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Abstract: Based on the multivariate empirical orthogonal function (MEOF) method, a multivariate
balanced initial ensemble generation method was applied to the ensemble data assimilation scheme.
The initial ensembles were generated with a reasonable consideration of the physical relationships
between different model variables. The spatial distribution derived from the MEOF analysis is
combined with the 3-D random perturbation to generate a balanced initial perturbation field. The
Local Ensemble Transform Kalman Filter (LETKF) data assimilation scheme was established for
an atmospheric general circulation model. Ensemble data assimilation experiments using different
initial ensemble generation methods, spatially random and MEOF-based balanced, are performed
using realistic atmospheric observations. It is shown that the ensembles integrated from the balanced
initial ensembles maintain a much more reasonable spread and a more reliable horizontal correlation
compared with the historical model results than those from the randomly perturbed initial ensembles.
The model predictions were also improved by adopting the MEOF-based balanced initial ensembles.

Keywords: MEOF; initial ensemble; ensemble spread; LETKF; data assimilation

1. Introduction

The ensemble Kalman filter (EnKF) data assimilation approach was introduced by
Evensen in 1994 [1], which is a Monte-Carlo approach and has the potential for efficient use
on parallel computers with large-scale geophysical models [2–8]. The EnKF method uses
an ensemble of model forecasts to estimate the background error covariances and optimizes
the background with the available observations. So it is easy to implement (no adjoint
models are required compared with the three-dimension variational data assimilation [2,9])
and handles strong non-linearities better than other known Kalman filter techniques for
large-scale problems [10].

EnKF was first applied to an atmospheric model by Houtekamer and Mitchell [11].
After that, it has rapidly become a promising choice for the operational numerical weather
prediction systems. The square root filter (SRF) method of EnKF without perturbed obser-
vations (deterministic filters) was proposed by assimilating the observations serially [12,13],
and then the EnKF method with perturbed observations (stochastic filters) was applied to
a pre-operational system [14]. A local ensemble Kalman filter (LEKF) method that assimi-
lates observations simultaneously was proposed by Ott et al. [15]. Furthermore, the local
ensemble transform Kalman filter (LETKF) which uses the ensemble transform Kalman
filter (ETKF) approach was proposed to further accelerate LEKF [16,17]. The LETKF as-
similates observations within a spatially physical local volume at each model grid point
simultaneously and does not require an orthogonal basis which significantly enhances the
computational efficiency with parallel implementation [17,18].

For the initial perturbation generation, several kinds of methods have been developed,
such as error breeding [19], singular vectors [20], perturbed observations [21] and random
perturbations [5,21–23]. The performances of these methods were illustrated in several
numerical weather prediction models with different complexities [24–27]. Zheng and
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Zhu proposed a multivariable empirical orthogonal function (MEOF) based model error
perturbation to generate perturbed model errors and then applied it to a global spectral
atmospheric model with real observations [28,29]. It should be realized that how to
maintain the physical relationships of the different model variables induced by the initial
perturbations and how to provide a reasonable background covariance are still an important
problem for the ensemble data assimilation process.

In this work, the local ensemble transform Kalman filter approach has been im-
plemented for an atmospheric general circulation model developed by the Institute of
Atmospheric Physics (IAP AGCM version 4). A MEOF based balanced perturbation gener-
ation method is adopted for generating the initial ensembles, compared with the spatially
random perturbation method [5]. The remainder of this paper is structured as follows: In
Sections 2 and 3, the forecast model and the LETKF data assimilation scheme are briefly de-
scribed respectively. In Section 4, the implementation of the initial perturbation generation
scheme based on the multivariate empirical orthogonal function (MEOF) is introduced.
In Section 5, the spatially-correlated random perturbation scheme and the MEOF-based
balanced perturbation scheme are both applied to the AGCM model results to generate the
initial ensemble. The ensemble spread and horizontal correlation of the initial ensembles
are compared for the two methods. And the LETKF data assimilation scheme is applied
to the AGCM model with the conventional observation data. The characteristics and
effects of the random and MEOF based initial ensemble generation methods are illustrated
respectively. The data assimilation results using the two different initial ensembles are also
shown in this section. Summary and conclusions are drawn in the final section.

2. The Forecast Model

The atmospheric general circulation model used here is the IAP AGCM version 4
as a component of the Chinese Academy of Sciences (CAS) earth system model (ESM).
The model was applied to the simulation of atmospheric circulations and climate, such as
summer precipitation and monsoons [30,31]. It is a global grid-point model using finite-
difference scheme with a terrain-following σ coordinate. A latitude-longitude grid with
Arakawa’s C grid staggering is used in the horizontal discretization [32–34]. The formu-
lation of the governing equations and the finite-difference schemes have several novel
features in the IAP AGCM. The model equations are based on the baroclinic primitive equa-
tions with subtraction of standard stratification. The purpose of subtracting the standard
stratification in the dynamical core is to reduce truncation errors, especially over regions of
high terrain. And the IAP model conserves total available energy (sum of kinetic energy,
the available potential energy, and the available surface potential energy) rather than total
energy. To maintain the conservation of the total available energy, a variable substitution
method named the IAP transform is adopted in the numerical design. The model resolution
adopted here is 1 degree by 1 degree. The nonlinear iterative time integration method
described in [35] is used in the model. The timestep adopted in the numerical simulation
here is 1200 seconds. The prognostic model variables are temperature, surface pressure,
wind velocity and specific humidity.

3. Data Assimilation Scheme

The Local Ensemble Transform Kalman Filter (LETKF) algorithms used here are based
on the work of Hunt et al. [17]. An important advantage of LETKF schemes compared to
EnKF is their efficiency in parallel computing. Because LETKF separates the entire global
grid into independent local regions, ideally they have the total parallel efficiency [18].
In this section, we introduce the main idea of LETKF briefly.

The ensemble members are defined as xi ∈ <n(i = 1, · · · , N), where N is the ensemble
size and n is the dimension of the model state. The ensemble matrix X can be constructed
by the model states of the ensemble as:

X = (x1, x2, · · · , xN) ∈ <n×N (1)
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The anomaly matrix is
X′ = X− X (2)

where X is the ensemble mean vector.
To update analysis states at every grid point, the LETKF assimilates only observations

within a certain distance from each grid point. Here we use the subscript l to denote a
quantity defined on such a local region centered at an analysis grid point. The analysis
mean is

xa
l = xl + xl Pa

l (Yl)
T R−1

l (yo
l − yl) (3)

And the analysis error covariance matrix Pa
l is

Pa
l = [(Yl)

T R−1
l Yl + (N − 1)I/ρ]−1 (4)

where Rl is the observation error covariance matrix. The observation vector is y ∈ <m.
Y = (y1, · · · , yN) and H is the observation operator which interpolates the model state to
the observation space. ρ is the multiplicative inflation factor. Within a local region, space
localization is carried out by multiplying the inverse observation error covariance matrix
with a factor that decays from one to zero as the distance of the observations from the
analysis grid point increases [36].

4. Multivariable Balanced Initial Perturbation Scheme

Based on the multivariate empirical orthogonal function MEOF [28], a MEOF-based
multivariable initial perturbation method is adopted here to generate a balanced initial
ensemble state for the LETKF data assimilation, which can make the ensemble members
maintain a reasonable spread as the forecast model integrates. For the MEOF analysis,
the snapshots of all the model variables are put in one single vector to make the EOF
analysis, instead of making EOF analysis for the model variables individually. The spatial
distribution of the model snapshots, which are derived from the MEOF analysis, and the
3-D random perturbation are combined together to generate a balanced perturbation field.
The detailed implementation steps of the method are described as follows:

Qi(x, y, z, v) = D(x, y, z, v) +
Nm

∑
j=1

σj(z, v)φj(x, y, z, v)ωi,j, i = 1, . . . , N (5)

where Qi(x, y, z, v) represents the generated initial perturbation field for the ith ensemble
member, and D(x, y, z, v) represents the initial model state. σj(z, v) represents the standard
deviation of model variables in different model layers, which can be calculated from the
time coefficients of the MEOF analysis. Nm is the chosen mode number according to
the MEOF analysis. φj(x, y, z, v) is the analyzed spatial MEOF mode of the model state
variables in different layers. ωi,j is a one-dimension random vector with a mean equal to 0
and variance equal to 1, and the random vectors ωi,j(j = 1, . . . , Nm) should be independent
to make the MEOF modes orthogonal. x, y and z represent the 3-D coordinate, v represents
different model variables, and N is the ensemble size.

In practice, we could derive the departures of the model integration results from
their average in each model layer first to generate the balanced initial perturbation fields.
The standard deviations σ(z, v) of the model variables in each model layer could be cal-
culated to normalize the model variables in all the model layers. The MEOF analysis is
performed for the normalized model variables and the spatial modes φ(x, y, z, v) could
be obtained. Finally, we can apply the above equation to generate the initial ensemble
perturbation fields. Because the perturbations are a combination of the spatial distribu-
tion of all the model variables, the initial ensembles were generated with a reasonable
consideration of the physical relationships between different model variables. Then, we
can add the derived MEOF based perturbations to the initial state of the model, which
are the model’s prognostic variables (i.e., ps, U, V, T, q). After the initial ensembles are
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generated, we integrate the model for six hours and use the six-hour model forecast as the
analysis samples, because it is crucial to check whether the ensemble spread and the spatial
correlation at the first analysis time maintain reasonable.

5. Data Assimilation Experiments

Two different initial ensemble generation methods are tested for the LETKF data
assimilation of the AGCM. One method is the spatially-correlated random perturbation
scheme [5], and the other one is the MEOF-based balanced perturbation scheme. For the
two initial perturbation schemes, 80 ensemble members are adopted for the ensemble
data assimilation process. The observational data adopted here are the global upper air
and surface weather observation data in PREPBUFR format, which are usually used as
the conventional observation data for the data assimilation system. The data include
land surface, marine surface, radiosonde, pibal and aircraft reports, profiler and radar
derived winds, satellite wind data and so on. The data can include pressure, geopotential
height, temperature, dew point temperature, wind direction and speed. The conventional
observations are grouped into a time window of 6 hours, which are centered on the analysis
time, and then are assimilated into the model every 6 hours from 1 January to 10 January
2004, which are at 0000, 0600, 1200 and 1800 UTC. An example figure of the conventional
observation data of the surface temperature is shown in Figure 1.

As we can find out in the model integration process, the integration of the temperature
variable over time will also influence the integration of the other model variables. So for
the generation of the randomly perturbed initial ensemble, we just add a 3-D random
noise of a certain magnitude (1% of the magnitude of T) to the temperature variable
of the atmosphere general circulation model at all layers, following Evensen’s idea [5].
The random perturbation is generated with a horizontal correlation scale of 2000 km and
a vertical correlation scale of 1000 km, as well as a relativity of 0.8 between two adjoint
layers. For the generation of the MEOF-based perturbed initial ensemble, we implement
the multivariable balanced initial perturbation scheme as described in Section 4. The spatial
distribution of the model snapshots derived from the MEOF analysis and the 3-D random
perturbation are combined to generate a balanced perturbation field.

Figure 1. Conventional observation data of temperature at the surface layer at 06UTC 20040101.

5.1. The MEOF Analysis Results

For the MEOF analysis and the MEOF-based perturbation generation, the AGCM is
integrated from 1 January to 31 March 2004 to generate the six-hour model forecast outputs.
A total of 360 snapshots are adopted to make the MEOF analysis. Compared to the EOF
function analysis for each individual model variable, the MEOF function analysis combines
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all the model variables in one vector. Figure 2 shows the variance contributions of the first
24 modes for the MEOF analysis of the surface pressure. The total variance contribution
of the first 16 MEOF modes have been more than 99%. So the first 20 MEOF modes are
adopted to generated the balanced perturbation fields. The spatial distribution and the
time coefficients of the first three MEOF modes of the surface pressure (Ps) is shown in
Figure 3. Similarly, we can see the detailed MEOF analysis results of the temperature (T)
at the surface layer in Figures 4 and 5. The total variance contribution of the first twenty
MEOF modes have been also more than 99%.

Figure 2. Variance contributions of the first 24 modes from the MEOF analysis of Ps.

(a) (b)

Figure 3. The spatial distribution (a) and the time coefficients (b) of the first three modes of the MEOF
analysis of Ps.
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Figure 4. Variance contributions of the first 24 modes from the MEOF analysis of T.

(a) (b)

Figure 5. The spatial distribution (a) and the time coefficients (b) of the first three modes of the MEOF
analysis of T.

5.2. Ensemble Spread

To verify the quality of the generated initial ensemble, it’s essential to compare the
ensemble spread of the initial ensemble and the model outputs after six-hour integration,
which is at 06UTC 1 January 2004. A reasonable ensemble spread should represent well
the distribution of the forecast uncertainties before the assimilation took place, and a larger
ensemble spread can result in a Kalman gain that reasonably draws the analysis closer to
the observations [28]. For the random perturbation and the MEOF balanced perturbation
scheme, the ensemble spreads of T both decrease after six-hour integration compared with
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the initial ensemble spread, as shown in Figures 6 and 7. The difference is that the ensemble
spread of the MEOF balanced perturbed ensemble decreases much less than that of the
randomly perturbed ensemble. The averaged spread of the randomly perturbed initial
ensemble of the temperature at the surface layer is about 3.3 degree, which decreases to
about 1.4 degree after six-hour integration. As a contrast, the averaged ensemble spread
of the MEOF-based balanced initial perturbation of the temperature at the surface layer
is about 7.2 degree, which decreases to about 6.1 degree after six-hour integration. It’s
shown that the MEOF balanced perturbation could maintain the ensemble spread more
reasonable, which is very important for the data assimilation process.

(a) (b)

Figure 6. The initial (a) and the 6-h integration (b) ensemble spread of the randomly perturbed T.

(a) (b)

Figure 7. The initial (a) and the 6-h integration (b) ensemble spread of the MEOF perturbed T.

5.3. Horizontal Correlation

Take the surface pressure as example, we calculated the horizontal correlation of four
locations for both the randomly perturbed initial ensemble and the MEOF-based balanced
initial ensemble. The four locations are chosen as (67.5 E, 33.31 N), (90 E, 68.74 S), (178.59 E,
0.71 S) and (61.87 W, 55.98 N). Figure 8 shows the historical horizontal correlations of
the surface pressure at the chosen four locations. The historical results include the six-
hour model integration outputs from 1 August to 31 October 2004. Figure 9 shows the
horizontal correlations of the randomly perturbed ensemble of the surface pressure at
the chosen four locations. The ensembles used to calculate the horizontal correlation is
the six-hour forecast of the MEOF-based perturbed initial ensemble. Figure 10 shows the
horizontal correlations of the MEOF-based perturbed ensemble of the surface pressure at
the chosen four locations. The ensembles used to calculate the horizontal correlation is the
six-hour forecast of the randomly perturbed initial ensemble. We can see that the horizontal
correlations of the MEOF-based perturbed ensemble of the surface pressure are much more
similar to the historical horizontal correlations of the model integration, compared with the
horizontal correlations of the randomly perturbed ensemble. The horizontal correlations
of the randomly perturbed ensemble have the normal oval shape and can’t represent
the historical characteristics in the middle and high latitude area. It’s shown that the
ensembles generated from the MEOF perturbations could represent the historical horizontal
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correlations better. Similar conclusions could be driven for the other state variables, such
as the temperature, the wind velocity and humidity.

Figure 8. The historical horizontal correlation of the model integration results at four locations.

Figure 9. The horizontal correlation of the randomly perturbed ensemble at four locations.
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Figure 10. The horizontal correlation of the MEOF based perturbed ensemble at four locations.

5.4. LETKF Data Assimilation Results

The LETKF data assimilation scheme is applied to the atmospheric general circulation
model using 80 ensembles. For the initial ensemble generation, the spatially-correlated
random perturbation scheme and the MEOF-based balanced perturbation scheme are
implemented and compared from several aspects, such as the ensemble spread and the
horizontal correlation. We can see that the initial ensemble generated from the MEOF-
based balanced perturbation has a better performance, as the ensemble forecasted from the
MEOF-based perturbed initial ensemble could maintain a better spread and their horizontal
correlation is more compatible with the horizontal correlation of the historical model
output. Here, we adopted the MEOF-based perturbed initial ensemble to start the data
assimilation process. The observation adopted here is the six-hour conventional observation
data starting from 06UTC 1 January 2004. The observation data of the temperature, the
meridional wind and the zonal wind have been assimilated into the AGCM. Figure 11
shows the root mean square error(RMSE) of the LETKF data assimilation results of the
surface temperature for the first six data assimilation times, compared with the conventional
observation data (see Figure 1). It seems that the RMSE of the data assimilation results
derived from both the randomly and MEOF-based perturbed initial ensemble is smaller
than the RMSE of the control model, which means the initial ensembles generated from
both the two methods worked during the data assimilation process. It’s also shown that
the RMSE of the data assimilation results derived from the MEOF-based perturbed initial
ensemble is smaller than those derived from the randomly perturbed initial ensemble.
Because the initial ensemble generated by the MEOF-based perturbation has better physical
relationships between the model variables, the data assimilation effect is further improved.
The LETKF data assimilation also improved the meridional and zonal wind result compared
to the observation (figures not shown).
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Figure 11. The RMSE of the LETKF data assimilation results compared with the observation data for
the surface temperature.

6. Conclusions

Based on the multivariate empirical orthogonal function (MEOF) method, a multi-
variate balanced initial ensemble generation method was applied to the ensemble data
assimilation scheme. The initial ensembles were generated with a reasonable consideration
of the physical relationships between different model variables. For the initial ensemble
generation, the spatially-correlated random perturbation scheme and the MEOF-based
balanced perturbation scheme are implemented and compared from several aspects, such
as the ensemble spread and the horizontal correlation. From the analysis of ensemble
spread and the horizontal correlation, we can see that the initial perturbations generated
based on the MEOF method are much more effective considering they will not decay
rapidly as the model integrates. The ensembles integrated from the initial ensemble gener-
ated from the MEOF-based perturbations will maintain a much more reasonable spread
and a more reliable horizontal correlation than those from the randomly perturbed initial
fields. The Local Ensemble Transform Kalman Filter (LETKF) data assimilation scheme
was established for an atmospheric general circulation model. Ensemble data assimilation
experiments using different initial ensemble generation methods, spatially random and
MEOF-based balanced, are performed using realistic atmospheric observations. The model
predictions were also improved by adopting the MEOF-based balanced multivariate initial
ensembles. At the present, only the conventional observation data is assimilated into the
AGCM. More data assimilation experiments with the LETKF scheme using the satellite
observation data will be made in the future research.
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