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Abstract: Agricultural production depends on local agroclimatic conditions to a great extent, affected
by ENSO and other ocean-atmospheric climate modes. This paper analyzed the spatio-temporal
distributions of climate elements in the Jianghan Plain (JHP), Central China, and explored the impacts
from teleconnection patterns, aimed at providing references for dealing with climate change and guid-
ing agricultural activities. Both linear and multifactorial regression models were constructed based
on the frequentist quantile regression and Bayesian quantile regression method, with the daily meteo-
rological data sets of 17 national stations in the plain and teleconnection climate characteristic indices.
The results showed that precipitation in JHP had stronger spatial variability than evapotranspiration.
El Niño probably induced less precipitation in summer while the weakening Arctic Oscillation might
lead to more summertime precipitation. The Nash-Sutcliffe efficiency (NSE) of the multifactorial and
linear regression model at the median level were 0.42–0.56 and 0.12–0.18, respectively. The mean
relative error (MRE) ranged−2.95–−0.26% and−7.83–0.94%, respectively, indicating the much better
fitting accuracy of the multiple climatic factors model. Meanwhile it confirmed that the agricultural
climate in JHP was under the influence from multiple teleconnection patterns.

Keywords: agricultural production; agroclimatic condition; ENSO; teleconnection; quantile
regression

1. Introduction

Agricultural production plays a foundational role in national economic and social
development [1]. To ensure sufficient water resources for agricultural production and
food security, many reservoirs with irrigation functions and water diversion projects and
irrigated areas have been built [2–4], such as the famous South-to-North Water Diversion
Project [5] and the Zhanghe Irrigation District [6]. The operation of these water projects
needs to consider the variability of local weather and regional climate to realize efficient
water resource management [7–9]. Given a reliable forecast of short-term precipitation,
for example, irrigation will not be carried out though it should be [10]. With the region
warming and crop area extending, some reservoirs are likely to supply irrigation water
earlier than before [11]. Global climate change is at present widely recognized and credible
estimates of its impacts on regional weather become an important prerequisite for efficient
agricultural water resource management [12–14], which can provide favorable tools for
food security.

The El Niño phenomenon, manifesting in the form of constant abnormally warming of
the sea surface over the central and eastern equatorial Pacific [15], reverses the traditional
equatorial ocean currents and has a profound impact on the global atmospheric circula-
tion [16]. One of the most obvious effects is the inverse correlation of sea level pressure
between the southeast Pacific Ocean and the Indian Ocean and Indonesia, which is the
so-called Southern Oscillation (SO) [17]. The El Niño and SO are regarded as two aspects
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of the same physical process [18], in which the El Niño represents the ocean while the SO
represents the atmosphere. In views of their close relationship, meteorologists usually call
them ENSO [19]. As the strongest inter-annual oscillation in the earth’s climate system,
the ENSO has an enormous influence on the local weather and agricultural production in
most countries and regions around the world, inducing drought in Canada [20], Brazil [21],
India [22], and Australia [23] and causing crop failure and persistent low summertime
temperatures in northeastern China [24]. Many papers confirmed that there existed certain
correlations between ocean-atmosphere climate patterns and hydrological factors such as
precipitation and evapotranspiration [25,26]. It is meritorious to attempt to investigate the
qualitative and quantitative relationships of the subsistent interactions, facilitating more
reliable climate prediction and thorough allocation and management of the local water
resources [27], and this has therefore been the research focus in academia [28–31].

Machine learning algorithms are able to keep automatically improving through ex-
perience or data and have been widely applied in the study of climate. Park et al. [32].
developed drought prediction models for a short-period of time using remote sensing
data and climate variability indices over East Asia through random forest (RF) algorithm.
Li et al. [33] introduced a new meteorological drought prediction approach by combining
the antecedent SST fluctuation pattern (ASFP) with three machine learning techniques
including support vector regression (SVR), RF, and extreme learning machine (ELM),
respectively. In addition, results showed better performance of the ASFP-ELM model.
Bhuiyan et al. [34] investigated the use of quantile regression forests (QRF) for combining
multiple global precipitation datasets and characterizing the uncertainty of the combined
product. The proposed technique successfully encapsulated the reference precipitation and
provided significant improvements in streamflow simulations, with reduction in systematic
and random error on the order of 20–99% and 44–88%, respectively, when considering the
ensemble mean. Koch et al. [35] applied the RF to predict the shallow groundwater levels
in Denmark and estimated the uncertainties of predicted values with QRF, which was still
rare for hydrological applications. Zhang et al. [36] built a distributed lag nonlinear model
(DLNM), an artificial neural network model, and an XGBoost model and compared them to
find that the XGBoost model had the highest prediction accuracy for overall droughts and
for three specific drought categories (i.e., moderate, severe, and extreme). Fang et al. [37]
discovered introducing Nino 1 + 2 as predictors helped to yield more accurate the refer-
ence evapotranspiration (ET0) forecasts. However, a model performance comparison also
showed that nonlinear stochastic models (SVR or RF) did not always outperform linear
models. The complex machine learning methods were likely to be troubled by over-fitting
and huge time cost. The quantile regression was raised in 1978 [38], obtaining the regression
models under all quantiles according to the conditional quantiles of dependent variable.
Compared with the ordinary least square regression, it was able to more accurately de-
scribe the impacts from independent variables on the variation ranges and conditional
distributions of dependent variable. With the robust performance and low requirements
for preprocessing the original data, quantile regression and its derived models have been
extensively used. Tan and Shao [39] predicted the precipitation in Xinjiang, China using
two quantile regressions, taking the time and teleconnection climate indices as covariates.
Compared to a frequentist quantile regression, the Bayesian quantile regression tended
to generate smoother and narrower band confidence intervals of regression coefficients,
especially at extremely high and low quantile levels.

The Jianghan Plain (JHP) is named for the location where the Yangtze River and its
largest tributary Hanjiang River meet in Hubei Province, Central China (see Figure 1).
With the average elevation <50 m and total land area of about 4.11 million hectares, the
JHP is an important agro-productive area in China, covering a population >15 million
and 21 county-level administrative regions (see Table 1). The JHP is located in 111◦15′ E–
114◦13′ E, 29◦26′ N–31◦37′ N, most of which belongs to the “Cfa” type according to the
Köppen-Geiger climate classification (see Figure A1). With sufficient light energy and
heat, the annual mean sunshine duration is about 2000 h and total solar radiation is
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about 460–480 kJ/cm2. The frost-free period keeps about 240–260 days and the active
accumulated temperature ranges 5100–5300 ◦C with the annual mean temperature of
15–17 ◦C. The precipitation from April to September with high temperature accounts for
about 70% of the annual, which is beneficial to the improvement of agricultural production
potential. The superior climatic conditions make the plain suitable for various crops,
such as grain, cotton and rapeseed and the hilly land at the edge of the plain has gentle
slope and thick soil, which is suitable for the growth of forests and fruit. So far most of
relative research in JHP has focused on precipitation and temperature changes [40], and
the internal relationship of water cycle including groundwater and surface water as well as
the hydro-chemical characteristics [41,42]. There is a lack of specific research expounding
the impacts of teleconnection patterns on this region rather than the scale of China or the
Asia to provide more detailed instructions. The authors used the recognized Food and
Agriculture Organization Penman-Monteith (FAO56-PM) [43] equation to calculate ET0
as the evapotranspiration characteristics and a mathematical model based on the quantile
regressions to achieve the linkage among precipitation, ET0 and the possibly relevant
teleconnection patterns.

Figure 1. Topography map of the Jianghan Plain.

There are three purposes of this paper. The first is to analyze the current spatio-
temporal distributions of precipitation and ET0 in JHP. The second is to investigate the
teleconnection between regional climate and ocean-atmosphere climate modes. The third
is to quantify the intricate multifactorial relationships of the interactions among them. The
structure of this article is as follows, the second chapter introduces the meteorological data
and the climate patterns, and the quantile regression method used. Section 3 shows the
results. Section 4 holds the discussion and Section 5 presents conclusions.
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Table 1. Summary 1 of the weather stations where meteorological data were obtained for the study.

ID Station Name Latitude (◦N) Longitude (◦E) Elevation (EL. m) Pmean (mm) ET0mean (mm)

1 Xiangyang (XY) 32.00 112.08 163.4 837.99 934.46
2 Zhongxiang (ZX) 31.20 112.63 108.0 986.59 938.30
3 Suizhou (SZ) 31.62 113.33 106.5 983.91 900.28
4 Macheng (MC) 31.13 114.95 74.3 1266.59 983.75
5 Wufeng (WF) 30.15 111.07 243.2 1361.52 775.76
6 Yichang (YC) 30.73 111.37 256.5 1144.61 875.35
7 Jingzhou (JZ) 30.35 112.15 31.8 1081.50 913.86
8 Xiaogan (XG) 30.90 113.95 25.5 1152.58 923.85
9 Tianmen (TM) 30.67 113.13 31.9 1115.53 925.60
10 Wuhan (WH) 30.60 114.05 23.6 1300.31 1159.92
11 Jianli (JL) 29.88 112.90 26.2 1307.00 921.47
12 Honghu (HH) 29.82 113.45 27.4 1415.86 973.74
13 Jiayu (JY) 29.92 113.97 61.7 1451.05 948.74
14 Yangxin (YX) 29.90 115.22 57.0 1456.41 936.48
15 Shimen (SM) 29.58 111.37 116.9 1375.76 923.69
16 Nanxian (NX) 29.37 112.40 36.0 1264.55 911.56
17 Yueyang (YY) 29.38 113.08 53.0 1356.70 988.00

Notes: 1 Pmean and ET0mean are the mean annual precipitation and ET0 for the period from 1977 to 2018, respectively.

2. Materials and Methods
2.1. Meteorological Data Acquisition and Processing

The daily precipitation and other data related with ET0 used in this research, covering
maximum air temperature, minimum air temperature, average air temperature, average
relative humidity, average wind speed, and sunshine duration, were derived from 17
national meteorological stations in JHP for a period from December 1976 to December
2018. All of the datasets were provided by the Chinese Meteorological Data Service Centre.
There were missing values in the daily precipitation series at three stations and the missing
values accounted for <0.1% of the total precipitation data, replaced with the average values
of the neighbor stations on the same days. The daily ET0 was calculated by the FAO56-PM
equation and the missing values were found in all of the 17 stations selected, but only
accounted for <0.3%. The missing values were substituted by the average values of the
same station before and after missing days. The positions of the meteorological stations are
shown in Figure 1 and detailed information is shown in Table 1. The geographical locations
of meteorological stations changed slightly from 1977 to 2018, and the geographical location
information given in the table was in December 2018.

In the study, one year was divided into four seasons, consisting of winter (December-
January-February) at the beginning, followed by spring (March-April-May), summer
(June-July-August) and autumn (September-October-November) at the end. Monthly
precipitation and ET0 data were extracted from the daily data, and the seasonal data were
obtained by accumulating monthly data. It was worth noting that the annual data were the
sum of monthly data rather than seasonal data. Taking precipitation for example, the winter
precipitation was the sum of precipitation in January, February and the previous December
and the annual precipitation was the sum of 12 months from January to December in this
year. There was a little difference between the annual precipitation and the sum of four
seasons in one year.

The time series of ET0 at each meteorological station was calculated by the FAO56-PM
as Equation (1):

ET0 =
0.408∆(Rn − G) + γ 900

T+273 U2(es − ea)

∆ + γ(1 + 0.34U2)
(1)

where ∆ is the slope of vapor pressure versus air temperature curve, kPa◦C−1; Rn is
the mean daily net radiation, MJ·m−2·d−1; G is the soil heat flux, MJ·m−2·d−1; γ is the
psychrometric constant, 0.0671 kPa◦C−1; T is the mean daily air temperature at 2 m height,
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(Tmax + Tmin)/2,◦C; Tmax is the daily maximum temperature, ◦C; Tmin is the daily minimum
temperature, ◦C; u2 is the wind speed at 2 m height, m·s−1; es is the saturation vapor
pressure, kPa; ea is the actual vapor pressure, kPa; and es − ea represents the vapor pressure
deficit VPD, kPa.

The mean monthly, seasonal, and annual precipitation and ET0 in JHP were obtained
by the Thiessen polygon method, shown in Figure 2. The annual precipitation was greater
than the annual ET0 due to the larger precipitation in spring and summer. The winter and
autumn precipitation were almost equal to ET0. Both the largest monthly precipitation
and ET0 appeared in July and were 7.0 and 4.2 times than the smallest in December and
January, respectively.

Figure 2. (a) showed the annual and seasonal mean precipitation and ET0 in JHP from 1977 to 2018. (b) showed the average
of precipitation and ET0 of each month during the same period.

2.2. Ocean-Atmosphere Climate Patterns and Indices

The study made attempts to investigate the potential teleconnections between the
ENSO and regional climate through mathematical analysis of correlations among precipita-
tion and ET0 and the climatic characteristic indices. Both the NINO3 index and Southern
Oscillation Index (SOI) are the two general indices to represent ENSO. The NINO3 index is
a time series of sea surface temperature (SST) anomalies over the equatorial Pacific, and
the SOI is a time series of normalized monthly differences in sea level pressure (SLP) from
Tahiti to Darwin [39]. To make the results more comprehensive, the authors introduced
another six climate patterns affecting the Northern Hemisphere, including the Atlantic
Multidecadal Oscillation (AMO) [44], Arctic Oscillation (AO) [45], East Atlantic/West
Russia (EAWR) [46], North Atlantic Oscillation (NAO) [47], Pacific Decadal Oscillation
(PDO) [48], and Northern Oscillation (NO) [49]. These selected ocean-atmosphere climate
patterns were described by the corresponding monthly indices with the same time range
as meteorological data, provided by the National Oceanic and Atmospheric Administra-
tion (NOAA).

The AMO index is a multidecadal variation of the SST anomalies in North Atlantic,
defined by Kerr in 2000 [50]. Many studies have indicated that AMO plays an important
role in the climatic evolution in China and other regions around the world [51–55]. The
EAWR is one of the predominant teleconnection patterns affecting the Eurasian throughout
year, consisting of four main anomaly centers. The positive phase is associated with
positive height anomalies located over Europe and northern China, and negative height
anomalies located over the central North Atlantic and north of the Caspian Sea [56]. The NO
represents the reverse changes between the pressure anomaly of the subtropical anticyclone
in the eastern North Pacific Ocean and that of the equatorial low belt in the Philippines.
The NO is very consistent with the SO, strengthening or weakening at the same time [57].

The AO mainly acts on the middle and high latitudes of the Northern Hemisphere [58],
but also has a great impact on precipitation and temperature in East Asia and China [59,60].
The AO index was proposed in 1998 [61]. The PDO has been found to be closely related
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with the AO [62], which is characterized by the monthly detrended SST anomalies in
the North Pacific Ocean from 20◦ N to the North Pole [63]. Mantua et al. (1997) [64]
discovered and named it unexpectedly when surveying the Pacific salmon reproduction.
The NAO index is the climatic variability of the SLP anomalies difference from the Azores
to Reykjavik, Iceland. Some scholars believed that the NAO was a part of AO due to a
plenty of similarities in spatial forms between them [65–67].

2.3. Correlation Coefficients and Quantile Regressions

Both the Pearson correlation coefficient ρ and the Kendall correlation coefficient τ
were applied in this paper. The ρ focuses on the linear relationship between two variables,
given as:

ρ =
∑n

i=1(xi − x)(yi − y)√[
∑n

i=1(xi − x)2 ∑n
i=1(yi − y)2

] (2)

where xi and yi indicate the ith observation of the variable X and Y, respectively; x and y
represent the average values; n is the number of observations. It is worth noting that the
ρ is very sensitive to outliers and extreme values, disturbing the accuracy of correlations,
nonetheless, the Pearson method has been widely used due to its simplicity and efficiency.

The Kendall correlation coefficient τ emphasizes the order correlation between two
variables. Both the variable X and Y form a pair variable (X, Y), and (x1, y1) and (x2, y2) are
two samples. When (x1 − x2)(y1 − y2) > 0, we think the two sample are coordinated and
consistent, otherwise they are different. The τ can be interpreted as the difference between
the probability for the variable to be in the same order and the probability of these objects
being in a different order, given as:

τ = P{(X1 − X2)(Y1 −Y2) > 0} − P{(X1 − X2)(Y1 −Y2) < 0} (3)

The Kendall method is less affected by outliers and more detailed information about
the τ can be found in the reference [68]. Therefore, both the ρ and τ were applied in the
research and the statistical significance of correlation was confirmed only when both of
them were significant.

Compared with the commonly used least-squares linear regression, this research chose
the quantile regression [38] for the mathematical analysis of correlations, given the advan-
tage of the ability to depict predictor variables at specific quantile levels with the control
variables. This research adopted a well-established frequentist quantile regression [39] that
the conditional density of yi was modeled by its quantile function q(τ|Xi) as:

q(τ|Xi) = Xiβ(τ) (4)

P{yi < q(τ|Xi)} = τ ∈ [0, 1] (5)

where yi is the observed time series; Xi is the covariate series; β(τ) means the regression
coefficient for the quantile level τ. It was supposed that the quantiles changed linearly
with the covariates selected to make the predictor variable in each quantile level able to be
described by an intuitive linear function climate indices:

q(τ|Index) = β0(τ) + Index·β1(τ) (6)

where β0(τ) is the intercept; β1(τ) is the regression coefficient. The frequentist quantile
regression model explicitly demonstrated the influence of control variables under particular
quantile probabilities, generally choosing 5th, 25th, 50th, 75th, and 95th, calculated using
the ‘quantreg’ package in the R software. In this paper, the model was also applied in the
multivariate estimation:

q(τ|Index1, Index2, . . . , Indexk) = β0(τ) +
k

∑
i=1

βi(τ)·Indexi (7)
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The other method named the Bayesian quantile regression was adopted in the study.
The parameters in the Bayesian model were regarded as random variables, of which the
posterior and prior distribution were estimated iteratively to absorb data information in
different periods and updated the data. Therefore, the Bayesian approach results in a more
accurate inference and better estimates of parameter uncertainty as opposed to frequentist
inference [69], deemed superior on estimating parameters [70,71]. In the research, the
results stemmed from the Bayesian quantile regression were compared with those from the
frequentist quantile regression and the calculations were completed based on the ‘bayesQR’
package in the R software. Then the study was performed step by step following Figure 3.

Figure 3. Methodology.
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To test and compare the validity of the models, three indictors were applied including
the normalized centered root-mean-square error (NCRMSE) [72], mean relative error
(MRE) [73] and Nash–Sutcliffe efficiency (NSE):

NCRMSE =

√
1
n ∑n

i=1

[
Si −Oi − 1

n ∑n
i=1(Si −Oi)

]2

√
1
n ∑n

i=1
(
Oi −O

)2
(8)

MRE =
∑n

i=1(Si −Oi)

∑n
i=1 Oi

(9)

NSE = 1− ∑n
i=1(Si −Oi)

2

∑n
i=1
(
Oi −O

)2 (10)

where Si is the regression estimated value and Oi is the reference value calculated by
meteorological data.

3. Results
3.1. Spatio-Temporal Distributions of Regional Climate

The mean annual precipitation in JHP for the period from 1977 to 2018 was 1154 mm,
with the minimum (maximum) value of 853 mm (1557 mm). The largest precipitation
occurred in summer, with a proportion of 42.1% to the total annual precipitation and the
smallest proportion of 9.7% existed in winter. The proportions of spring and autumn
precipitation were 30.1% and 18.1%, respectively. A decreasing trend of winter precipi-
tation from southeast to northwest was exhibited in JHP and the spring was similar to
the winter except for the obviously larger amount of precipitation. The summertime pre-
cipitation increased from south-to-north and the maximum values were located in ZX.
The precipitation in autumn has a relatively uniform spatial distribution (see Figure 4a).
As for the ET0 during the same period, the annual average value was 936 mm, with the
maximum (minimum) value of 1044 mm (836 mm). It was found that the highest ET0
occurred in summer accounting for 41.4% and the smallest of 10.3% existed in winter. The
proportions of spring and autumn ET0 were 26.9% and 21.4%, respectively. Compared to
the precipitation, the seasonal ET0 in JHP was fairly well-distributed (see Figure 4b). The
monthly distributions of both precipitation (see Figure A2) and ET0 (see Figure A3) were
dawn as well.

Figure 4. Proportion of mean seasonal precipitation (a) and ET0 (b) to the annual in JHP from 1977 to 2018.
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In the past 40 years, the annual precipitation (ET0) showed a statistically significant
declining (rising) trend of 18 mm (8 mm) per decade. The winter and spring precipitation
increased by 2 mm and 5 mm per decade, respectively, but insignificantly. The correspond-
ing ET0 increased significantly, at the rates of 1 mm and 6 mm per decade, respectively.
There existed a statistically significant decrease of precipitation by 16 mm per decade in
summer. With a decreasing rate of 9 mm per decade, the precipitation in autumn changed
insignificantly (see Figure A4).

3.2. Linear Regression Analysis

The lagged correlations from 0- to 6-month, between the precipitation in JHP and
ocean-atmosphere climate patterns selected were separately detected via both the Pearson
and Kendall methods in the research. It demonstrated that the correlations between the
time series of annual precipitation and NINO3 index were statistically significantly positive
under all lags and the highest value appeared at the lag of 3-month (see Table A1), used in
the quantile regression models. No obvious correlations between the annual precipitation
and the other seven climate indices were confirmed (see Table A1).

Both the frequentist (see Figure 5a) and Bayesian quantile regression (see Figure 5b)
were adopted to investigate the mathematical relationship between the series of annual
precipitation and NINO3 index. The climate index was standardized beforehand for the
sake of comparison. It was over all quantile levels except for the extremely high level
(τ = 0.95) that positive correlations performed significantly, supporting the results from the
correlation coefficient methods. The regression curves obtained by the Bayesian quantile
regression displayed an extreme consistency with those from the frequentist quantile
regression, ensuring the reliability of the results. The interaction analysis of seasonal
precipitation and climate indices was executed with the same methods. It was certain that
the wintertime precipitation related most closely with the AO and EAWR at the 0-month
lag (see Table A2). With the increasing AO or EAWR index, the precipitation in winter
increased quickly (see Figure 5c,d), except for at τ = 0.05. There existed similar numerical
relationships between the AO and EAWR index and the wintertime precipitation; however
the statistical significance differed. The significance of AO was discovered only when
τ = 0.50 and 0.95, while the EAWR index was related significantly with precipitation in
winter under all quantiles except τ = 0.05. In summer, the precipitation was close to the
NINO3 index with a 5-month lag (see Table A3) and the regression analysis demonstrated
the existed significant positive correlations at the low and median quantile levels (see
Figure 5e), which was similar to the relation between the annual precipitation and NINO3
index. The AO index at the lag of 2-month with negative correlations (see Table A3) were
found in all quantile levels and significantly at τ = 0.75 and 0.95 (see Figure 5f).

Statistically significant relationships were not found between the precipitation in
spring and autumn and all of climate indices, so not to be discussed (see Table A4). As for
the annual and the ET0 in winter and autumn, none of them was significantly correlated
with the eight indices selected under all lags of months (see Table A5). Therefore, the
authors only analyzed the spring and summer ET0.

It made sure that there existed conspicuous relations between the springtime ET0 in
JHP and the AMO index with 2-month lag under all lag times (see Table A6). The ET0 in
spring except for τ = 0.05 raised with the increasing AMO index, insignificantly at τ = 0.05
and 0.95 (see Figure 5g). The correlation coefficient between the EAWR index and spring
ET0 achieved the maximum value at the 6-month lag (see Table A6). Figure 5h indicates that
the springtime ET0 reduced significantly with the increasing EAWR index at all quantile
levels except when τ = 0.75. The magnitude decreased first and then increased with the
quantile increasing. It was not lagged obviously enough for the correlation between the
summer ET0 and NAO index (see Table A7), the only one related significantly among these
climate indices, performing positively at all quantiles but significantly only at τ = 0.05
and 0.50 (see Figure 5i). The results stemmed from the Bayesian quantile regression were
almost completely consistent with the frequentist so not to be listed to save space.
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Figure 5. The regression relations between precipitation and ET0 and climate indices. (a,b) repre-
sented the regression relationships between annual precipitation and NINO3 index obtained by
frequentist quantile regression and Bayesian quantile regression, respectively. (c,d) showed the
correlations between winter precipitation and corresponding AO and EAWR index, respectively.
(e,f) represented the relationships between summer precipitation and corresponding NINO3 and AO
index, respectively. (g,h) showed the correlations between spring ET0 and AMO and EAWR index,
respectively. (i) represented the relationships between summer ET0 and NAO index. (c–i) were
derived from the frequentist quantile regression. The dashed red lines show the linear least-squares
regression of the data, whereas the middle solid blue lines are the quantile regressions of the median
(0.50 quantile). The solid gray lines show the quantile regression at τ = 0.05, 0.25, 0.75 and 0.95 from
the bottom to the top.

3.3. Multifactorial Quantile Regression Analysis

In this section, the authors attempt to preliminarily explore the conditioning mech-
anism between the regional climate and teleconnection patterns with the multifactorial
regression model based on the frequentist quantile regression, incorporating the precip-
itation and ET0 and all related climate indices. We continued to use the lagged months
when the maximal correlation occurred. For example, the annual precipitation in JHP was
regarded as the predictor variable, and then the corresponding annual ET0 with the same
time ranges and the closely related NINO3, AO and EAWR index were considered to be
the control variables, given the model as follows according to Equation (7):

q(τ|ET0, NINO3, AO, EAWR) = β1(τ) + βET0(τ)·ET0 + βNINO3(τ)·NINO3 + βAO(τ)·AO + βEAWR(τ)·EAWR (11)
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where each of the control variables was scaled to have a zero average value and a
standard deviation of one. As shown in Figure 6a, the annual precipitation and NINO3
index performed positive correlations under all quantile levels and significantly when
τ ≤ 0.50, implying that the El Niño phenomenon was likely to play an important role in less
annual precipitation in JHP. The series of the AO and EAWR index were only significantly
related with the annual precipitation at τ = 0.05 and 0.50, respectively, presenting the
weak effects. Analogously, the multiple factor model aimed at the seasonal precipitation
as the predictor variable has been established. The wintertime precipitation in JHP was
significantly positively related with the AO index at the median and high quantiles (see
Figure 6b), while significantly with the EAWR index only at τ = 0.50 (see Figure 6c),
demonstrating the AO predominated the winter precipitation. In summer, the NINO3
index distinctly contributed to the increasing precipitation at different quantile levels except
for τ = 0.75 (see Figure 6d). The precipitation was negatively related with the AO index
under all quantiles, significantly just when τ = 0.75 and 0.95 (see Figure 6e).

Figure 6. The regression coefficients between the series of precipitation and ET0 and climate indices
based on the frequentist quantile regression. * Statistically significant at the 0.05 level.
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As for the seasonal ET0 as the predictor variable, the contemporaneous series of
precipitation and closely related climate indices were selected as the control variables to
constitute multifactorial regression models. Figure 6f showed that the spring ET0 was
positively correlated with the AMO index at all quantile levels, and statistically significantly
except at the median level. The relations between the series of spring ET0 and EAWR index
were absolutely opposite at all levels, significantly only at τ = 0.05 and 0.25 (see Figure 6g).
There were statistically significantly positive correlations between the ET0 in summer and
NAO index at quantiles of τ = 0.25, 0.50 and 0.95 (see Figure 6h).

Then the validity of the models was tested at the median quantile level, as shown in
Table 2. It showed that both NCRMSE and MRE of the multifactorial regression model were
smaller than those of the linear regression model for the same predictor variable, indicating
that the simulation effect of multifactorial model was better with smaller random error and
systematic error. The larger NSE values further demonstrated the better performance of
multifactorial models.

Table 2. Testing the validity of models.

Regression Formula NCRMSE MRE NSE

Linear regression

rq(Pannual ~ NINO3) 0.91 −1.82% 0.15
rq(Pwinter ~ AO) 0.91 −0.63% 0.17

rq(Pwinter ~ EAWR) 0.91 −2.03% 0.17
rq(Psummer ~ NINO3) 0.91 −7.83% 0.12

rq(Psummer ~ AO) 0.91 −5.11% 0.14
rq(ET0spring ~ AMO) 0.92 −0.27% 0.15
rq(ET0spring ~ EAWR) 0.89 −1.24% 0.18
rq(ET0summer ~ NAO) 0.93 0.94% 0.12

Multifactorial regression

rq(Pannual ~ ET0annual + NINO3 + AO + EAWR) 0.74 −0.57% 0.46
rq(Pwinter ~ ET0winter + AO + EAWR) 0.66 −1.82% 0.56

rq(Psummer ~ ET0summer + NINO3 + AO) 0.74 −2.95% 0.44
rq(ET0spring ~ Pspring + AMO + EAWR) 0.66 −0.97% 0.55

rq(ET0summer ~ Psummer + NAO) 0.76 −0.26% 0.42

3.4. Composite Analysis for Climate Variability

We additionally researched the variation distributions of agro-climatic factors in JHP
during the El Niño years, defined by Yeh et al. [16], as shown in Table 3. Then the composite
analysis of both seasonal precipitation and ET0 were carried out, shown in Figure 7.

Table 3. The EP-El Niño and CP-El Niño years using the detrended SST for each decade from 1854.
(Only the data from 1977 to 2018 were listed. The El Niño years in 2010s derived from the China
Meteorological Administration).

Decades EP-El Niño Years CP-El Niño Years

1970s 1979 1977
1980s 1982, 1986, 1987
1990s 1991, 1997 1990, 1994
2000s 2003, 2006 2001, 2002, 2004
2010s 2014, 2015, 2016 2018
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Table 4. The description of Figure 7.

Number of Subgragh Agro-Climatic Factor Season Type of El Niño

a

Precipitation

Winter

EP
b Spring
c Summer
d Autumn
e Winter

CP
f Spring
g Summer
h Autumn

i

ET0

Winter

EP
j Spring
k Summer
l Autumn

m Winter

CP
n Spring
o Summer
p Autumn

Figure 7. Precipitation and ET0 anomalies in JHP during the El Niño years. A detailed description of the subgraphs is
shown in Table 4.
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In the autumn and winter of the EP-El Niño years, a slight increase precipitation
appeared in the southeast of JHP and a small decrease in other areas. As for spring, the
precipitation declined compared with the general years except for the JZ area. A strong
spatial variability of increasing precipitation was found in summer with an increasing
magnitude from west to east. WH and XG increased by more than 80 mm while they
failed to pass the significance test of 0.05 level. During the CP-El Niño years, there existed
more obvious seasonal variations of precipitation in JHP. The winter precipitation in JZ,
TM, and WH increased by more than 20 mm, statistically significantly at the level of 0.05.
The precipitation rose intensely in spring with an increasing trend from north to south,
while the precipitation in summer and autumn were less than the general. Therefore, the
opposite effects of EP- and CP-El Niño events on seasonal precipitation in JHP were found,
except for the autumn.

Compared with precipitation, the spatial variability of seasonal ET0 was weak. In
the EP-El Niño years, the ET0 decreased in spring and summer and increased in autumn,
but the variation was within 20 mm. In the CP-El Niño years, almost all of seasonal ET0
showed a mild increasing trend except for the winter. The effects of the two El Niño events
on ET0 were opposite during winter, spring and summer, but kept the same in autumn.

The CP-El Niño event led to less precipitation and larger crop water demand (CWD)
in summer, likely to aggravate the risk of summer drought in JHP. The EP-El Niño event
was just on the contrary with an obvious increase in summer precipitation and decrease
of CWD; however increasing the probability of flood disaster. According to the analysis
of the China Meteorological Administration, the extremely severe flood in the Yangtze
River Basin occurred in 1998 was proved to be related with the super El Niño event during
1997/1998, which event was the EP-type.

3.5. Correlations between Agricultural Production and Climate

The analysis of correlations between precipitation and ET0 and agricultural production
factors in JHP has been performed. Meanwhile five other counties in the plain have
additionally been studied, including ZX in the north, JLi and HH in the south, TM in the
middle and JZ in the mid-west. All of the first four counties have large planting areas
of crops, and JZ has a relatively high level of urbanization, which makes the correlation
analysis more comprehensive and representative. The correlations between the time series
of annual precipitation and agricultural water consumption (AWC) have been obtained, as
shown in Figure 8.

Figure 8. Correlations between annual precipitation and AWC in JHP and its counties.

It could be seen that there were clear negative correlations between annual precipita-
tion and AWC. In wet years, agricultural production depends less on artificial irrigation
with low AWC. On the contrary the AWC grows in dry years. In addition, the authors
selected two main grain crops, rice and wheat, and two main cash crops, rapeseed and
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cotton, to analyze the correlations between their yields and evapotranspiration, as shown
in Figure 9.

Figure 9. Correlations between annual ET0 and yields of main crops in JHP and its counties.
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The yields of rice and wheat in ZX were positively correlated with ET0, while that of
cotton was negatively. The trend of rapeseed yield was not obvious and the relationships
of TM were the same as ZX. The consistent rules were found in JLi and HH. The yield of
cotton grew while that of other three crops declined with ET0 increasing. JZ was unique.
There was no obvious correlation between its rice yield and ET0, while the yield of wheat
was positively correlated and the cash crops including rapeseed and cotton were negatively
correlated. As far as JHP was concerned, all of the correlations between ET0 and yields of
major crops were weak, which was probably caused by the area scale effect. In addition,
human activities such as artificial irrigation and changing crop planting structure also
affected the relations to a great extent.

To sum up, precipitation and evapotranspiration had a real impact on local agricultural
production, concerned about water resource consumption, crop yield, planting area, and
crop species. It was certain that there was significant spatial variability for the impact in
JHP. Therefore, it was a necessary step to explore the regional spatio-temporal distributions
of precipitation and ET0 and reveal the correlations with teleconnection patterns.

4. Discussion

In this paper, the authors analyzed the spatial distributions and temporal trends of
both the precipitation and ET0 in JHP, finding that the seasonal precipitation has an obvious
spatial gradient from southeast to northwest approximately, except for that of autumn. By
contrast, the seasonal ET0 kept uniform in space, demonstrating the less difference between
the ET0 in counties. It could be seen that the variation magnitudes of precipitation were
larger than that of ET0. The same features were discovered on the monthly scale, indicating
that the crop species in JHP was the key to cause spatial variabilities of the agricultural
water demand equal to the product of ET0 and crop coefficient. It might provide a guideline
for the local agricultural department to select crop and design planting area, considering
the spatio-temporal characteristics of precipitation and evapotranspiration. Moreover, the
authors received the statistically significantly negative correlation between the precipitation
and ET0 in both the annual and seasonal scales through portraying scatterplots of them
(see Figure A5), which portended the probable smaller rainfall with the increasing ET0.
Nonetheless, it was not necessarily to do harm to agricultural production while needs to
be noted by the managers. The similar relationships were found in the Weihe River basin
in China [74] but in the coastal areas of southwest Australia, the actual evapotranspiration
were regarded to be positively related with the precipitation [75]. In other parts of the
world, researchers discovered that the annual evapotranspiration in Oklahoma, Kansas,
and Nebraska rose almost linearly with the increasing precipitation at a rate tending to
reduce. When the annual precipitation achieved more than 900 mm, the average annual
evapotranspiration stopped and kept a constant about 800 mm [76]. On the contrary,
a negative correlation was obtained between the maximum annual evapotranspiration
and minimum annual precipitation in the Middle East and north Africa [77]. It was
summarized that the correlations between precipitation and evapotranspiration were
different in different regions, probably greatly related to the local topography, landform,
and atmospheric circulation [78,79].

This study explored the linear mathematic relationship between the individual climate
index and regional hydrological factor employing the frequentist and Bayesian quantile
regression models. The distinctly positive correlations between the time series of NINO3
index and precipitation signified that the El Niño phenomenon induced the increasing
rainfall; however, the relation changed at the extreme high quantile. The incremental
AO index was likely to catalyze the wintertime precipitation but weaken the rainfall in
summer. Another climate index the EAWR also strengthened the precipitation in winter
while whittled down the spring ET0. These linear curves helped us to roughly recognize the
correlations between regional weather and ocean-atmosphere climate modes, as a founda-
tion of building the multifactorial quantile regression model, referring to the precipitation
and ET0 and climate pattern indices, to expound the impacts of teleconnections.
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Compared to the linear regression, a holistic decrease of quantile regression coefficients
between the NINO3 index and annual precipitation occurred except for a slight increase at
τ = 0.05 (see Figure 6a), especially when τ = 0.25 and 0.50 greatly reduced by 34.1% and
45.8%, respectively. The decreased NINO3 coefficients demonstrated that the facilitation of
the El Niño phenomenon on the precipitation has weakened after introducing the ET0 and
AO and EAWR factors into the regression model. Nevertheless, the unchanged significance
of coefficients at the low and median quantiles indicated that the El Niño performed a
vital role in the general and smaller annual precipitation in JHP, which was supported
by [80]. They testified that the El Niño events made precipitation in China decrease, and
increased the probability of drought. The EAWR is one of the main teleconnection patterns
affecting the Asian climate in winter [81]. The influence of multiple factors made the
regression coefficients of the EAWR index reduce sharply and be statistically significant
only at the median quantile (see Figure 6c). On the contrary, the effects of the AO on winter
precipitation were reinforced at the extremely high quantile (see Figure 6b). Similar to
the annual, regression coefficients of the NINO3 index to the summertime precipitation
decreased with unchanged significance when τ ≤ 0.50 (see Figure 6d), which testified the
El Niño was a key conditioning factor to the less summer precipitation in JHP. The absolute
values of regression coefficients between the AO index and summer precipitation were cut
by a third while the significance changed slightly.

As shown in Figure 6f, the non-significantly negative correlation between the AMO
index and spring ET0 at τ = 0.05 reversed greatly the significantly positive results, and the
significance at median quantile disappeared after considering the effects of multifactorial
interactions. At τ = 0.95, the regression coefficient decreased by 55.2% but become signifi-
cantly interesting. The variation of coefficients between the spring ET0 and EAWR index
mainly appeared at the median and high quantiles, especially at τ = 0.95, the absolute
values declined sharply by 90.1% and lost the significance (see Figure 6g). There was a
partly weakening effect of multiple climate patterns on the spring ET0, but a strengthening
effect appeared at the level of τ = 0.25 for the summer (see Figure 6h).

This paper established a multifactorial mathematical model based on quantile regres-
sions, providing a new idea to expound the intricate interactions between the regional
climate and teleconnection patterns, efficiently and comprehensively. In addition, many
scholars used quantile regression to explore the teleconnection mechanism. Tan et al. [82]
proposed a Bayesian spatio-temporal quantile model to consider the effects of ENSO, PDO,
NAO, Pacific-North American (PNA), and North Pacific (NP) on winter precipitation in
Canada, showing that their impacts on high and low quantile values were significantly
greater than at median level. Amini et al. [83] used the Bayesian quantile regression to
explore the influence of teleconnection on drought in Iran. They found that La Niña
increased the drought standardized precipitation index (SPI) at all quantile levels and
aggravated the drought in the Caspian Sea coastal regions. Tharu and Dhakal [84] also
used Bayesian quantile regression to explore the effects of ENSO and NAO on the extreme
precipitation at different quantile levels in the United States. Hao et al. [85] analyzed the
non-stationarities in extreme precipitation events and related climate indices at 13 stations
in the Hanjiang river basin, based on the generalized additive model (GAMLSS). They
found that better performance of simulating extreme precipitation intensity and scale after
considering climate indices. For example, all of the fitting coefficients of the maximum
five-day precipitation (RX5day) representing the extreme precipitation intensity in Zhongx-
iang, Wuhan, and Tianmen station exceeded 0.99 after considering the impacts of climate
indices including NINO3, SOI, and NAO, indicating that those teleconnection patterns
have profound impacts on the climate in JHP.

Quantile regression has been widely used in the research of climate change and
teleconnection. Both developing new models based on quantile regression and extreme
climate events are probable research hotspots in the future.
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5. Conclusions

The study depicted the spatial distributions and temporal trends of the local climate
in JHP used the daily data from 17 national meteorological stations from 1977 to 2018. Both
the linear and multifactorial regression models were constructed based on the frequentist
and Bayesian quantile regression to reveal the impacts of ocean-atmosphere climate modes
on the regional climate. Here are the main conclusions:

(1) For the period from 1977 to 2018, the average annual precipitation and ET0 in JHP
were 1154 mm and 936 mm, respectively. The largest proportions annually occurred
in summer, more than 40%. The smallest appeared in winter but remained around
10%. There were distinct gradients from southeast to northwest approximately in
the seasonal and monthly rainfall while the ET0 kept a slight variability of spatial
characteristics. The winter and spring precipitation increased and the other two
seasons decreased, while all of the four seasons ET0 showed increasing trends.

(2) El Niño probably induced less precipitation in summer while the weakening Arc-
tic Oscillation might lead to more summertime precipitation in JHP. There existed
positive correlations between the AO and EAWR and the wintertime rainfall. With
the incremental AMO index and the diminishing EAWR index, the springtime ET0
increased, and the ET0 in summer was related positively with the NAO index. It
was confirmed that there were statistically significantly negative correlations between
precipitation and ET0 in JHP.

(3) The multifactorial regression model performed much better than the linear model,
indicating the composite effects of those teleconnection patterns on the agroclimatic
conditions in JHP. In addition, different types of the same teleconnection might have
opposite effects such as EP- and CP-El Niño.

Author Contributions: Conceptualization, D.S. and W.L.; methodology and software, W.L.; vali-
dation, W.G. and D.M.; formal analysis, W.L.; investigation, D.M.; resources, D.S. and W.G.; data
curation, W.L.; writing—original draft preparation, W.L.; writing—review and editing, D.S. and W.L.;
visualization, W.L.; supervision, W.G.; funding acquisition, D.S. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the State Key Research and Development Plan of China,
grant number 2019YFC0408905 and the National Natural Science Foundation of China, grant num-
ber 51709204.

Data Availability Statement: The daily meteorological data sets used in the study, including pre-
cipitation, maximum air temperature, minimum air temperature, average air temperature, average
relative humidity, average wind speed and sunshine duration, were available from the China Meteo-
rological Data Service Centre available online: http://data.cma.cn (accessed on 26 August 2021). The
ocean-atmosphere climate indices were downloaded from the National Oceanic and Atmospheric
Administration (NOAA) available online: https://www.noaa.gov (accessed on 26 August 2021).

Acknowledgments: The authors would like to thank the referees and the editors for their valuable
comment and suggestions which significantly improved this paper and would also need to acknowl-
edge the support from the State Key Research and Development Plan of China and National Natural
Science Foundation of China.

Conflicts of Interest: The authors declare no conflict of interest.

http://data.cma.cn
https://www.noaa.gov


Water 2021, 13, 2789 19 of 29

Appendix A

Figure A1. Map of Köppen-Geiger climate classification in JHP.

Figure A2. Spatial distributions of mean monthly precipitation in JHP from 1977 to 2018.
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Figure A3. Spatial distributions of mean monthly ET0 in JHP from 1977 to 2018.
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Figure A4. The temporal trends of the annual and seasonal precipitation and ET0 in JHP for the period from 1977 to 2018.
The formulations of the trends are located at the top right corners of the frames. * (**) Statistically significant change at the
0.05 (0.01) level.
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Figure A5. The correlations between the series of precipitation and ET0 in JHP.

Table A1. The Pearson correlation coefficient ρ and the Kendall correlation coefficient τ between the time series of annual
precipitation and climate indices under lags from 0- to 6- month. Bold means statistically significant at the level of 0.05.

Coefficient Lag/Month NINO3 SOI AMO AO EAWR NAO NOI PDO

ρ

0 0.3060 −0.1740 0.1264 −0.0514 −0.1509 −0.1129 −0.2794 0.1664
1 0.3764 −0.2271 0.1260 −0.0121 −0.0847 −0.0805 −0.2511 0.1590
2 0.4202 −0.2473 0.1206 0.0935 −0.0429 0.0194 −0.3130 0.1552
3 0.4420 −0.2882 0.1184 0.0695 0.0436 0.0103 −0.3329 0.1712
4 0.4416 −0.3039 0.1055 0.0708 −0.0652 0.0547 −0.3266 0.1826
5 0.4285 −0.3135 0.0741 0.0651 −0.0336 0.1091 −0.3358 0.1770
6 0.4062 −0.2966 0.0508 0.0451 0.0723 0.0911 −0.3440 0.1702

τ

0 0.2208 −0.1025 0.0732 −0.0128 −0.0708 −0.0337 −0.1545 0.0337
1 0.2613 −0.1367 0.0894 0.0267 −0.0035 −0.0128 −0.1220 0.0453
2 0.2915 −0.1337 0.0941 0.0708 0.0081 0.0721 −0.1707 0.0395
3 0.2915 −0.1444 0.1046 0.0592 0.0418 0.0813 −0.1638 0.0628
4 0.2822 −0.1500 0.1034 0.0290 −0.0407 0.0465 −0.1429 0.0732
5 0.2776 −0.1756 0.0801 0.0453 −0.0337 0.0906 −0.1614 0.0801
6 0.2544 −0.1514 0.0453 0.0569 0.0407 0.0674 −0.1684 0.0930
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Table A2. The Pearson correlation coefficient ρ and the Kendall correlation coefficient τ between the time series of
wintertime precipitation and climate indices under lags from 0- to 6- month. Bold means statistically significant at the level
of 0.05.

Coefficient Lag/Month NINO3 SOI AMO AO EAWR NAO NOI PDO

ρ

0 −0.0101 −0.1298 0.0378 0.4081 0.4227 0.1978 0.0002 −0.0483
1 −0.0052 −0.1102 0.0328 0.3172 0.3516 0.1069 0.0322 0.0262
2 0.0092 −0.1174 0.0352 0.0740 0.2576 −0.1316 −0.0412 0.0420
3 0.0232 −0.0357 0.0273 −0.0054 0.0252 −0.1210 −0.0324 0.0008
4 0.0224 −0.0739 0.0186 0.0492 −0.0126 −0.1675 −0.0702 −0.0149
5 −0.0158 −0.0875 −0.0014 0.3479 −0.1069 0.1670 −0.0101 0.0121
6 −0.0740 −0.1307 −0.0080 0.3303 −0.0610 0.2206 −0.0495 0.0622

τ

0 0.0686 −0.1249 0.0593 0.2497 0.3812 0.1035 −0.0128 −0.0756
1 0.0372 −0.1284 0.0639 0.2218 0.3021 0.0999 0.0616 −0.0128
2 0.0767 −0.0876 0.0906 0.1127 0.1697 −0.0523 −0.0151 0.0058
3 0.0838 −0.0548 0.0708 0.0685 −0.0232 −0.0430 −0.0128 −0.0128
4 0.0224 −0.0739 0.0186 0.0492 −0.0126 −0.1675 −0.0702 −0.0149
5 0.0523 −0.0876 0.0523 0.2590 −0.0778 0.0976 −0.0174 −0.0384
6 0.0174 −0.1110 0.0360 0.2009 −0.0813 0.1418 −0.0244 0.0244

Table A3. The Pearson correlation coefficient ρ and the Kendall correlation coefficient τ between the time series of
summertime precipitation and climate indices under lags from 0- to 6- month. Bold means statistically significant at the
level of 0.05.

Coefficient Lag/month NINO3 SOI AMO AO EAWR NAO NOI PDO

ρ

0 0.0652 0.1725 0.2032 0.0917 −0.2666 −0.1190 0.0426 0.1163
1 0.1184 0.0889 0.2428 −0.1477 −0.2737 −0.2049 0.0338 0.1425
2 0.2082 −0.0754 0.2777 −0.4263 −0.2333 −0.2974 −0.0078 0.1582
3 0.3112 −0.2106 0.2758 −0.4064 −0.2475 −0.1759 −0.1289 0.2398
4 0.3891 −0.2117 0.2753 −0.2548 −0.1159 −0.0449 −0.2539 0.2218
5 0.4224 −0.2325 0.2550 −0.1785 0.0036 −0.0961 −0.2859 0.1437
6 0.4221 −0.2297 0.1985 −0.0543 0.2675 −0.0910 −0.3009 0.0851

τ

0 0.0174 0.1426 0.1452 0.0430 −0.1673 −0.0837 0.0012 0.0848
1 0.0488 0.0538 0.1916 −0.1336 −0.1638 −0.1162 0.0081 0.0999
2 0.0930 −0.0561 0.2056 −0.2859 −0.1418 −0.2092 −0.0407 0.0569
3 0.1477 −0.1301 0.1916 −0.2033 −0.1547 −0.0813 −0.0801 0.0988
4 0.2291 −0.0818 0.2172 −0.1173 −0.0256 −0.0151 −0.1777 0.0930
5 0.2314 −0.0957 0.2056 −0.0453 0.0639 −0.0512 −0.1545 0.0314
6 0.2291 −0.1039 0.1663 −0.0174 0.2162 −0.0686 −0.2102 0.0267

Table A4. The Pearson correlation coefficient ρ and the Kendall correlation coefficient τ between the time series of
precipitation in spring (a) and autumn (b) and climate indices under lags from 0- to 6- month. Bold means statistically
significant at the level of 0.05.

(a)

Coefficient Lag/Month NINO3 SOI AMO AO EAWR NAO NOI PDO

ρ

0 0.2786 −0.2594 0.0608 0.1733 0.0725 0.0646 −0.1133 −0.2482
1 0.3199 −0.2394 0.0755 0.0664 0.0762 0.0453 −0.1167 −0.1082
2 0.3318 −0.2631 0.0835 −0.0179 0.2249 −0.0849 −0.0786 0.0053
3 0.3089 −0.2767 0.0750 −0.0329 0.1312 −0.1327 −0.0496 0.0886
4 0.2942 −0.2606 0.0508 −0.0553 0.2063 −0.1145 −0.1258 0.1370
5 0.2980 −0.2164 0.0580 −0.0435 0.1743 −0.1266 −0.1573 0.1217
6 0.3061 −0.1538 0.0505 −0.1039 0.0887 −0.0130 −0.2997 0.1116
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Table A4. Cont.

(a)

Coefficient Lag/Month NINO3 SOI AMO AO EAWR NAO NOI PDO

τ

0 0.1221 −0.0692 0.0128 0.1289 0.0826 0.0721 −0.0685 −0.1872
1 0.1919 −0.1169 0.0151 0.0848 0.1023 0.0477 −0.0871 −0.1278
2 0.2012 −0.1191 0.0128 −0.0058 0.1591 −0.0465 −0.0407 −0.0384
3 0.1919 −0.1669 0.0663 0.0499 0.0511 −0.0779 0.0058 −0.0244
4 0.1673 −0.1565 0.0592 −0.0244 0.1859 −0.1139 −0.0267 0.0430
5 0.1720 −0.1297 0.0651 −0.0081 0.1092 −0.1080 −0.0987 0.0430
6 0.1792 −0.0805 0.0708 −0.0662 0.0651 0.0035 −0.0825 0.0290

(b)

Coefficient Lag/Month NINO3 SOI AMO AO EAWR NAO NOI PDO

ρ

0 0.0589 0.0683 −0.1622 0.0789 0.1511 0.0187 −0.2007 0.0959
1 0.0990 0.0246 −0.1351 0.2503 0.0967 0.0422 −0.0998 0.0769
2 0.1105 −0.0576 −0.1185 0.1543 −0.0515 0.0195 0.0454 0.1152
3 0.1227 −0.1045 −0.1333 0.1712 −0.1347 0.0731 −0.0188 0.1715
4 0.1469 0.0106 −0.1384 0.0412 −0.1259 0.1038 −0.0241 0.1958
5 0.1594 0.2084 −0.1424 −0.0078 −0.0856 0.0625 −0.2364 0.1954
6 0.0968 0.1887 −0.1133 −0.0161 −0.1427 0.0789 −0.1985 0.1564

τ

0 0.0419 0.0444 −0.0941 0.0499 0.0813 0.0151 −0.1266 0.0755
1 0.0453 0.0654 −0.0744 0.0174 0.0442 −0.0325 −0.0221 0.0349
2 0.0546 −0.0129 −0.0616 −0.0128 0.0058 −0.0418 0.0476 0.0733
3 0.0662 −0.0210 −0.0941 0.0453 −0.0651 0.0232 −0.0058 0.0732
4 0.0581 0.0492 −0.0987 −0.0012 −0.0592 0.0139 0.0105 0.1139
5 0.0860 0.1590 −0.1173 0.0139 −0.0116 0.0790 −0.1080 0.1336
6 0.0570 0.1325 −0.1220 −0.0012 −0.0221 0.1116 −0.0407 0.1314

Table A5. The Pearson correlation coefficient ρ and the Kendall correlation coefficient τ between the time series of annual
(a), winter (b) and autumn ET0 (c) and climate indices under lags from 0- to 6- month. Bold means statistically significant at
the level of 0.05.

(a)

Coefficient Lag/Month NINO3 SOI AMO AO EAWR NAO NOI PDO

ρ

0 −0.2488 0.2168 0.1927 −0.0304 −0.0548 −0.0002 0.2878 −0.2153
1 −0.2252 0.1885 0.1872 −0.1447 −0.0831 −0.0040 0.1952 −0.2060
2 −0.1799 0.1472 0.1786 −0.2022 −0.1175 −0.0337 0.1827 −0.2027
3 −0.1327 0.1325 0.1716 −0.2089 −0.1840 −0.0420 0.1714 −0.1811
4 −0.0893 0.0781 0.1831 −0.1650 −0.1474 −0.0038 0.1451 −0.1779
5 −0.0410 0.0333 0.2063 −0.1791 −0.1259 −0.1098 0.1352 −0.1588
6 0.0052 −0.0161 0.2176 −0.1686 −0.1444 −0.1377 0.1434 −0.1553

τ

0 −0.1557 0.1840 0.1429 0.0105 −0.0383 −0.0058 0.1661 −0.1429
1 −0.1707 0.1647 0.1266 −0.0708 −0.0871 0.0012 0.1057 −0.1545
2 −0.1777 0.1360 0.1266 −0.0871 −0.0708 −0.0139 0.1127 −0.1604
3 −0.1498 0.1374 0.1418 −0.1127 −0.0906 −0.0139 0.1103 −0.1534
4 −0.1266 0.0872 0.1220 −0.0685 −0.1057 −0.0023 0.0894 −0.1591
5 −0.0894 0.0616 0.1359 −0.1034 −0.0755 −0.0744 0.1034 −0.1243
6 −0.0430 0.0070 0.1336 −0.1150 −0.0941 −0.1232 0.1150 −0.0999
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Table A5. Cont.

(b)

Coefficient Lag/Month NINO3 SOI AMO AO EAWR NAO NOI PDO

ρ

0 0.0396 0.1496 0.2019 0.0875 −0.1286 0.1381 0.0029 0.0172
1 0.0480 0.0995 0.2234 0.1165 −0.2041 0.1026 0.0760 0.0005
2 0.0392 0.0944 0.2334 0.1193 −0.1867 0.1103 0.0768 0.0209
3 0.0185 0.0002 0.2470 −0.1241 −0.1801 −0.0711 −0.0735 0.0566
4 0.0030 0.0399 0.2441 −0.1442 −0.2121 −0.1542 −0.1172 0.0649
5 0.0229 0.0647 0.2448 −0.3302 −0.0570 −0.2501 −0.2338 0.0718
6 0.0751 0.0943 0.2590 −0.1409 −0.0635 −0.2135 −0.1497 0.0137

τ

0 −0.0175 0.1086 0.1385 0.1012 −0.1326 0.1059 −0.0105 0.0431
1 0.0000 0.1075 0.1547 0.0709 −0.1606 0.1140 0.0267 0.0267
2 −0.0070 0.0480 0.1280 0.0221 −0.1536 0.1035 0.0337 0.0454
3 −0.0233 −0.0058 0.1523 −0.0988 −0.1280 −0.0174 −0.0756 0.0616
4 −0.0314 0.0164 0.1815 −0.0988 −0.1233 −0.0698 −0.0663 0.1024
5 −0.0198 0.0573 0.1709 −0.1523 −0.0547 −0.1233 −0.1756 0.0827
6 0.0291 0.0596 0.1965 −0.0453 −0.0209 −0.1792 −0.1407 0.0477

(c)

Coefficient Lag/Month NINO3 SOI AMO AO EAWR NAO NOI PDO

ρ

0 0.0183 −0.0552 0.1768 −0.1159 0.1917 −0.0232 −0.0098 0.0168
1 −0.0122 −0.0586 0.1466 −0.1787 0.2291 0.0344 −0.1060 0.0040
2 −0.0153 −0.0103 0.1259 −0.2666 0.2341 −0.0307 −0.1731 −0.0170
3 0.0004 0.0718 0.1269 −0.1143 0.0800 0.0230 0.0782 −0.0572
4 0.0274 0.0247 0.1238 −0.0309 0.0134 −0.0705 −0.0115 −0.1164
5 0.0594 −0.1769 0.1202 0.0380 −0.0988 −0.1362 0.0593 −0.1240
6 0.1387 −0.3045 0.1123 −0.0811 0.0435 −0.2085 −0.0837 −0.0852

τ

0 0.0768 −0.0817 0.1127 −0.0499 0.1278 −0.0058 0.0058 0.0081
1 0.0523 −0.1354 0.0604 −0.0314 0.1302 0.0628 −0.0987 0.0186
2 −0.0128 −0.1203 0.0244 −0.1220 0.0964 0.0325 −0.1731 −0.0337
3 −0.0290 −0.0070 0.0244 −0.0081 0.0604 0.0790 −0.0221 −0.0592
4 0.0070 −0.0211 0.0290 0.0290 0.0964 0.0372 −0.0337 −0.0860
5 0.0163 −0.1333 0.0523 0.0511 −0.0604 −0.0395 0.0569 −0.0778
6 0.0570 −0.1536 0.0662 −0.0360 0.0407 −0.1557 −0.0894 −0.0849

Table A6. The Pearson correlation coefficient ρ and the Kendall correlation coefficient τ between the time series of ET0 in
spring and climate indices under lags from 0- to 6- month. Bold means statistically significant at the level of 0.05.

Coefficient Lag/Month NINO3 SOI AMO AO EAWR NAO NOI PDO

ρ

0 −0.1451 0.3722 0.3689 0.0240 0.1816 0.0276 0.2841 −0.0453
1 −0.1829 0.3012 0.4002 0.0558 0.2271 0.0244 0.2270 −0.0956
2 −0.2059 0.2779 0.4250 0.0153 0.0912 −0.0135 0.1707 −0.1353
3 −0.1904 0.2385 0.4161 −0.0244 −0.0158 0.0707 0.1034 −0.1639
4 −0.1691 0.2530 0.4150 −0.0895 −0.3162 0.0070 0.1303 −0.2078
5 −0.1575 0.2425 0.3961 −0.2126 −0.4282 −0.0988 0.1183 −0.2317
6 −0.1600 0.1635 0.4198 −0.1543 −0.4598 −0.1917 0.1739 −0.2726

τ

0 −0.0895 0.2005 0.2683 0.0128 0.1291 0.0232 0.1545 −0.0384
1 −0.1477 0.1262 0.2660 −0.0081 0.1488 0.0012 0.1266 −0.0604
2 −0.1267 0.1214 0.3008 −0.0012 0.0523 0.0023 0.0569 −0.0779
3 −0.1244 0.0712 0.2640 −0.0383 −0.0046 0.0593 0.0197 −0.0895
4 −0.0953 0.1027 0.2729 −0.0708 −0.2092 0.0511 0.0848 −0.1568
5 −0.0813 0.1063 0.2580 −0.1707 −0.2975 0.0035 0.0825 −0.1640
6 −0.0745 0.0735 0.2753 −0.0848 −0.3231 −0.0848 0.0523 −0.1614
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Table A7. The Pearson correlation coefficient ρ and the Kendall correlation coefficient τ between the time series of summer
ET0 and climate indices under lags from 0- to 6- month. Bold means statistically significant at the level of 0.05.

Coefficient Lag/Month NINO3 SOI AMO AO EAWR NAO NOI PDO

ρ

0 −0.2991 0.2535 −0.1111 0.1815 −0.0228 0.3660 0.2423 −0.1438
1 −0.3185 0.3102 −0.1043 0.2989 −0.0265 0.3343 0.2475 −0.0790
2 −0.3016 0.2158 −0.1019 0.2710 −0.1074 0.2761 0.1505 −0.0316
3 −0.2351 0.1483 −0.0731 0.0021 0.0438 −0.0525 0.0987 −0.1019
4 −0.1606 −0.0235 −0.0962 −0.1262 −0.1386 −0.2325 0.2000 −0.1090
5 −0.1246 −0.0503 −0.1153 −0.1633 −0.1258 −0.1628 0.1624 −0.0717
6 −0.1037 −0.1036 −0.1369 −0.1948 −0.2730 −0.0859 0.1315 −0.0562

τ

0 −0.1813 0.1298 −0.0744 0.1302 0.0267 0.2453 0.1302 −0.0837
1 −0.1686 0.1464 −0.0511 0.2185 0.0186 0.2151 0.0953 −0.0663
2 −0.1709 0.1368 −0.0511 0.1407 −0.0570 0.1640 0.0651 −0.0279
3 −0.1280 0.1103 −0.0256 −0.0465 0.0023 −0.1035 0.0139 −0.0721
4 −0.0977 −0.0058 −0.0651 −0.1325 −0.0988 −0.1838 0.1697 −0.0570
5 −0.0745 −0.0409 −0.0883 −0.1488 −0.1162 −0.0710 0.1023 −0.0116
6 −0.0535 −0.0911 −0.1280 −0.1325 −0.2221 −0.0372 0.0767 −0.0349
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