Multi-criteria decision making methods to address water allocation problems: A systematic review

Sintayehu Legesse Gebre^{1,2*}, Dirk Cattrysse¹, Jos Van Orshoven²

¹Department of Mechanical Engineering, Center for Industrial Management, Traffic & Infrastructure, KU Leuven (University of Leuven), 3001 Leuven, Belgium; <u>dirk.cattrysse@kuleuven.be</u> ²Department of Earth and Environmental Sciences, Division of Forest, Nature and Landscape, KU Leuven (University of Leuven), 3001 Leuven, Belgium; jos.vanorshoven@kuleuven.be ³Department of Natural Resource Management, Jimma University, P.o.box 307, Jimma, Ethiopia *Corresponding address:sintayehulegesse@gmail.com or <u>sintayehulegesse.gebre@kuleuven.be</u>

Supplementary material (Table S1)

49 published papers between 2000-2019 and indexed by four literature databases (Web of Science, Science Direct, Scopus, and Google scholar) were reviewed. The application of MCDM methods to solve water allocation problems under different water-problem based classification (water shortage, water use management, water quality, ecosystem/environment management, flood management, combined water problems) is presented in table format. It contains the summary of each reviewed paper (problem gap motivated, objectives, criteria, decision techniques used).

Water sho	rtage based problem				
	Problem/				Decision-Making
Author	motivation	Objectives	Criteria/indicator	MCDM	Techniques
	water shortage (water		optimal quotas for (community, ecological,		
	supply-demand	maximize the total economic benefit of	and economic use); population, territorial		
[1]	mismatch)	the entire area	area;	MODM	dynamic model
		maximizing recharge, maximizing			
	declining in the	biodiversity, maximizing short term	quantitative indicators (environment (climate,		
	availability of	economic gains, maximizing food	land uses, land management, water		
	groundwater reservoirs	security, maintaining zero abstraction	allocations), river gauge or river reach),		Model (DSS)Innovative
[2]	(issue of sustainability)	for public water supply	economic and social (policies))	MODM	modeling approaches
	water planning				
	problem (incisive				
	supply-demand				
	contradiction,		water-availability, water-demand in the		
	ecosystem	maximization of total net return from	sectors, water demand by ecosystem, water-		
[3]	deterioration)	water supply system	security	MODM	IQP
			drought status, the current weather, weather		
	allocation of water	maximize the net present value of water	correlation, and current storage, controls		
	problem among	from allocating it between competing	(environmental release and irrigation		
[4]	competing uses	uses	allocation)	MODM	dynamic programming
	water allocation				
	complexity problem	maximize water resources supply	water balance, environmental demand, and		
[5]	among stakeholders	profits of each riparian stakeholder	usage	MODM	MIP
	imbalance water uses				
	by human and	minimization of water index;			
[6]	ecosystems	maximization of habitat index	water and habitat indices	MODM	weighted sum method
	water supply shortage				
	for agriculture and	minimize industry and agriculture water	storage volumes, time step, agricultural water		
[7]	industry	shortages	supply, industrial water supply	MODM	NSGAII
		minimizing unmet demands,	hydraulic (storage bound in the surface water		
		minimizing the deviation to the full	sources, flow capacities of transmission links		GA (OPTIWAM:
	reservoir water	storage, minimizing the water	from sources to demand sites in any time		Optimizing Irrigation
[8]	allocation problem	productivity losses function, minimize	period) and storage continuity requirements	MODM	Water Management)

Table S1: An overview on the reviewed literature (problem gap, objective, criteria, and decision-making technique)

		reservoir infiltration and deep			
		percolation and water withdrawal from			
		the aquifers, minimizing the unit cost of			
		water over the management area			
		throughout the study period			
	water shortage problem		supply, demand, environmental water		
[9]	(unmet demands)	maximizes the total net profits of users	requirement	MODM	MIP
		economic objective (minimize cost);			
		transfer objectives (minimize water	output quantity of the water for each region is		
	water allocation	deficit); environmental objectives	less than 20%; water must meet the demand.		
[10]	shortage problem	(maximizing environmental benefits)	relative water volume between transfer rivers,	MODM	GA
					interactive two-stage
			irrigation benefit, economic penalty, water		fuzzy stochastic
[11]	limited water resources	maximize agricultural system benefits	available and irrigation quota	MODM	programming (ITFSP)
			(1);although the cost of sewage treatment is		
			high, the sewage must be treated and used		
	severe water shortages		preferentially to protect the environment; (2)		
	in the region		diversion water should be used in preference		
	, , , , , , , , , , , , , , , , , , ,	minimize water abandonment,	to local water; (3) underground water is		
[12]		maximize available water quantity	divided into three portions for use	MODM	rule-based
			economic (output, profits, gross national		
			product, and gross living product);social		
			(social stability, quality of life, employment		
			and education); environment (minimizing		
			water quality loss caused by water pollution,		
		minimize the water shortage for the	maximizing water environment benefits,		
		whole watershed and balance the water	maintaining the ecosystem balance and		
[13]	water shortage	shortage in different districts	improving the ecological system)	MODM	GA
		maximizing domestic water use			
		equality, maximizing agricultural water			
	water shortage or	use equality. minimizing industrial	water availability, ecological water		GA, compromise
[14]	scarcity	water use benefits equality	requirements, water demand	MODM	programming
		minimizing industry water shortage,	initial water storage at the beginning of		
	limited water	minimizing agriculture water shortage,	period t, ending water storage at the end of		
	availability (unmet	minimizing water spillage, maximizing	period t, inflow, water imported, water		
[15]	demands)	ecological satisfaction, minimize the	supply, water spillage, evaporation loss,	MODM	ε-NSGA II

		amount of water transfer	maximum storage, minimum storage, and		
			maximum water transfer capacity in period t,		
	water scarcity and poor	evaluating water resource management	water balance, net profit, and full cost of		MAUT,AHP,
[16]	management	strategies	water	MADM	ELECTRE, TOPSIS
			implementation cost(min),response		
			time(min),social benefit (max),demand	MADM	
	long periods of water	to balance water supply-demand	reduction(max),viability(min),water	and	PROMETHEE V(out
[17]	shortages	strategies	supply(max)	MODM	ranking),ILP
		enhancing water-use efficiency,	technical (water-supply potential, systemic		
		development of alternative water	energy efficiency), economic (economic		
		sources and improvement in effective	feasibility);environmental (climate-related		
[18]	severe water shortage	water management	stability)	MADM	weight
		maximize hydropower output			
	water shortage_	(generation), maximize water supply	reservoir water storage, water demand,		
[19]	demand allocation	reliability	reservoir water inflow	MODM	(NSGA-II)
Water use n	nanagement based problen	n			
	Problem/				Decision Making
Author	motivation	Objectives	Criteria/indicator	MCDM	Techniques
		minimize(evaporative/spill loss;			epsilon Dominance
	water resources	hydropower deficit; fisheries deficit;	evaporation rate, hydropower production,		Non-dominated Sorted
	planning policies	agricultural deficit, flow	agriculture production, fish production, land		Genetic Algorithm-II (e-
[20]	problem	alteration);maximize (land availability)	area, water flow	MODM	NSGAII)
			domestic water supply, industrial water		
			supply, agricultural water supply,		
			environmental water supply; benefit-cost		
			ratio, net		
	water resource	supply-demand equilibrium, drought	benefit, economic risk; maximum drought		
[21]	management problem	mitigation, and economic efficiency	duration and severity, drought loss	MODM	TOPSIS
					fuzzy programming;
					(TLFWM(two-level
					linear fractional water
					management)) and
					stochastic two-level
			surface water supply, groundwater supply,		linear fractional chance-
	water use efficiency	maximum economic benefit and	minimum water requirement level, maximum		constrained water
[22]	problem	minimize water shortage	water requirement level	MODM	management

					(STLECWM)
ļ					
	need for culture-based				
	fisheries (CBFs), a form	to select a suitable reservoir (non-			
	of extensive	perennial reservoirs) for culture-based	reservoir productivity, catchment		
[23]	aquaculture	fisheries	characteristics, and socio-economic factors	MADM	AHP
			diversity of water authorities, autonomy of		
			water users, data accessibility and sharing,		
			GDP output per unit water, ratio of industrial		
			water to agricultural water, utilization rate in		
			canal system, wastewater recycling rate,		
			water resources per capita, water amount per		
			unit area, percentage of forest cover,		
			integrated water qualification rate, sewage		
	technical water	to assess the harmoniousness of water	treatment rate, percentage of ecological water		CCM (compound cloud
[24]	allocation problem	resources allocation	utilization, urbanization rate, per capita GDP	MODM	model)
	water demand for				
	power generation and		reservoir storage, reservoir water level,		
	ecological benefits	maximize power generation and	turbine release, power output, release		
[25]	balance problem	minimize ecological flow shortage	outflow, penality	MODM	NSGA-II
1	1	minimization of (power	water availability, Irrigation demand		
		deficit, maintenance of water availability	fulfillment, environmental flow fulfillment,		
		for irrigation to support food self-	storage continuity, end storage, storage target		
		sufficiency, reduction in flood risk,	fulfillment, turbine flow, turbine capacity,		
	water stresses and food	maintenance of environmental flows).	release capacity, storage capacity, production		
[26]	scarcity	and maximization of power export	capacity, power supply, power deficit.	MODM	LP
[•]		maximize net revenue minimize	available water cultivated area		
	water management	variable costs minimize groundwater	environmental flow groundwater pumping		
[27]	problems	numping	cropping areas	MODM	(NSGA-II)
[,]	problems	minimization of deviation to develop an		mobili	
		ontimal reservoir operational			
		programming (to calculate ecological			
		water demands under steady and pulse	discharge flow quantity canal flow volume		
		states: construction of the proposed	diversion nine flow, economic benefits of		
	water management or	IMOOM considering ecological water	Danijangkou and the Taocha Canal		
	recorvoir operation	domands under multiple bydrologie	badwark flood control water supply newer		
[28]	management problem	runoff guarantee rates, setting the	generation acological water domand	MODM	CP
[28]	management problem	runoff guarantee rates, setting the	generation, ecological water demand	MODM	GP

		maximum of core ecosystem service			
		function values as the operational target			
<u> </u>		to prioritize water allocation options	water extracted for irrigation net benefits to		
		that trade-off socio-economic and hydro-	irrigation average spring terrestrial		
		ecological benefits in rivers without	vegetation encroachment into the river		
		direct interaction with decision-makers	channel maximum spring terrestrial		
	prioritization of	(i.e. tradeoffs prioritizing tradeoffs that	vegetation encroachment into river channel		
	tradeoffs inwater	favored either irrigation or hydro-	water allocation to suppress terrestrial		
[29]	allocation problem	ecological condition)	vegetation encroachment	MODM	NSC A-II CP
[27]				MODINI	
		minimize variation between required			
		minimum flow and discharge maximize			
		hydronower potential of the key			
		reservoirs minimize the average			eNSCAIL NSCAIL
	water allocation	number of days that discharge is less	to keep the storage of the six key reservoirs		OMOPSO MOFAs
[30]	problem	than the required minimum flows	between their dead storage and capacity	MODM	CDE SPEA SMPSO
	sustainable water	maximize net benefits by ontimize water	water availability water demand by	MODIN	(MFSP)multi-stage
	resource management	allocation schemes over the planning	vegetation Water demand by sectors target		fuzzy stochastic
[21]	problem	horizon	water delivery populities	MODM	nrogramming
[51]	problem	10112011	water derivery, pertainties,	MODIVI	programming
Water qualit	ty-based problems			Г	· · · · · ·
	Problem/				Decision Making
Author	motivation	Objectives	Criteria/indicator	MCDM	Techniques
		maximization of the extracted volume of			
		freshwater from the aquifer,			LP and heuristic
		maximization of the contaminant mass	penalty and hydraulic head threshold		optimization
	saltwater intrusion into	removal; minimization of the total cost			(differential
[32]	aquifer	of a remediation system		MODM	evolution,DE)
		application of use-based water quality			
		ladders in the valuation of			
	water pollution	environmental benefits in the context of			
[33]	problem	the Water Framework Directives(WFD)	Zone, Water quality use, Water bill increase	MADM	AHP
		minimization of the CSO			
		volume(combined sewer			
	integrated wastewater	overflows);minimization of ecological	discharged hydraulic load, amount of		
	management system	impacts and minimization of volume	ammonia, nitrate concentration, energy or		
	management system	inipueto, and inimitization of volume	animolia, include concentration, energy of		

r				r	
		cost			
			consistency with marine function zone and		
	marine pollution		marine law, marine dilution conditions,		
	problem in coastal	suitable site selection of industrial	ecological risk, engineering risk and project		
[35]	zones	wastewater discharge in coastal regions	cost, engineering cost	MADM	AHP
		minimize allocation of monitoring sites,			
		maximized detection of pollutant areas,			Multi-Objective
		maximize population protection benefit			Artificial Bee Colony-
	poor quality of water	areas, maximize river hydrological			based optimization
[36]	problem	category benefits	cost, number of stations, budget	MODM	approach (MOABC)
			contaminant concentration at all nodes of the		
			study area should not violate the standard at		
			the end of the bioremediation period,		
			hydraulic head lower and upper bound,		
		minimize cost, sum of contaminant	injection and extraction flow rates should be		
	groundwater	concentrations that violate standard and	less than the well injection or extraction		
[37]	contamination problem	contaminant plume fragmentation	capacity	MODM	NSGA-II
		maximizing hydropower energy			
	water-quality problem	production from a network of reservoirs.			
	(phosphorous export to	minimizing the total phosphorous	water remaining in the reservoirs, reservoir		
[38]	downstream areas)	discharge	level and discharge	MODM	NSGA-II
	/	maximize total system benefit in the	water supply, demand of water use sectors.		
		river basin (Water utilization benefits.	regional wastewater treatment capacity.		
	water resources	water shortage penalty, water supply	regional wastewater reuse capacity, total		
	allocation strategies and	cost, wastewater treatment cost.	emissions of water pollutants, water		ITSP (inexact two-stage
	emission control	environmental capacity improvement	environment carrying capacity engineering		stochastic programming
[39]	problem	cost)	for carrying capacity improvement	MODM	model)
					modely
Water envir	onmental/ecosystem-basec	l problems		1	Durinian Malian
A .11	Problem/			MODM	Decision Making
Author	motivation	Objectives	Criteria/indicator	мсом	Techniques
			water volume; water use; water balance		
[40]	wetland ecosystem	maximize ecological or ecosystem	between water release and the water level;	MODIA	CAE
[40]	protection problem	health; maximize economic returns	water level	MODM	GA,Fuzzy
	decline in fish habitat	maximizing river habitat suitability for	minimum flow requirement level, habitat		
	protection(ecosystem	fish survival, maximizing the	conditions of the river stretch, energy		NSGA II, e-constraint
[41]	disturbance)	hydropower production	production needs	MODM	methods

			land availability, forest area, soil property,		
			minimum agricultural area size, minimum		
	economic and	minimizes the impact on the	residential area size, land slope, minimum		multi-objective game-
	environmental benefits	environment, maximizes the utility	recreational area size, minimum water-body		theory model(MOGM),e
[42]	balance problem	function of income	area, total phosphorous assimilative capacity	MODM	constraint
			water demand of the agricultural water user,		
	environmental concerns	maximize the outflow; minimize salinity	streamflow downstream of the withdrawal		
	(high salinity load	load, maximize water allocations to the	point of agricultural water user, minimum		GA; surrogate worth
[43]	increment)	agricultural fields	environmental flow	MODM	trade-off (SWT) method
					(FS-DDDP)Feasible
		maximizing the comprehensive benefits			search discrete
		(environmental, ecological, social and	minimum ecological flow, maintain minimum		differential dynamic
[44]	environment problems	economic)	water quality standards, flood control,	MODM	programming
Flood based	problems				
	Problem/				Decision Making
Author	motivation	Objectives	Criteria/indicator	MCDM	Techniques
		minimizing the maximum flood release			multi-objective best
		value from a reservoir and minimizing			compromise decision
		the maximum water level in the			model
		upstream reservoir; maximizing			(MoBCDM),FAHP,
		hydropower generation and maximizing			segmentation and
	decision-making	flood control benefits; minimizing peak	Outflow limitation, water level limitation,		averaging
	problem of flood	flow at a downstream flood control	water continuity in reservoir, water		(Seg/Ave), differential
	operation in a multi-	point and minimizing maximum water	continuity amid reservoirs, start and end		evolution (DE)
[45]	reservoir system	level in the upstream reservoir	water level	MODM	algorithm
Combined w	vater problems				
Water shorta	age and water quality base	d problems			
	Problem/				Decision Making
Author	motivation	Objectives	Criteria/indicator	MCDM	Techniques
			cost; driving force(population and population		
			density), impact (urban area ratio,		
			groundwater withdrawal, slope of watershed		
			, ratio of covered stream length, state and		ELECTRE II, AVF
	limited water quantity	prioritization of water management	pressure (DPSIR framework (Driving force-		(simple additive
[46]	and quality	strategies	Pressure-State-Impact Response))	MADM	weighting method)

	water supply limitation	maximize economic growth, water	water quantity, water quality, water		
	and water pollution	utilization, and water environment	pollutants, water supply-demand balance,		
[47]	problem	benefits	water environmental carrying capacity	MODM	LP
	water quantity and	allocating wastewater and urban runoff	groundwater controlling, cost, environmental		
	quality management	to agricultural lands and groundwater	water right, keeping surface and groundwater		Fuzzy(modified fuzzy
[48]	problem	recharge	quality, water supply	MADM	social choice (MFSC)
Water shor	tage and flood based proble	ems			
water shor	tuge und nood bused proble				
Water Shor	Problem/				Decision Making
Author	Problem/ motivation	Objectives	Criteria/indicator	MCDM	Decision Making Techniques
Author	Problem/ motivation water is insufficient;	Objectives	Criteria/indicator	MCDM	Decision Making Techniques
Author	Problem/ motivation water is insufficient; water availability is	Objectives minimize all costs caused by unmet	Criteria/indicator	MCDM	Decision Making Techniques
Author	Problem/ motivation water is insufficient; water availability is variable in space and	Objectives minimize all costs caused by unmet demands as well as by floods in river	Criteria/indicator regulate mass balance water flow between	MCDM	Decision Making Techniques
Author	Problem/ motivation water is insufficient; water availability is variable in space and time, spatiotemporal	Objectives minimize all costs caused by unmet demands as well as by floods in river segments; to optimally meet water	Criteria/indicator regulate mass balance water flow between locations; capacity (reservoir and river	MCDM	Decision Making Techniques

References

- Wang, J.; Cheng, G.D.; Gao, Y.G.; Long, A.H.; Xu, Z.M.; Li, X.; Chen, H.; Barker, T. Optimal Water Resource Allocation in Arid and Semi-Arid Areas. *Water Resour. Manag.*2007, 22, 239–258, doi:10.1007/s11269-007-9155-2.
- Elmahdi, A.; McFarlane, D.J. A decision support system for sustainable groundwater management. Case study: Gnangara sustainability strategy—Western Australia. Water Resour.Manag. V2009, 125, 327–339, doi:10.2495/wrm090301.
- 3. Cai, Y.P.; Huang, G.H.; Wang, X.; Li, G.C.; Tan, Q. An inexact programming approach for supporting ecologically sustainable water supply with the consideration of uncertain water demand by ecosystems. *Stoch. Environ. Res. Risk Assess.***2011**, *25*, 721–735, doi:10.1007/s00477-011-0477-5.
- 4. Grafton, R.Q.; Chu, H.L.; Stewardson, M.; Kompas, T. Optimal dynamic water allocation: Irrigation extractions and environmental tradeoffs in the Murray River, Australia. *Water Resour. Res.*2011, 47, 1–13, doi:10.1029/2010wr009786.
- 5. Roozbahani, R.; Abbasi, B.; Schreider, S.; Ardakani, A. A Multi-objective Approach for Transboundary River Water Allocation. *Water Resour. Manag.***2014**, *28*, 5447–5463, doi:10.1007/s11269-014-0812-y.
- 6. Shang, S.H. A general multi-objective programming model for minimum ecological flow or water level of inland water bodies. *J. Arid. Land***2015**, *7*, 166–176, doi:10.1007/s40333-014-0077-6.
- Chu, J.; Zhang, C.; Fu, G.; Li, Y.; Zhou, H. Improving multi-objective reservoir operation optimization with sensitivity-informed dimension reduction. *Hydrol. Earth Syst. Sci.*2015, 19, 3557–3570, doi:10.5194/hess-19-3557-2015.
- 8. Fowe, T.; Nouiri, I.; Ibrahim, B.; Karambiri, H.; Paturel, J.E. OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems. *Water Resour. Manag.***2015**, *29*, 3841–3861, doi:10.1007/s11269-015-1032-9.
- 9. Roozbahani, R.; Abbasi, B.; Schreider, S. Optimal allocation of water to competing stakeholders in a shared watershed. *Ann. Oper. Res.***2015**, *229*, 657–676, doi:10.1007/s10479-015-1806-8.
- 10. Lai, C. A Multi-objective Optimal Water Strategy Using Time Series Analysis and Improved Genetic Algorithm. J. Inf. Comput. Sci. 2015, 12, 2229–2239, doi:10.12733/jics20105730.
- 11. Niu, G.; Li, Y.P.; Huang, G.H.; Liu, J.; Fan, Y.R. Crop planning and water resource allocation for sustainable development of an irrigation region in China under multiple uncertainties. *Agric. Water Manag.***2016**, *166*, 53–69, doi:10.1016/j.agwat.2015.12.011.
- 12. Song, W.-Z.; Yuan, Y.; Jiang, Y.-Z.; Lei, X.-H.; Shu, D.-C. Rule-based water resource allocation in the Central Guizhou Province, China. *Ecol. Eng.***2016**, *87*, 194–202, doi:10.1016/j.ecoleng.2015.11.051.
- 13. Xu, Q.; Song, W.; Zhang, Y. Forecast and optimal allocation of production, living and ecology water consumption in Zhangye, China. *Phys. Chem. Earth, Parts ABC*2016, *96*, 16–25, doi:10.1016/j.pce.2016.07.003.
- 14. Hu, Z.; Wei, C.; Yao, L.; Li, L.; Li, C. A multi-objective optimization model with conditional value-at-risk constraints for water allocation equality. *J. Hydrol.***2016**, *542*, 330–342, doi:10.1016/j.jhydrol.2016.09.012.
- 15. Zhang, C.; Li, Y.; Chu, J.; Fu, G.; Tang, R.; Qi, W. Use of Many-Objective Visual Analytics to Analyze Water Supply Objective Trade-Offs with Water Transfer. *J. Water Resour. Plan. Manag.***2017**, *143*, 05017006, doi:10.1061/(asce)wr.1943-5452.0000800.
- 16. Alamanos, A.; Mylopoulos, N.; Loukas, A.; Gaitanaros, D. An Integrated Multicriteria Analysis Tool for Evaluating Water Resource Management Strategies. *Water***2018**, *10*, 1795, doi:10.3390/w10121795.
- 17. Cambrainha, G.M.; Fontana, M.E. A multi-criteria decision making approach to balance water supplydemand strategies in water supply systems. *Prod*.2018, *28*, doi:10.1590/0103-6513.20170062.
- Lee, M.; Yu, C.-Y.; Chiang, P.-C.; Hou, C.-H. Water–Energy Nexus for Multi-Criteria Decision Making in Water Resource Management: A Case Study of Choshui River Basin in Taiwan. *Water*2018, 10, 1740, doi:10.3390/w10121740.
- 19. Uen, T.-S.; Chang, F.-J.; Zhou, Y.; Tsai, W.-P. Exploring synergistic benefits of Water-Food-Energy Nexus through multi-objective reservoir optimization schemes. *Sci. Total. Environ.***2018**, *633*, 341–351, doi:10.1016/j.scitotenv.2018.03.172.
- 20. Hurford, A.P.; Huskova, I.; Harou, J.J. Using many-objective trade-off analysis to help dams promote economic development, protect the poor and enhance ecological health. *Environ. Sci. Policy***2014**, *38*, 72–86, doi:10.1016/j.envsci.2013.10.003.
- 21. Rousta, B.A.; Araghinejad, S. Development of a Multi Criteria Decision Making Tool for a Water Resources Decision Support System. *Water Resour. Manag.***2015**, *29*, 5713–5727, doi:10.1007/s11269-015-1142-4.
- 22. Li, M.; Guo, P.; Ren, C. Water Resources Management Models Based on Two-Level Linear Fractional Programming Method under Uncertainty. *J. Water Resour. Plan. Manag.*2015, 141, 05015001, doi:10.1061/(asce)wr.1943-5452.0000518.

- 23. Wijenayake, W.M.H.K.; Amarasinghe, U.S.; De Silva, S.S. Application of a multiple-criteria decision making approach for selecting non-perennial reservoirs for culture-based fishery development: Case study from Sri Lanka. *Aquacultur***2016**, *459*, 26–35, doi:10.1016/j.aquaculture.2016.03.019.
- 24. Wang, M.; Tang, D.; Bai, Y.; Xia, Z. A compound cloud model for harmoniousness assessment of water allocation. *Environ. Earth Sci.***2016**, *75*, doi:10.1007/s12665-016-5782-3.
- 25. Dai, L.; Zhang, P.; Wang, Y.; Jiang, D.; Dai, H.; Mao, J.; Wang, M. Multi-objective optimization of cascade reservoirs using NSGA-II: A case study of the Three Gorges-Gezhouba cascade reservoirs in the middle Yangtze River, China. *Hum. Ecol. Risk Assess. Int. J.***2017**, *23*, 814–835, doi:10.1080/10807039.2017.1285692.
- 26. Dhaubanjar, S.; Davidsen, C.; Bauer-Gottwein, P. Multi-Objective Optimization for Analysis of Changing Trade-Offs in the Nepalese Water–Energy–Food Nexus with Hydropower Development. *Water***2017**, *9*, 162, doi:10.3390/w9030162.
- 27. Lewis, A.; Randall, M. Solving multi-objective water management problems using evolutionary computation. *J. Environ. Manag.***2017**, *204*, 179–188, doi:10.1016/j.jenvman.2017.08.044.
- Li, Y.; Cui, Q.; Li, C.; Wang, X.; Cai, Y.; Cui, G.; Yang, Z. An improved multi-objective optimization model for supporting reservoir operation of China's South-to-North Water Diversion Project. *Sci. Total. Environ.*2017, 575, 970–981, doi:10.1016/j.scitotenv.2016.09.165.
- 29. Martin, D.M.; Powell, S.J.; Webb, J.A.; Nichols, S.J.; Poff, N.L. An Objective Method to Prioritize Socio-Environmental Water Management Tradeoffs Using Multi-Criteria Decision Analysis. *River Res. Appl*.2016, 33, 586–596, doi:10.1002/rra.3103.
- 30. Yan, D.; Ludwig, F.; Huang, H.Q.; Werners, S.E. Many-objective robust decision making for water allocation under climate change. *Sci. Total. Environ.***2017**, *607–608*, 294–303, doi:10.1016/j.scitotenv.2017.06.265.
- 31. Li, C.; Cai, Y.; Qian, J. A multi-stage fuzzy stochastic programming method for water resources management with the consideration of ecological water demand. *Ecol. Indic*.2018, *95*, 930–938, doi:10.1016/j.ecolind.2018.07.029.
- 32. Karterakis, S.M.; Karatzas, G.P.; Nikolos, I.K.; Papadopoulou, M.P. Application of linear programming and differential evolutionary optimization methodologies for the solution of coastal subsurface water management problems subject to environmental criteria. *J. Hydrol.***2007**, *342*, 270–282, doi:10.1016/j.jhydrol.2007.05.027.
- 33. Martin-Ortega, J.; Berbel, J. Using multi-criteria analysis to explore non-market monetary values of water quality changes in the context of the Water Framework Directive. *Sci. Total. Environ.***2010**, *408*, 3990–3997, doi:10.1016/j.scitotenv.2010.03.048.
- 34. Regneri, M.; Klepiszewski, K.; Ostrowski, M.; Vanrolleghem, P.A. Fuzzy Decision Making for Multi-Criteria Optimization in Integrated Wastewater System Management. In Proceedings of the 6th International Conference on Sewer Processes and Networks; Gold Coast, Australia, 7–10 November 2010.
- 35. Li, Y.; Lin, C.; Wang, Y.; Gao, X.; Xie, T.; Hai, R.; Wang, X.; Zhang, X. Multi-criteria evaluation method for site selection of industrial wastewater discharge in coastal regions. *J. Clean. Prod*.**2017**, *161*, 1143–1152, doi:10.1016/j.jclepro.2017.05.030.
- 36. Pérez, C.J.; Vega-Rodríguez, M.A.; Reder, K.; Flörke, M. A Multi-Objective Artificial Bee Colony-based optimization approach to design water quality monitoring networks in river basins. *J. Clean. Prod*.**2017**, *166*, 579–589, doi:10.1016/j.jclepro.2017.08.060.
- Raei, E.; Nikoo, M.R.; Pourshahabi, S. A multi-objective simulation-optimization model for in situ bioremediation of groundwater contamination: Application of bargaining theory. J. Hydrol.2017, 551, 407– 422, doi:10.1016/j.jhydrol.2017.06.010.
- Zmijewski, N.; Wörman, A. Trade-Offs between Phosphorous Discharge and Hydropower Production Using Reservoir Regulation. J. Water Resour. Plan. Manag.2017, 143, 04017052, doi:10.1061/(asce)wr.1943-5452.0000809.
- 39. Meng, C.; Wang, X.; Li, Y. An Optimization Model for Water Management Based on Water Resources and Environmental Carrying Capacities: A Case Study of the Yinma River Basin, Northeast China. *Water***2018**, *10*, 565, doi:10.3390/w10050565.
- 40. Yang, W. A multi-objective optimization approach to allocate environmental flows to the artificially restored wetlands of China's Yellow River Delta. *Ecol. Model*.2011, 222, 261–267, doi:10.1016/j.ecolmodel.2010.08.024.
- 41. Cioffi, F.; Gallerano, F. Multi-objective analysis of dam release flows in rivers downstream from hydropower reservoirs. *Appl. Math. Model.***2012**, *36*, 2868–2889, doi:10.1016/j.apm.2011.09.077.
- 42. Lee, C.-S. Multi-objective game-theory models for conflict analysis in reservoir watershed management. *Chemosphere***2012**, *87*, 608–613, doi:10.1016/j.chemosphere.2012.01.014.
- 43. Akhbari, M.; Grigg, N.S. Water Management Trade-offs between Agriculture and the Environment: A Multiobjective Approach and Application. *J. Irrig. Drain. Eng.***2014**, *140*, 05014005, doi:10.1061/(asce)ir.1943-4774.0000737.

- 44. Xu, Q.; Song, W.; Zhang, Y. Forecast and optimal allocation of production, living and ecology water consumption in Zhangye, China. *Phys. Chem. Earth, Parts ABC*2016, *96*, 16–25, doi:10.1016/j.pce.2016.07.003.
- 45. Jia, B.; Simonovic, S.P.; Zhong, P.; Yu, Z. A Multi-Objective Best Compromise Decision Model for Real-Time Flood Mitigation Operations of Multi-Reservoir System. *Water Resour. Manag.***2016**, *30*, 3363–3387, doi:10.1007/s11269-016-1356-0.
- 46. Yang, J.-S.; Chung, E.-S.; Kim, S.U.; Kim, T.W. Prioritization of water management under climate change and urbanization using multi-criteria decision making methods. *Hydrol. Earth Syst. Sci.***2012**, *16*, 801–814, doi:10.5194/hess-16-801-2012.
- 47. Ke, W.; Lei, Y.; Sha, J.; Zhang, G.; Yan, J.; Lin, X.; Pan, X. Dynamic simulation of water resource management focused on water allocation and water reclamation in Chinese mining cities. *Hydrol. Res.***2016**, *18*, 844–861, doi:10.2166/wp.2016.085.
- 48. Pourmand, E.; Mahjouri, N. A fuzzy multi-stakeholder multi-criteria methodology for water allocation and reuse in metropolitan areas. *Environ. Monit. Assess.***2018**, *190*, 444, doi:10.1007/s10661-018-6813-1.
- 49. Veintimilla-Reyes, J.; De Meyer, A.; Cattrysse, D.; Van Orshoven, J. A linear programming approach to optimise the management of water in dammed river systems for meeting demands and preventing floods. *Water Supply***2017**, *18*, 713–722, doi:10.2166/ws.2017.144.