the alluvial–proluvial fine soil plain in the middle of the region.
An independent hydrogeological unit with recharge, runoff, and drainage processes is
formed in the basin. Groundwater in this area is mainly the Quaternary pore water, and
the depth of groundwater decreases gradually from southeast to northwest.
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The Zhangye basin, which can be regarded as the main commodity grain production
base with the typical irrigated agriculture and dense population of arid regions in China,
occupies a very important position along the Silk Road Economic Belt. Groundwater
is the major source of water supply for crop irrigation, production and domestic use.
However, the rapid population growth, oasis expansion and urbanization have recently
increased the amount of groundwater use resulting in an over–extraction problem in
this area [70]. The 2016 government report shows that the total area of groundwater
overexploitation was 2418.30 km2 and the amount of over-exploitation reached 192.64
million m3 in this area. The over-extraction of groundwater further decreases groundwater
levels, threatening the sustainable development of the regional ecosystem. Therefore,
accurate determination of groundwater level is important for the rational planning of water
resources. In this study, three typical groundwater observation wells, namely well I, well
II and well III, were selected according to altitude gradients, ranked from high to low as
well I > well II > well III.

The monthly average groundwater level observations for the three wells were collected
from 1 January 2000 to 31 December 2017. Accordingly, the meteorological data (P and T)
of the Zhangye and Gaotai stations, which are located at this study area and closest to
the observation wells, were obtained from the National Climatic Centre of the China
Meteorological Administration at the same time scale. The groundwater level data of the
three observation wells along with P and T records were selected as the model inputs.
It should be noted that for well I the data from the Zhangye station were used while
data observed from the Gaotai station were applied for well II and well III, respectively.
Particularly, the whole 216 monthly data records were divided into training and testing
parts. In the training phase, 168 months data from 1 January 2000 to 31 December 2013
accounting for about 77.8% of the total data set was used, while the remaining 48 months
data ranging from 1 January 2014 to 31 December 2017 was used at the testing part. The
statistical characteristics of monthly meteorological data and groundwater level data for
the three wells are showed in Table 1. It can be seen that the groundwater level with
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average values ranging from 1460.60 m to 1298.69 m during the observation period became
shallower as the altitude decreased from well I to well III. Additionally, no significant
differences between the training and the testing data were found, indicating the reasonable
division of training and testing datasets. Thus, the training data records can be regarded
as representatives of the total datasets, as sufficient information on groundwater system
behavior was captured.

Table 1. Statistical parameters of groundwater level and climate data at three sites.

Well I Well II Well III Zhangye Gaotai

GWL
(m)

GWL
(m)

GWL
(m) P (mm) T (◦C) P (mm) T (◦C)

Max
All 1464.24 1384.72 1299.88 60.4 25.72 65.7 25.62

Training 1464.24 1384.72 1299.99 55.7 25.72 65.7 25.62
Testing 1463.51 1384.62 1299.75 56.7 24.33 61.4 24.89

Min
All 1455.02 1382.39 1295.23 0 −14.91 0 −14.4

Training 1455.02 1382.39 1297.64 0 −14.91 0 −14.4
Testing 1459.67 1382.43 1295.23 0 −11.29 0 −10.36

Mean
All 1460.60 1383.25 1298.69 11.433 8.472 9.688 8.795

Training 1460.38 1383.25 1298.82 11.29 8.372 9.718 8.609
Testing 1461.47 1383.25 1298.23 11.974 8.863 9.583 9.444

Std
All 1.951 0.467 0.864 14.316 11.374 12.100 11.332

Training 2.074 0.444 0.414 14.432 11.401 11.976 11.421
Testing 0.992 0.543 1.591 14.008 11.394 12.654 11.109

SK
All −0.48 0.629 −2.604 1.515 −0.234 1.999 −0.237

Training −0.273 0.674 −0.313 1.554 −0.229 2.022 −0.241
Testing 0.247 0.528 −1.087 1.410 −0.263 1.989 −0.215

Max is the maximum, Min is the minimum, Std is the standard deviation, SK is the skewness.

4.2. Decomposition Results

The VMD was used to decompose the raw data into high-frequency and low-frequency
signals with the number of K. It should be noted that the parameter K, which must be
pre-defined, is an important parameter in VMD decomposition. The number of K has a
significant influence on the decomposed results because too few K may result in the loss of
the signal, while too many K may yield abundant frequency or extra noise [46,55]. To find
the appropriate number of K, the central frequency method, which is based on the change
of the center frequency (ωk) of the last IMF, was adopted in this paper [71]. There are 9
input variables (Pt2, Pt1, Pt, Pt2, Tt1, Tt2, Tt1, GWt2, GWt1, GWt) and 3 outputs (GWt+1,
GWt+2, GWt+3) for each site. The K for the three wells was determined starting from K = 1,
and it was found that the number of K changed from 9 to 14, and the ωk of IMF gradually
became smaller as the number of K increased; moreover, slight variation of the ωk for all the
input-outputs could be found when K is more than 10. In this context, K = 10 was chosen as
the optimal value for the three observation wells. It is worth noting that the determination
of the number of K aforementioned was practiced by training data series; for the testing
data series, the same number of modes is applied meaning that 10 IMFs (denoted as IMF1,
IMF2, . . . , IMF10) were decomposed. The parameters of the VMD algorithms are presented
in Table 2.

Table 2. Statistical parameters of groundwater level and climate data at three sites.

Parameters Alpha Tau K DC Init Tol

Value 2000 0 10 0 1 1 × 10−7

Taking the raw groundwater level data during the training periods of the three
observation wells as examples, Figure 3 shows the decomposition results of VMD. It can be
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seen that the frequencies of subcomponents raised gradually as the K values increased. Each
component played a distinct role in the raw data series with the lower frequency subseries
representing the periodicity and trend (the IMF1 contains low frequency components), and
the higher ones reflecting the local volatility tendency and the small-scale features of the
original groundwater level series. Besides, the difference between the subcomponents in
the three observation wells vary substantially, mainly caused by different groundwater
behavior of the three sites. The finding shows the feasibility and flexibility of the VMD
method in extracting the intrinsic information from original groundwater level data.
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4.3. Determination of Input Variables

The determination of important input features has direct impacts on the model’s
performance. However, no definite statements about the choice of the methods is reported
so far. It is certain that the feature selection process used in this study, which is intended to
reduce the input dimensions and to provide an insight into underlying physical processes
without altering data, is beneficial for increasing efficiency and optimizing the model’s
performances [61]. It is relevant to note that, prior to feature selection, all input and
response variables should be normalized between 0 and 1.

For detailed explanation, the IMF5 of well I was used as an example to explain the
process, and to show the important input variables of IMF5 (GWt+1), as displayed in Figure 4.
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In terms of the Boruta result plot, the blue boxplots represent the minimal, average
and maximum Z scores of the shadow attribute. The red and green boxplots correspond to
the Z scores of the rejected and confirmed attributes, respectively. It can be seen from this
figure that five attributes were identified as unimportant variables (the fifth mode of Pt2,
Pt1, Tt2, Tt1 and Tt), and four attributes were tagged as important variables including IMF5
(Pt), IMF5 (GWt2), IMF5 (GWt1), IMF5 (GWt).

4.4. Performance Criteria

The statistical indices including the coefficient of correlation (R), root mean square
error (RMSE), mean absolute error (MAE) and Nash-Sutcliffe efficiency coefficient (NS)
were applied in this study. The R measures the correlation between the estimated and
observed values, and the NS is used to assess efficiency of forecasting model. The smaller
the differences between the R or NS values and 1, the higher the accuracy and stability of
the prediction models. RMSE and MAE provide distinctive qualifications for the prediction
capability of the models. The RMSE demonstrates the goodness–of–fit relevant to the high
values whereas the MAE provides a more balanced perspective, especially for the moderate
values [72]. The small RMSE and MAE values mean a tiny error between the estimated and
observed values, as well as satisfactory performance of the models. The R, RMSE, MAE
and NS can be calculated by the following equations:

R =
∑n

i=1

(
Ep(i)− Ep(i)

)(
Eo(i)− Eo(i)

)
√

∑n
i=1

(
Ep(i)− Ep(i)

)2(
Eo(i)− Eo(i)

)2
(16)

RMSE =

√
∑n

i=1(E
p(i)− Eo(i))2

n
(17)

MAE =
∑n

i=1|(Ep(i)− Eo(i))/Eo(i)|
n

(18)

NS = 1− ∑n
i=1(E

o(i)− Ep(i))2

∑n
i=1

(
Eo(i)− Eo(i)

)2 (19)

where Ep(i) and Eo(i) represent the predicted and observed groundwater level for the i-th
sample, respectively, and Ep(i) and Eo(i) are the average of the Ep(i) and Eo(i), respectively.
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n means the sample number. The combination of R = 1, RMSE and MAE = 0, and NS = 1
denotes the perfect fit.

5. Results and Discussion

In this section, the performance of the proposed hybrid VBELM model was discussed
to forecast the 1-, 2- and 3-month ahead groundwater level for three wells. The VELM
model without feature selection technique and the single ELM model were also assessed
for comparison. It should be noted that it is during the testing phase that the performance
in the prediction of groundwater level was demonstrated and compared of these models.
In addition, the uncertainty assessment was further adopted to verify the simulation results
of the proposed VBELM model.

5.1. Model Performance

The precision of the proposed VBELM models for groundwater level forecasting at
the period of 1-, 2- and 3-months is shown in Table 3 in terms of R, RMSE, MAE and NS.
It can be seen that the VBELM models exhibited good prediction accuracy at the three sites,
with high R and NS values as well as low RMSE and MAE values. In particular, all of the
R and NS values surpassed 0.9 and 0.8, respectively, while the RMSE and MAE values
were less than 0.6 and 0.5, respectively, indicating the satisfactory performances of this
model in groundwater level predicting at multiple timescales. In addition, the accuracy
of the VBELM models decreased with the increasing lead time of forecast, as displayed
unambiguously and consistently in the three tables. This may be due to the reduction of
data patterns. Concretely, from 1-month ahead to 3-month ahead prediction, the R, RMSE,
MAE and NS values deteriorated by 5.2%, 32.6%, 35.6% and 11.2% for well I, respectively;
4.1%, 10.8%, 14.1% and 6.2% for well II, respectively; and 3.8%, 37.5%, 40.6% and 7.1% for
well III, respectively. Although the precision of the hybrid model gradually deteriorated
from the 1 monthly time-step to the 3 monthly time-step, the four statistical evaluation
values remained within reasonable accurate range, providing satisfactory simulating results
at all lead timescales for the three sites.

Table 3. Performance analysis of the VBELM models during testing periods for three sites.

Observation
Sites Lead Month R

Root Mean
Square Error
(RMSE) (m)

Mean Absolute
Error (MAE) (m) NS

1-month ahead 0.964 0.273 0.217 0.924
Well I 2-month ahead 0.927 0.399 0.352 0.840

3-month ahead 0.916 0.405 0.337 0.831
1-month ahead 0.956 0.199 0.159 0.865

Well II 2-month ahead 0.932 0.214 0.180 0.838
3-month ahead 0.917 0.223 0.185 0.811
1-month ahead 0.979 0.354 0.280 0.948

Well III 2-month ahead 0.976 0.420 0.337 0.931
3-month ahead 0.942 0.566 0.471 0.881

The hydrographs and scatter plots of groundwater level estimated by the VBELM
model during the testing period for the three wells at 1, 2 and 3 months ahead forecasting
are displayed in Figure 5. The left hydrographs clearly illustrate that the prediction
results of the three wells were in line with the expectation values. That is to say, the
evaluated groundwater levels were closer to the observations and followed the same
trend. Meanwhile, the longer the lead times, the worse the simulation performances for
groundwater level forecasting with the results of the 1-month ahead fitting the best, while
those of the 3-months ahead fitted the worst. Besides, the superior simulation results of
well I can also be distinctly discovered when comparing with that of well II and well III
as the predicted values effectively fitted the fluctuations of the real values at both peaks
and valleys for well I. Besides, it can also be observed that the scatter plots for well I
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are less dispersive and closer to the fitted lines than for well II and well III, which again
proves the above result. Moreover, the same gradually decreasing tendency can also be
discovered from the R2 values with the prediction time getting longer. This finding further
certificates the deteriorating fitting performance of the hybrid model with an increase in
the forecast time. This is in accordance with many other studies in groundwater level
estimation [2,23,73].
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5.2. Model Comparison

In this study, the capability of the VELM model with the absence of a feature extraction
method, and the single ELM model taking the original data series as sole inputs, were
discussed in comparison in order to evaluate prediction accuracy of the VBELM model
for 1, 2 and 3 monthly ahead groundwater level forecasting. Tables 4 and 5 list the four
statistical indicators of the VELM and ELM, respectively, for well I, well II and well III.
By contrast, the better performance that the VBELM models derived than the VELM and
ELM models for 1-, 2- and 3-month ahead groundwater level forecasting can be observed.
The simulation precision of the three models can be ranked as: VBELM > VELM > ELM.
Concretely speaking, the VBELM achieved higher R and NS values as well as lower RMSE
and MAE values for the three observation wells, and the standalone ELM model was found
to be the worst. In terms of the four evaluation indexes, the performances of the two hybrid
models exceeded the standalone ELM model too far, since all the R and NS values were
more than 0.9 and 0.8 respectively, and the RMSE and NS values were less than 0.7 and 0.6
of the two hybrid models, respectively. Nevertheless, the ELM model yielded significant
reduction of the R and NS values, with evident elevation of the RMSE and MAE values.
This is especially true for the 2- and the 3-monthly ahead groundwater level forecasts since
the NS value of the 3 months ahead forecast was only up to 0.706 for well I, the NS values
were less than 0.7 for the 2 and 3 months ahead forecast for well II and well III, and the
R value was less than 0.8 for 3 months ahead forecast for well III. This is mainly due to
the fact that the VMD method remarkably improved the performance of the combined
models when embedded into the ELM model. In addition, the VBELM model performed
slightly better than the VELM model in terms of the statistics indicators, indicating that
the Boruta technique contributed to an improvement in the performance of the VBELM
model. Besides, the outcomes reaffirm the fact that the performance of the VELM and ELM
models deteriorated when the lead time of forecast increased. The finding is consistent
with the results obtained from the metrics values. When it comes to the stability of the
models, it can be seen that the ELM led to the most dramatic deteriorations in light of the
metrics values, followed by the VELM model, while the VBELM model exhibited the most
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stable deteriorating rate. Thus, it can be concluded that the proposed VBELM method is an
effective tool for groundwater level forecast, especially for the longer lead time prediction.

Table 4. Performance analysis of the VELM models during testing periods for three sites.

Observation
Sites Lead Month R RMSE (m) MAE (m) NS

1-month ahead 0.961 0.282 0.210 0.919
Well I 2-month ahead 0.912 0.410 0.335 0.830

3-month ahead 0.919 0.423 0.344 0.817
1-month ahead 0.924 0.209 0.167 0.852

Well II 2-month ahead 0.927 0.220 0.183 0.827
3-month ahead 0.914 0.229 0.198 0.801
1-month ahead 0.977 0.362 0.285 0.946

Well III 2-month ahead 0.972 0.450 0.344 0.921
3-month ahead 0.949 0.641 0.504 0.847

Table 5. Performance analysis of the ELM models during testing periods for three sites.

Observation
Sites Lead Month R RMSE (m) MAE (m) NS

1-month ahead 0.928 0.374 0.288 0.857
Well I 2-month ahead 0.915 0.424 0.342 0.819

3-month ahead 0.853 0.535 0.417 0.706
1-month ahead 0.903 0.238 0.191 0.808

Well II 2-month ahead 0.835 0.307 0.264 0.666
3-month ahead 0.815 0.314 0.261 0.625
1-month ahead 0.913 0.645 0.368 0.828

Well III 2-month ahead 0.843 0.890 0.574 0.691
3-month ahead 0.786 1.016 0.629 0.616

Figures 6 and 7 show the hydrographs and scatter plots of the VELM and ELM models
for the three wells. It can be observed that the predicted values fitted the trend of the real
values for both the two methods satisfactorily. Combining with Figure 4, it can be found
that the predicted values obtained by the VBELM model better traced the fluctuation of the
real values relative to the VELM and ELM models. Besides, it is worthwhile to note that
the VBELM model achieved the best performance at both peaks and valleys among the
three models, while the poorest performance can be found in the ELM model. Likewise,
the best fitting outcomes from the short to long scenarios were still derived by the VBELM
regarding the fact that the fitting performance of the three models descended with the
increase in lead time. The results reasserted the superior performance of the proposed
VBELM method for monthly groundwater level forecasting.
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It is important to evaluate the distribution of estimation errors as well as the average
estimation error when assessing the performance of AI models in groundwater level
modeling. Figure 8 shows the boxplots of error distribution of the VBELM, VELM and
ELM methods for the three wells by comparing the degree of dispersion and skewness
of the error. Thereto, the lower and the upper end of the boxplot denote the 25th and
the 75th percentiles, respectively, the line and the small square inside the box denote the



Water 2021, 13, 139 20 of 29

median and mean, respectively, the outliers outside the box represent the values >1.5
interquartile (the cross line). What can be derived from Figure 8 is that the VBELM and
VELM models produced less error distribution range than the ELM at 1, 2 and 3 months
ahead groundwater level prediction for the three wells. Alternatively, the error of the
two coupled models were more closely arranged with fewer outliers as compared with
the standalone ELM model. For the two proposed hybrid models, the VELM performed
slightly worse than the VBELM with respect to distribution and arrangement of the error.
The availability and efficiency of the hybrid VBELM algorithm was then further verified.

According to the above analysis, the superiority of the hybrid VBELM and VELM
models in groundwater level prediction over the standalone ELM model for the current
study area was verified. Thanks to the advantage of the distinguished VMD pre-processing
technology, frequency changes were effectively identified, and the complexity and non-
stationary nature of the original time series were commendably reduced by decomposing
the original monthly groundwater level, rainfall and temperature data into several subcom-
ponents with natural frequencies. Besides, the importance of feature selection in improving
predicting accuracy was proved by the outperformed VBELM method. Concretely, by
coupling with the Boruta method, the dimension, error and complexity of the VBELM
model were conspicuously reduced from the correlated variables, biases and noises. In
a word, the proposed hybrid VBELM model can be treated as a promising alternative for
both short-term and long-term monthly groundwater level forecast in view of the great
improvement in prediction accuracy.

5.3. Uncertainty Analysis

Despite the excellent outcome yielded by the VBELM in groundwater level forecasting,
uncertainty may exist. To solve this, uncertainty assessment can be an indispensable
procedure for reliable simulation results. In this section, the bootstrap method was carried
out to evaluate the uncertainty of the VBELM by predicting 95 PPU of the results, and to
corroborate the applicability of this model in modeling groundwater level. Note that it is
the uncertainty of the two hybrid VBELM and VELM models that was compared in this
section, in consideration of their better performance.

Figures 9 and 10 illustrate the 95% confidence interval of the 1-, 2- and 3-monthly
ahead groundwater level estimates for the three wells during the testing period. The
number of the observed data lying within the 95 PPU and the d-factor were applied to
quantify the uncertainty of simulation results. Both the figures demonstrated a good match
between the 95 PPU and the obtained results, as most of the observed values fell within the
confidence intervals. It is also observable that, by and large, the number of the actual values
bracketed by the 95 PPU decreased as the lead time increased. In terms of the width of the
confidence intervals, all the d-factor values of the three wells were less than 1 (d-factor < 1 is
considered as appropriate), indicating that the predicted confidence band was narrow and
reached a lower level. Besides, it should be noticed that the width of the 95% confidence
interval for a short lead time was less than that for long lead times as a whole. Although the
d-factors for the 2-months ahead forecasts were smaller compared with the 1-month ahead
results for well I and well II, the number of the observed values of the two wells falling
within the confidence interval for the 1-month ahead forecast was higher than those of the
2-months ahead forecast. In this context, the uncertainty of the 1-month ahead forecast was
considered as low for the two wells.
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Figure 10. Observed groundwater level and the 95% confidence intervals forecasted by VELM 
model with randomly sampled input vectors for 1, 2 and 3-months ahead forest during the testing 
period at Well I (a), Well II (b) and Well III (c). 
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sampled input vectors for 1, 2 and 3-months ahead forest during the testing period at Well I (a), Well II (b) and Well III (c).
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Comparing the uncertainty of the two models, it can be discovered that the better
performance, with more observed values of groundwater level falling within the 95 PPU
and smaller d-factor values, can be obtained by the VBELM model. Despite the fact that
the uncertainty of the VBELM model was slightly higher than that of the VELM model for
3-months ahead forecast of well II, in most cases the VBELM presented a lower uncertainty
relative to the VELM model. In a word, the uncertainty analysis results of the proposed
VBELM model were satisfactory with more observed data falling inside the confidence
interval, and lower and acceptable d-factor values. This further illustrates that the proposed
VBELM model can be regarded as a reliable technique to simulate monthly groundwater
for all the lead times explored in this study.

6. Conclusions

Accurate and reliable groundwater level prediction can provide government with
valuable information about water resources planning and management. In this study,
a hybrid VBELM model coupled with the VMD data decomposition method, the Boruta
feature selection technique and the ELM model for 1-, 2-, and 3-months ahead groundwater
level forecasting at well I, well II and well III in an arid region, northwest China was
developed. The performance of the VBELM model was compared with that of the VELM
and the ELM models in light of R, RMSE, MAE and NS. Rather than the frequently used
deterministic analysis, uncertainty analysis was carried out to evaluate the proposed model
by the bootstrap technique.

The results demonstrate that the VBELM model could provide accurate forecast of
1-, 2-, and 3-month ahead groundwater level for all three wells. The best outcome can be
derived from the 1-month ahead forecast, while the performance deteriorated gradually
with an extension of the prediction time. The comparison results show that the VBELM
model performed better than the VELM and ELM models for all the prediction period.
In terms of the evaluation indices, the VBELM model obtained higher R and NS values
as well as lower RMSE and MAE values compared with those of the other two models.
Besides, the VBELM model is capable of tracing the fluctuations in the peak and valley
of groundwater level. In terms of the three models, the VBELM performed slightly better
than the VELM model, while the single ELM model demonstrated the worst prediction
outcome. The result implies that there is a significant improvement in the accuracy of the
hybrid models when incorporating data decomposition and inputs selection technologies
in monthly groundwater level prediction. In addition, the results of the uncertainty analysis
indicate that the performance of the proposed VBELM model was satisfactory, with more
observed data falling inside the confidence interval, and lower and acceptable d-factor
values. Though the uncertainty of the VBELM model decreased along with forecast time
increases, the results remained acceptable. In summary, the VBELM model is able to
provide an appropriate way for groundwater level forecast and can be regarded as an
alternative tool to explore a complex groundwater system in an arid environment.

Although the VBELM method was found to be a promising method for groundwater
level modeling, improvement is still needed. First, the performance of the developed
models for the three observation wells varies substantially. This is mainly caused by the
difference in the internal mechanism of the groundwater systems, which was neglected
in this study. Second, the performance of the hybrid VBELM model in groundwater
level forecasting was explored without considering the possibility of any other hybrid
models. Third, only the uncertainty caused by input data in forecasting results was
discussed, while uncertainty resulting from other sources were barely involved. Fourth,
extreme climate change has an important impact on groundwater level, such as extreme
precipitation and flood events, and groundwater level change due to these factors have
not been discussed. To get more reliable results in groundwater level predictions, further
studies should concentrate on exploring more hybrid models, introducing a physical
mechanism into the predicting models, investigating uncertainty in the model structure
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and parameters, and combining extreme climate change to further clarify the reason for
groundwater level fluctuation.
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Abbreviations

VMD Variational mode decomposition
EMD Empirical mode decomposition
EEMD Ensemble empirical mode decomposition
ELM Extreme learning machines
VELM Variational mode decomposition with extreme learning machine
VBELM Variational mode decomposition with Boruta and extreme learning machine
ANN Artificial Neural Network
SVM Support Vector Machine
WT Wavelet Transform
IMF Intrinsic mode function
R Coefficient of correlation
RMSE Root mean square error
MAE Mean absolute error
NS Nash-Sutcliffe efficiency coefficient
Max Maximum
Min Minimum
Std Standard deviation
SK Skewness
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