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Abstract: Climate change represents a major challenge for the management of native fish communities
in Mediterranean rivers, as reductions in discharge may lead to a decrease in passability through
small barriers such as weirs, both in temporary and perennial rivers. Through hydraulic modelling,
we investigated how discharges from a large hydropower plant in the Tagus River are expected to
affect the passability of native freshwater fish species through a rock weir (Pego, Portugal), equipped
with a nature-like fish ramp. We considered not only mean daily discharge values retrieved from
nearby gauging stations (1991–2005) for our flow datasets, but also predicted discharge values based
on climatic projections (RCP) until the end of the century (2071–2100) for the Tagus River. Results
showed that a minimum flow of 3 m3 s−1 may be required to ensure the passability of all species
through the ramp and that passability was significantly lower in the RCP scenarios than in the
historical scenario. This study suggests that climate change may reduce the passability of native
fish species in weirs, meaning that the construction of small barriers in rivers should consider the
decreases in discharge predicted from global change scenarios for the suitable management of fish
populations.

Keywords: fish ramp; small barriers; climate change; low flows; habitat suitability

1. Introduction

Rivers have long been among the most endangered ecosystems worldwide, facing
multiple threats including the introduction and dispersal of invasive species [1,2], chem-
ical [3] and thermal pollution [4], flow regulation [5,6], longitudinal fragmentation [7]
and climate change [8], with the later acting as an enhancer of the previous ones [9,10].
One common consequence of these threats is the gradual loss of suitable habitat, which
is particularly worrisome in the case of migratory freshwater fishes, as these migrate
along the river (potamodromous) or between the river and sea (diadromous) in different
stages of their life cycle to perform critical functions, such as reproduction, feeding and
sheltering [11].

Climate change can significantly alter flow regimes [8], leading to the increase of
extreme flow events [12–14]. In Mediterranean-climate rivers, facing an annual dry season
(usually from March to September, being more pronounced from June onwards), increased
droughts may further potentiate river fragmentation and loss of suitable habitat due to
increased flow intermittency. [15] This issue is particularly relevant as it encompasses the
migratory period of potamodromous and diadromous fish species; therefore, interfering
directly with their migrations and recruitment, and lately affecting the sustainability of
their populations [16].

Fish movement and migration may be further limited by the presence of small barriers
such as weirs, which are generally far more numerous than large dams and clearly represent
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significant barriers to fish migration [17,18]. These instream structures change the depth
and velocity patterns, creating vertical drops that change the hydrodynamics of aquatic
systems and may prevent the movement of migratory fish to spawning, feeding and refuge
areas [19], and thus their permeability should be assessed for a proper management of
these populations [20,21]. The permeability of a weir to fish passage (i.e., passability) will
depend not only on its structural properties (e.g., length, slope, substrate), but also on the
hydraulic conditions (e.g., flow regime), within a given time and area, providing “flow
windows” for fish to pass [22,23]. The passability of a given fish species and life history
stage through weirs will also depend on key hydraulic variables, namely flow velocity and
water depth [23], that structure habitat suitability [24].

The potential combined effects of weir passability along with the climate change-
driven increased flow intermittency of rivers is seldom investigated and deserves greater
attention. Despite some uncertainty attributed to flow predictions due to different mod-
elling assumptions, studies so far have suggested that in the Mediterranean region, mean
monthly flows and annual flow rates are expected to decrease with climate change [25,26].
On the other hand, extreme flow conditions (high flow and low flow magnitudes, and dura-
tion) are expected to increase in Mediterranean rivers [27], potentially reducing the suitable
habitat area for fish species to be able to overcome barriers.

The use of modelling approaches to determine measures of habitat suitability, such as
habitat suitability indexes (HSI), can provide a relative measure of fish passability, based
on the available area for fish in specific stages of their life cycle, considering specific flow
requirements determined for each species [28]. Habitat suitability curves (HSC) can be
developed for this purpose, but often require detailed data at a microhabitat scale, which
are typically scarce in large rivers [29]. Recent studies have recommended the use of
mesohabitat data (ranging from 10 to 100 m) as the relevant spatial scale of habitat use by
fish [30,31] and the use of expert opinion to build HSC based on previous literature and
expert knowledge on the species, lowering both the research effort and need for empirical
data on habitat use and preference of fishes [32].

For modelling habitat suitability, 2D hydraulic models have the advantage of being
more robust and predicting hydraulic conditions more accurately over 1D models, provided
that sufficient and good resolution bed topography data is collected, and that model
calibration is performed [33–35]. Relative measures of fish passability can be estimated
based on the suitable habitat and hydraulic conditions (such as water depth and flow
velocity) of small instream obstacles over time and space [24,36,37].

The main goal of this study is to evaluate the passability of the low-head Pego weir,
in the Tagus River, Central Portugal, to the different migratory fish species, in relation to
historical (1991–2005) and future flow conditions based on two global warming scenarios
(RCP 4.5 and RCP 8.5), following the reports of ISI-MIP: Inter-Sectoral Impact Model
Intercomparison Project [38]. As current projections for the Mediterranean region suggest
a decrease in river discharge in the following decades, it is expected that fish passability
will be lower under scenarios of low flow conditions, due to the reduction of the submerged
area of the weir. Specifically, we expect passability for all species to be lower under global
climate change scenarios.

2. Materials and Methods
2.1. Study Area

This study was conducted in the Pego weir, located in the Tagus River, close to the
municipality of Abrantes, Portugal (Figure 1). The Tagus River is the longest river in
the Iberian Peninsula (1110 km), with a drainage area of 80,630 km2 and a hydrological
regime typical of a Mediterranean-climate river, with lower flow values in summer months
and higher values in winter [39]. Data collected from gauging stations shows that it has
a relatively high flow variation coefficient (72.15%), contrasting with a relatively low annual
coefficient of variation (7.29%), within the period ranging from 1991 to 2005 [40].
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Figure 1. Pego weir in the Tagus River, approximately 12 km downstream of the Belver dam.

Within this river basin, the Pego weir, a 250 m wide low-head ramped weir, was
built between 1992 and 1995, to allow water collection to cool down the turbines from
a nearby coal thermal power plant, which has recently ceased activity (Figure 1). The weir
features a fish ramp located close to the river’s right bank, which is approximately 20 m
long and 4 m wide, at an elevation of 23 m, with a longitudinal slope of 2.5% (Figure S1).
Both the weir and the fish ramp present a substrate dominated by rocks and boulders.
This structure was built to ensure the passability of the local native fish species. The closest
upstream barrier is the Belver dam, one of the main large hydropower plants in the Tagus
River basin, located 12 km upstream of the Pego weir, with an installed power of 80.7 MW
and a storage capacity of 7.5 hm3. Flow data provided by the Portuguese Environmental
Agency and local gauging stations reveal that turbined flows do not exceed 800 m3 s−1 [40].
The Belver dam is a run-of-the-river hydropower plant, with low water retention and
a reduced thermal stratification in the water column, with no significant variations in water
temperature downstream expected.

2.2. Flow Data and Topographic Survey

Flow data was retrieved from the Portuguese national network on water resources (SNIRH),
which aggregates data on discharge and other water quality related parameters collected from
gauging and meteorological stations nationwide [40]. Mean daily discharge values were re-
trieved from the available data recorded in the nearby Belver gauging station (station code:
17J/01A), from 1st January 1991 to 31st December 2005, in line with the historical period
considered in the Intergovernmental Panel on Climate Change [38] reports on climate projec-
tions (1986–2005). Missing values (approximately 15%) were estimated by linear regression
(R2 = 0.934) from mean daily flows recorded in the Almourol gauging station (station code:
17G/02A), approximately 28 km downstream from the study area. It should be noted that there
are no tributaries between the Pego weir and the Belver dam, and that inflows in the Pego weir
are strongly associated with the turbined flows in Belver [41].

For the climate projections, two global warming scenarios (RCP 4.5 and RCP 8.5)
were used, following the reports of ISI-MIP: Inter-Sectoral Impact Model Intercomparison
Project [38]. The considered scenarios stand for “Representative Concentration Pathways”
(RCP), describing general trajectories of greenhouse gases (GHG) emissions, concentrations
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and land use emissions until the end of the century (2100), according to specific radiative
forcing values, namely 4.5 and 8.5 W m−2. RCP 4.5 is described as a more conservative
and moderate scenario, while RCP 8.5 is the extreme one. Particularly for the Tagus
River basin, decreases in average monthly flows of 30% and 60% in the late century (2071–
2100) were previously estimated following RCP 4.5 and RCP 8.5 trajectories, respectively,
when integrating reservoirs and water management processes in the hydrological models
for river discharge at Almourol, with a strong decrease in hydropower production under
both future climate scenarios being expected [26]. These projections consider the regional
warming trends through statistical downscaling and bias correction, as an alternative to
regional climatic models, with the goal of preserving warming trends [42]. Focusing on low
flows (Q90), as these are expected to be more impacted by climate change, we considered
two hydrologic scenarios: one with a reduction of 30% on mean daily discharges (RCP 4.5)
and another with a 60% (RCP 8.5) reduction, both until the end of the century (2071–2100),
regarding the original discharge dataset retrieved from the gauging stations.

2.3. Suitability Curves and Habitat Modelling

Fish passability was determined by modelling habitat suitability for the native fresh-
water fish community using River2D, a two-dimensional depth averaged model which
combines the hydraulic conditions close to the weir with HSC for each fish species [43].
The key hydraulic variables for which HSC were developed were water depth (above
the weir) and flow velocity, similarly to previous studies assessing fish passability in
weirs [44,45]. The boundary conditions considered in this model were the inflow section
(in m3 s−1) and the water level at the outflow section (in meters), making use of a rating
curve of the cross-section that was computed with an acoustic Doppler current profiler
(ADCP), that took measurements in the cross-section during several different discharges.
Model calibration was done by comparing the modeled values for flow velocity and water
depth with the values measured in the field. Field measurements took place at the end of
the dry season (September) under different flow conditions. The River2D model ran with
a spatial mesh of 2 × 2 m in general, refined to 0.5 × 0.5 m in the weir area, similarly to
one used for the topographic survey of the 2D model.

The fish community is composed by a multitude of species with different migratory
traits, including: (i) anadromous—Allis shad (Alosa alosa), twaite shad (Alosa fallax) and
sea lamprey (Petromyzon marinus), (ii) catadromous—European eel (Anguilla anguilla) and
thlinlip grey mullet (Chelon ramada) and (iii) potamodromous species—Iberian barbel
(Luciobarbus bocagei). Due to the lack of detailed data on HSC for these species, an expert
judgment approach [46,47] following a literature review (Table 1) was used to build the
species HSC, based on flow velocity and water depth (Figures S2 and S3 in Supplementary
Material). Such approaches based on the application of literature or expert opinion-based
data, performed in similar conditions—i.e., when empirical data is scarce and difficult to
gather (cost limited, lack of time or reference conditions, species with low detectability
such as the diadromous ones)—were applied elsewhere [46–50]. a previous assessment
of the river topography allowed for the characterization of the hydraulic conditions (flow
velocity and water depth) and for the calibration of the River2D model [41].

Table 1. Literature considered for the construction of the species habitat suitability curves (HSC),
based on key variables that structure fish passability at low-head ramped weirs [45]: flow velocity at
the ramp weir and water depth above the weirs.

Common Name Scientific Name References

Allis shad Alosa alosa [51,52]
Twait shad Alosa fallax [51,53]

Sea lamprey Petromizon marinus [51,54–56]
Thinlip grey mullet Chelon ramada [51,57,58]

European eel Anguilla anguilla [51,58–62]
Iberian barbel Luciobarbus bocagei [51,63–67]



Water 2021, 13, 2758 5 of 12

To evaluate passability and determine the minimum flow required for each species
to pass the weir, a stepwise approach was followed, modelling in steps of 1 m3 s−1 and
assessing the response of the habitat suitability index (HSI) throughout the weir and
particularly in the fish ramp. This index was calculated as a product of the separate
suitability indices: flow velocity index (VSI), water depth index (DSI) and channel index
(CSI, which considers the substrate, dominated by rocks and boulders, constant and evenly
distributed within the study area and thus with no significant influence in habitat suitability,
assuming a constant value in the formula): HSI = VSI × DSI × CSI [43]. Mean HSI values
from each scenario were adjusted to a sigmoid function [68], allowing the estimation of
HSI for each discharge value of the datasets by interpolation.

2.4. Data Analyses

Quantile distribution of the mean daily discharges from the historical data were analyzed
to determine the low flow conditions (Q90, corresponding to the 10th percentile) in the two
hydrologic scenarios considered (30% in RCP 4.5 and 60% in RCP 8.5). The comparison of mean
daily discharge between each scenario was achieved using the non-parametric Kruskal–Wallis
test due to non-normally distributed data (Shapiro–Wilk). a Kruskal–Wallis test (followed by
a post hoc Dunn test for pairwise differences) was also performed to investigate differences in
HSI between flow scenarios (for each species) and between species (in each scenario). Analyses
were conducted in R, version 4.1.0 [69] and Statistica, version 10 [70].

3. Results
3.1. Flow under Future Climate Change Scenarios

Low flow conditions for the historical period (1991–2005) included discharges from 0
to 11.0 m3 s−1, with null values being recorded in 316 days, mostly between March and
September (71%), which is usually considered the dry season in the Mediterranean climate.
Mean daily discharge was significantly different between the three scenarios (χ2 = 28.232,
df = 2, p < 0.001), being lowest in RCP 8.5 (mean value: 1.2 m3 s−1), intermediate in RCP
4.5 (2.1 m3 s−1) and highest in the historical (3.1 m3 s−1) scenario (Figure 2).
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3.2. Minimum Flow Assessment

River2D modelling revealed that under low flow conditions, more than half of the weir
was emersed, with the percentage of submersed area varying from 21% (for inflows of 1 m3

s−1) to 42% (for inflows of 11 m3 s−1), which was reflected in a generally low passability
close to the ramp for all species. The suitable area allowing fish passage was only observed
at a minimum discharge of 3 m3 s−1 (when the fish ramp became submersed), regardless
of the species (Figure 3).
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3.3. Passability across Different Climate Change Scenarios

Habitat suitability under low flow conditions was significantly different among species
(χ2 = 38.752, df = 5, p < 0.001). Overall, A. alosa had the highest mean HSI (ranging from
0.08 ± 0.11 in RCP 8.5 and 0.13 ± 0.16 in the historical scenario), while P. marinus scored
the lowest (mean HSI: 0.06 ± 0.07 in RCP 8.5 and 0.09 ± 0.11 in historical). Both species
had significantly different mean HSI when compared to the remaining species (Dunn post
hoc test): A. anguilla (mean HSI: 0.05 ± 0.10 RCP 8.5 and 0.09 ± 0.08 in historical), A. fallax
(mean HSI: 0.05 ± 0.08 RCP 8.5 and 0.10 ± 0.12 historical), L. bocagei (mean HSI: 0.05 ± 0.08
RCP 8.5 and 0.10 ± 0.12) and C. ramada (mean HSI: 0.06 ± 0.09 RCP 8.5 and 0.10 ± 0.13
historical). Significant differences for HSI between the three scenarios were also observed
within each species (χ2 = 58.794, df = 2, p < 0.001) and for pairwise comparisons, with all
species attaining higher scores in the historical scenario (Figure 4).
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4. Discussion

Changes in hydrology under climate change can lead to shifts in fish habitat suitability
and distribution in rivers [71]. For migratory fish species, which shift from different
habitats (spawning, feeding, refuge) during their life cycle, this habitat loss is particularly
worrisome, particularly in the presence of barriers to fish movement, making it essential
to assess how habitat may change in the advent of future flow regimes [16]. However,
quantifying the impact of climate change in natural populations is challenging, as different
effects are expected depending on the climate model trajectories that are assumed [72],
the temporal range (mid or late century) and the effect of climate change on the multiple
stressors already acting [73].

In this study, we built flow datasets for the different climatic scenarios—RCP 4.5 and
RCP 8.5—by assuming the predicted changes in monthly discharge described by Lobanova
et al. [26] for the Tagus River, with reductions of 30 and 60%, respectively, until 2100.
Passability for all species occurred at a minimum flow of 3 m3 s−1, and the frequency
of null flows and flows lower than the required threshold for fish passage increased in
both RCP 4.5 and RCP 8.5 scenarios. This result is particularly relevant as the increase in
“zero-flow” day frequency has been reported as a severe threat to hydrological connectivity
and species persistence in rivers [74]. By adding the cumulative effect of a small barrier
(weir), this means that the decrease in the occurrence of suitable flows for fish populations
close to the Pego weir, over the next decades, may lead to an overall decrease in the weir
passability to the different fish species.

Passability was found to be significantly lower in the RCP 4.5 and RCP 8.5 scenarios
relatively to the historical dataset (1991–2005). Habitat modelling using River2D also
revealed that under low flow conditions, passability only occurred in the area covered by
the fish ramp, close the right bank. a previous assessment of the Pego weir showed that
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inflows of at least 30 m3 s−1 are required to allow fish passage across the remaining area of
the weir, with all species being able to pass the weir if it was submerged [41]. This further
enhances the importance of this fishway for upstream migration, as mean daily discharge
will tend to decrease in future climates [8,26], while droughts are expected to increase in
frequency and intensity [14,74].

While 2D assessment of fish passability was only performed for low flow conditions,
it revealed differences between the different species, which can be explained by their
different swimming capacities. Overall, the two clupeid species, A. alosa and A. fallax,
had the highest passabilities in all scenarios, attaining the first and second highest HSI
values, respectively. Previous studies on nature-like fishways (such as rock ramps) re-
ported higher passability for Alosa species compared to the other ones present in the fish
community using the same fishway [75]. Contrastingly, the sea lamprey P. marinus had
the lowest passability, even though nature-like fishways are suggested as more adequate
for allowing lamprey passage when compared to technical fishways such as pool and
Denil fishways [76]. Emphasis on improving attraction efficiency under low conditions,
considering the swimming performance and behavior of the different species composing
the migratory fish community, should be put into future fishway adjustments (e.g., boulder
arrangement: [77]).

The passability of the Pego weir was modelled for different climate scenarios, consider-
ing the key hydraulic variables—flow velocity and water depth—that are known to highly
influence fish passage in this type of instream structures. As the difficulty in gathering
appropriate data for developing HSC would reveal cost and effort-intensive for a large
river such as the Tagus River, an expert judgement approach was followed [32,36,49,50].
Coupled with an extensive characterization of the hydraulic conditions in the study area,
a relative measure of passability based on the habitat suitability of each species was ob-
tained, proving that this approach may be a useful alternative to empirical studies for fish
population management purposes.

Successful fish passage across an instream obstacle is a more complex phenomenon
other than depending solely on flow velocity and water depth above the weir. The willing-
ness to negotiate a barrier is also driven by internal factors—the physiological condition,
such as fatigue level, migratory phase, age, and body size [78]—as well as individual
predisposition to move upstream, and other external factors not accounted on the present
study, such as water temperature [79]. Though our modelling approach enabled us to
estimate fish passability for different migratory species across a small weir in a large
river, considering the critical hydraulic variables, future validation with empirical studies,
such as fish telemetry tracking, is essential if we want to effectively use such tools in river
conservation and management plans [80].

5. Conclusions

To conclude, this study provided evidence that under low flow conditions, the passability
of migratory fish species in the Pego weir is generally low and only occurring through the
fish ramp. Results suggest that under future flow regimes, the permeability of the weir to
fish passage is likely to further decrease for all species. This highlights the need to account
for future impacts of altered flow regimes driven by climate change on fish populations,
considering current and future climatic models and flow requirements for each species when
modelling habitat suitability and fish passability. Moreover, it is crucial to adapt conditions for
obstacle transposition, namely by improving attraction efficiency close to the ramp, followed by
monitoring surveys of fishway efficiency. The ongoing transition of fossil fuels to renewable
energy occurring in Portugal (and in other countries worldwide), is expected to lead to an
adjustment of coal thermal plants (to coal-fired plants using charcoal) or in some cases to
a complete shutdown, making the barriers that were built to accommodate its activity obsolete
and thus potential targets for removal. This would allow for a more efficient re-establishment
of longitudinal connectivity for all fish species.
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following the study by Ferreira et al.; Figure S2: Suitability curves for the flow velocity at the ramp
weir for each species, based on the literature review; Figure S3: Suitability curves for the water depth
above the weir for each species, based on the literature review.
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