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Abstract: Thermal regime warming and increased variability can result in human developed wa-
tersheds due to runoff over impervious surfaces and influence of stormwater pipes. This study
quantified relationships between tree canopy, impervious surface, and water temperature in stream
sites with 4 to 62% impervious land cover in their “loggersheds” to predict water temperature metrics
relevant to aquatic species thermal stress thresholds. This study identified significant (≥0.7, p < 0.05)
negative correlations between water temperature and percent tree canopy in the 5 m riparian area
and positive correlations between water temperature and total length of stormwater pipe in the
loggershed. Mixed-effects models predicted that tree canopy cover in the 5 m riparian area would
reduce water temperatures 0.01 to 6 ◦C and total length of stormwater pipes in the loggershed
would increase water temperatures 0.01 to 2.6 ◦C. To our knowledge, this is the first time that the
relationship between stormwater pipes and water temperature metrics has been explored to better
understand thermal dynamics in urban watersheds. The results highlight important aspects of
thermal habitat quality and water temperature variability for aquatic species living in urban streams
based on thermal thresholds relevant to species metabolism, growth, and life history.
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1. Introduction

Water temperature has long been recognized as an important aquatic environmental
variable [1–3] that directly and indirectly affects numerous ecological processes [4–6] and
as such is regulated in the United States under the Clean Water Act, Section 303 (d) [7,8].
Increasing water temperature values and variability are known to induce thermal stress in
aquatic species that can affect growth, reproductive success, and mortality [9–12]. A recent
review of phenology research of aquatic species [13] also identified water temperature as
the most important environmental cue for life history behaviors, particularly spawning
migration behavior [14–19].

In the last decade, numerous studies have focused on quantifying a stream’s thermal
regime and drivers of water temperature variability [20–24]. Thermal regime is a term that
refers to the stream temperature characteristics and dynamics that we describe based on
stream temperature data collected over time [24]. At local spatial scales, important factors
that affect stream temperature include riparian vegetation [25], hydrology (e.g., discharge,
groundwater source volume, and hyporheic exchange) [1,26,27], and locations where
tributaries enter the main channel [1,28]. Local scale variability related to groundwater
and tributary connection are relative to baseflow hydrology according to stream size and
volume [29,30]. Factors that may affect water temperature variability at the catchment and
watershed scales include climate, elevation, and land cover, and geology [1,31,32].

Thermal regimes are sensitive to anthropogenic watershed development that can
result in warming and increased variability due to runoff over impervious surfaces and
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influence of stormwater pipes [31,33–36]. Previous research has documented the relation-
ship between impervious surface cover and greater incidence and magnitude of stormflow
events [37]. These stormflow events can elevate temperatures 3.5 to 7 ◦C with 3 to 7-h dissi-
pation times, respectively [38]. In addition, extensive subsurface pipe networks, including
stormwater pipes, have been added to developed areas that can transfer stormwater with
elevated temperatures directly to streams. These pipes can also indirectly interact with
groundwater to affect water temperature and baseflow variability, depending on local
site conditions. Direct connection of pipes to groundwater can add a constant, stabilizing
baseflow from outflow and leaks [33,35].

Land cover within riparian areas and strategic placement of riparian trees can af-
fect shading from solar radiation, heat fluxes in riparian areas, and water temperature
variation [2,25,39–41]. Aside from direct shading effects, riparian trees can also create
humid microclimates over streams that can stabilize water temperature variability [42,43],
with consensus in the literature that riparian tree effects on microclimate generally occur
up to about one tree height (15 to 60 m) away from the edge of the stream [39]. Daily
maximum water temperature differences between forested and non-forested stream sites
can be 4.2–4.9 ◦C cooler in forested stream reaches [44,45].

While extensive research has been conducted on thermal regulation by riparian tree
shading in agricultural and mixed ag-forest watersheds [39,46], little is known about the
thermal influence of riparian trees in urban watersheds (>15% impervious land cover) [47–50].
To our knowledge, there is only one research study currently available [49] that has investi-
gated the relationship between tree canopy cover in riparian buffers and water temperature
within urban catchments, finding no significant relationship between canopy cover and
water temperature. Therefore, the aim of this study was to quantify the effects of riparian
and loggershed scale variables on water temperatures in stream sites with 4 to 62% im-
pervious land cover within the “loggershed.” We introduce the term “loggershed”, which
refers to the watershed of the natural and build network draining into each temperature
logger point location. We calculated water temperature metric values for each logger loca-
tion relevant to aquatic species life history, thermal stress, and critical thermal maximum
water temperatures to explore relationships between land cover, human development, and
potential water temperature changes within the loggershed.

We hypothesized that: (1) The greater the percentage tree canopy within riparian
areas along stream networks at the loggershed scale, the lower the frequency and duration
of exceedance of water temperature stress threshold values, magnitude of change in
water temperature, and variability of water temperature; (2) The greater the percentage
impervious surface within riparian areas along stream networks at the loggershed scale,
the greater the frequency and duration of exceedance of water temperature stress threshold
values, magnitude of change in water temperature, and variability of water temperature;
(3) The greater the percentage tree canopy within the loggershed, the lower the frequency
and duration of exceedance of water temperature stress threshold values, magnitude
of change in water temperature, and variability of water temperature; (4) The greater
the percentage impervious surface within the loggershed, the greater the frequency and
duration of exceedance of water temperature stress threshold values, magnitude of change
in water temperature, and variability of water temperature; (5) Land cover quantified
within wider, 30 m riparian areas along both sides of the stream network at the loggershed
scale will have a greater effect on water temperature than narrower, 5 m riparian areas; and
(6) The greater the length of stormwater pipes (km) in the loggershed, the greater the water
temperature variability.

2. Materials and Methods
2.1. Study Design

This study included 14 stream temperature monitoring sites, defined at what we
term the “loggershed” scale (the watershed of the natural and build network draining
into each temperature logger point location). For this study we used standard spatial
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scale boundaries, as defined by the national Watershed Boundary Dataset for the United
States [51,52]. The local scale refers to a stream reach or length of stream; the catchment
scale refers to an area defined by the Hydrologic Unit, 12-digit Code (HUC 12) boundary;
and the watershed scale refers to the area defined by the Hydrologic Unit, 10-digit Code
(HUC 10) boundary [51]. The sites for this study are all within the Beaverdam Run-
Lock Raven Reservoir, Red Run-Gwynns Falls, and Dead Run-Gwynns Falls catchments
(HUC 12) in the Baltimore, Maryland area (Figure 1). Stream sites were selected from
subwatersheds (HUC 12) with USGS gages to estimate base flow from continuous flow
data and to download available water temperature data [53,54].
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Figure 1. Water temperature logger locations near Baltimore, Maryland.

2.2. Loggershed and GIS Data

Defining sites at the loggershed scale allowed us to combine geospatial, high resolution
(1 m) stream network (USGS, National Map) and land cover data [55,56] for each water
temperature logger location. Study site watershed, stream networks, hydrologic, and
land cover geospatial data were extracted and derived using ArcMap v.10.3, GIS software,
Spatial Analyst application tools (ESRI, 2011). Geospatial land cover and pipes data were
extracted at the loggershed scale to investigate the influence of extracted variables on water
temperature (Table 1). The choice of variables was based on known significant relationships
between the variable and water temperature variability in the literature and the availability
of data.
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Table 1. Loggershed hydrology and pipes variables for study sites.

Site Area (km2) Stream (km) Pipe (km) Baseflow Elevation Slope Aspect

BAIS2 3.78 5.24 0.63 0.0435 170.51 2.72 76.88
DR3-1 4.87 6.30 26.94 0.0245 132.35 1.37 86.88
DR3-3 4.90 6.33 27.14 0.0246 132.23 1.38 8.54
DR3Pi 4.88 6.32 26.94 0.0245 132.35 1.37 −1.78
DRKR2 13.93 20.12 63.73 0.0642 130.59 1.42 10.64

GB1 1.42 1.84 2.51 0.0105 195.71 1.72 18.11
GB2 1.41 1.75 2.51 0.0105 195.84 1.72 65.16

JERJ2 22.82 31.55 23.05 0.2626 175.71 2.14 −15.23
MR1 17.75 24.64 70.25 0.0013 184.44 1.83 −3.81
MR2 17.73 24.56 70.23 0.0013 184.47 1.83 86.61

SLtribDS 8.61 9.84 63.02 0.0441 164.51 1.30 16.24
SLtribUS 7.98 9.34 57.41 0.0408 165.53 1.28 18.85

VN1 81.86 116.71 402.24 0.6401 170.04 1.72 75.42
VNTrib 81.89 116.82 402.24 0.6404 170.02 1.72 54.32

2.2.1. Land Cover Data

We calculated total tree canopy and impervious surface area and percent for each
study site loggershed using land cover data developed by the University of Vermont Spatial
Analysis Lab [55,56]. These data were also extracted to calculate total tree canopy and
impervious surface for 5 and 30 m riparian areas on either side of a polyline for the stream
network of each loggershed (Figure 2). This high resolution (1 m) raster, 13-class land
cover data were downloaded from the Chesapeake Conservancy, Land Cover Data Project
2013/2014 website [57]. The land cover class 3 (Tree Canopy) was extracted to calculate
total tree canopy and the land cover classes 7 (Structures), 8 (Impervious Surfaces), and
9 (Impervious Roads) were combined and extracted to calculate total impervious surface
area for each loggershed.

2.2.2. Hydrology Data

Networks of NHD Plus USGS hydroline data (streams) were extracted geospatially
within each loggershed boundary from 1 m resolution raster-based digital elevation models
(DEM). Logger site location points were snapped to the closest stream locations, and
these were used as pour points for the construction of the DEM for each logger location
“loggershed”. All hydroline and DEM data were downloaded from The National Map,
NHD Plus server [51]. Hydrologic variables calculated for each extracted loggershed
stream network included total area of the loggershed (km2), total overall stream length
(km), elevation (m), and aspect (as watershed slope direction in degrees; 0–359.9 clockwise
starting at due N), and slope (%). Elevation, aspect, and slope were all calculated as a
loggershed-based area-weighted average.

2.3. Water Temperature Data
2.3.1. Logger Data

A total of 14 water temperature loggers (HoboV2Pro) were calibrated using ice bath
methods [58] to an accuracy of +/− 0.2 ◦C and deployed at each site from December
2015 to November 2016. Loggers were shielded from solar radiation using PVC pipe and
attached close to the bottom of the stream to a rebar pounded into the stream bed or bank.
Water temperature loggers were installed within each stream reach at 50 m intervals. This
distance varied to pick up variation at transition zones between tributary confluences and
stormwater pipe outfalls at each site. Shaded HoboV2Pro loggers were also deployed at
each site to measure on site air temperature. Data were recorded at 15 min intervals for
both water and air temperature.
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2.3.2. Water Temperature Metrics

Mean, maximum, and minimum daily water temperature data were compiled for
April to October 2016. For the analysis, we focused on April to October water temperatures,
with April to June generally representing the time for fish spawning and growth of early
life stages (blacknose dace); July and August as the most likely time of year for aquatic
species thermal stress and reduced baseflow; and September to October as a transition
period when water temperatures cool and various aquatic species migrate to spawning
grounds (brook trout) or move to other habitats to feed [59–61].

Mean, maximum, and minimum daily water temperature data were used to calculate
metrics using the StreamThermal software package for R [62] for frequency and dura-
tion of exceedance of aquatic species thermal stress water temperatures, magnitude of
water temperature change, and water temperature variability. We used thermal stress
tolerance [63,64] and critical thermal maximum (CTM) water temperatures as defined by
exposure studies for brook trout, rainbow trout, blacknose dace, and virile crayfish that are
known to be present in sites for this study (Table 2). The temperature at which an aquatic
organism loses equilibrium is known as the CTM water temperature [65,66].
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Table 2. Thermal stress and critical thermal maximum (CTM) water temperatures for trout, dace,
and crayfish species known to occur at sites for this study.

Scientific Name Common Name Temperature Reference

Salvelinus fontinalis Brook Trout 21–24 ◦C (stress) [67,68]
30 ◦C (CTM)

Onchorynchus mykiss Rainbow Trout 20 to 22 ◦C (stress) [68,69]
29 ◦C (CTM)

Rhinichthys atratulus Blacknose Dace 29.3 ◦C (CTM) [70]

Faxonius virilis Virile Crayfish 25 ◦C (stress) [71,72]
26 ◦C (stress)

Specifically, frequency of exceedance (FmaxcT; [62]) metric values of the thermal stress
threshold water temperatures (# days daily maximum temperature (n) ≥ threshold water
temperature) were calculated for rainbow trout (≥20 ◦C) [69]; virile crayfish (≥25 ◦C) [71];
and the CTM threshold for brook trout (≥30 ◦C) [68]. The maximum number of consec-
utive days the maximum daily water temperature exceeded threshold values Duration
(n) [70] were also calculated to quantify how may days of the year aquatic species were
exposed to thermal stress (Table 3). Water temperature metrics to quantify magnitude of
change included moving average of daily maximum temperature (MovingAMaxT) for 7,
14, and 21 days, and average of daily maximum water temperature per month (Monthly
ADMax) [62,73,74]. Water temperature metrics to quantify variability included maxi-
mum range per month (greatest value per month for difference between daily maximum
and minimum temperature), and variance of the mean daily water temperature for each
month [22,62,73,74] (Table 3).

Table 3. Water temperature metrics to quantify frequency and duration of exceedance, magnitude of
change, and variability.

Metric Description Reference

Frequency (FmaxcT) Number days max temperature ≥ 20–30 ◦C [62]
Duration (n) Maximum consecutive days per event ≥ 20 ◦C [70]

MovingAMaxT Max of 21, 14, 7 day moving average of max [62]
Monthly ADmax Average daily max, April to October [62]

Max range per month Greatest value for difference between daily max
and daily min temperature per month [70]

Monthly variance Variance of mean daily temperatures [22]

2.4. Data Analysis
2.4.1. Correlation Analysis

Pearson correlation analysis was applied to identify relationships between water tempera-
ture metric values and predictive variables, using a correlation coefficient threshold ≥ 0.7 and
p value ≤ 0.05 to retain variables for further predictive model analysis. Specifically, Pear-
son correlation analyses were applied to water temperature metrics (FmaxcT, Events (n),
Duration (n), MaxMovingAMaxT, Monthly ADMax, Max range per month, and Monthly
variance) and the following predictive variables for each site: % tree canopy (5 m ripar-
ian area, 30 m riparian area, and loggershed); % impervious surface (5 m riparian area,
30 m riparian area, and loggershed); total stormwater pipe length per loggershed (km);
stormwater pipe length to stream length ratio; slope, aspect, and baseflow index.

2.4.2. Mixed-Effects Models

Significantly correlated variables were identified and used to test predictive linear
mixed-effects models (lme R package) [75], with each metric representing the independent
(x) variable (metrics listed in Table 3) and the % land cover (percentage in loggershed,
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5 m riparian area, 30 m riparian area), stormwater pipe length, and hydrology (slope,
aspect, baseflow index) variables representing the dependent (y) variables. Predictive
mixed-effects models tested the following hypotheses: (1) Land cover percentages in 30 m
riparian areas will have a greater effect on water temperature metrics than land cover
percentages in 5 m riparian areas; (2) Land cover percentages at the loggershed scale will
have a greater effect on water temperature metrics than land cover percentages within
5 and 30 m riparian areas; (3) Percentage tree canopy cover will have more of an effect
than impervious land cover on water temperature metrics within the 5 m riparian area,
30 m riparian area, and loggerhead scales; (4) The total length of stormwater pipes at the
loggershed scale will have a greater effect on water temperature variability metrics than
tree canopy and impervious land cover at the loggerhead scale.

2.4.3. Candidate Model Approach

The percent tree canopy cover and percent impervious cover values were inherently
correlated at the loggershed scale within the 30 m riparian areas and within the 5 m riparian
areas, because they were geospatial data sets extracted from the same area. Therefore, for
the sake of mixed-effects model analysis, we used a candidate model approach where we
tested the tree canopy and impervious land cover independent (y) variables separately
(only include percent tree canopy cover or percent impervious canopy cover) for each
candidate model to test variables related to each water temperature metric dependent
variable (x). We used this candidate model approach as well separately for each spatial
scale, which resulted in 3 sets of candidate models (6 total) (separated for tree canopy cover
and impervious cover) for loggershed, 30 m, and 5 m scales (see Table 4 for an example).
Each candidate model used water temperature metric values for the 14 study sites as the
x value, testing one metric at a time (6 candidate models per metric) for all metrics listed
in Table 3. Candidate models for each metric were retained for comparison and further
analysis if the adjusted R2 value was ≥0.7 and the p value for all variables was ≤0.05. To
select the overall best candidate model from all 6 per metric, we selected the one with the
highest R2 value, lowest p value, and lowest Akaike’s information criterion (AIC) value for
goodness of fit [76]. All metric calculations, Pearson correlation analyses, mixed-effects
models, and candidate model analyses were completed using R version 4.1.0 [77].

Table 4. Mixed-effects model variables to test hypotheses about effects of baseflow, land cover, and
stormwater pipes (y variables) on water temperature metrics (x variables). Hypotheses were tested
using datasets separated by land cover type (tree canopy or impervious land cover) and spatial scale
(loggershed, 30 m, and 5 m) using a candidate model approach.

Water Temperature Metric (x) Independent Variables (y)

Frequency, Duration Baseflow + SWPipes + TCLgshd
(FmaxcT, Events, n days per event) Baseflow + SWPipes + TC30

Magnitude Baseflow + SWPipes + TC5m
(MaxMovingAMaxT, ADmax) Baseflow + SWPipes + ImpLgshd

Variability Baseflow + SWPipes + Imp30m
(Max range, Variance of mean) Baseflow + SWPipes + Imp5m

SWPipes = all stormwater pipes per loggershed; TC = tree canopy; Imp = impervious surface.

3. Results
3.1. Site Variables and Correlations
3.1.1. Site Characteristics

Site elevation ranged from 132 to 184 m, slope ranged from 1.3 to 2.7, aspect varied
from −1.8 to 86.9, and baseflow index ranged from 0.01 to 0.64 (see Table 3 for hydrologic
variables). The percent tree canopy cover per loggershed ranged from 23.22 to 79.94%
and the percent impervious surface per loggershed ranged from 3.67 to 62.43%. In the
5 m geospatially extracted riparian areas, the percent tree canopy cover ranged from
52.77 to 98.05% and the percent impervious cover ranged from 0.09 to 27.42%. In the 30 m



Water 2021, 13, 2732 8 of 21

geospatially extracted riparian areas, the percent tree canopy ranged from 46.09 to 98.01%
and the percent impervious cover ranged from 0.26 to 41.78%. The length of stormwater
pipes per loggershed ranged from 0.63 to 402.24 km (Figures 2 and 3).
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Figure 3. Tree canopy land cover percentages (A) and impervious land cover percentages (B) at
study sites. (A) shows the percentage tree canopy within the loggershed (% TC Lgshd), within 30 m
riparian areas (% TC 30m), and within 5 m riparian areas (% TC 5m). (B) shows the percentage
impervious within the loggershed (% Imp Lgshd), within 30 m riparian areas (% Imp 30m), and
within 5 m riparian areas (% Imp 5m).

3.1.2. Overall Variable Correlations

This study identified significant relationships between water temperature, riparian
land cover, and total length of stormwater pipes quantified within “loggersheds” with 4 to
62% impervious land cover. Out of the 13 initial variables (Table 1, Figure 3), Pearson cor-
relation analysis identified significant correlations (correlation coefficient threshold ≥ 0.7
and p value ≤ 0.05) for the following predictive variables that were retained for further
analysis in multiple linear mixed-effects models: six tree canopy and impervious surface
land cover variables (5 m riparian area, 30 m riparian area, and loggershed); amount of
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stormwater pipes per loggershed; and baseflow index. Of these eight variables, the most
frequent number of significant correlations to water temperature metrics were with percent
tree canopy in the riparian areas. The percent tree canopy in the 5 m riparian area had
17 significant correlations with water temperature metrics (0.7 to 0.9, p ≤ 0.05 to 0.00), and
the percent tree canopy in the 30 m riparian area had 8 significant correlations to water
temperature metrics (0.7 to 0.9, p ≤ 0.01 to 0.00) (Figure 4).
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Figure 4. Significant Pearson correlations between water temperature metrics and percent tree canopy
within 5 m riparian areas (TC5m) and 30 m riparian areas (TC30m).

This consistency of significant correlations was not the case for relationships between
water temperature and percent impervious cover in the 5 m riparian area that had three
significant correlations with water temperature metrics (0.7 to 0.8, p ≤ 0.01 to 0.00), and the
percent impervious surface in the 30 m riparian area that had four significant correlations
to water temperature metrics (0.7 to 0.9, p ≤ 0.01 to 0.00). (correlations with 3 metrics), or
percent impervious cover in the 30 m riparian area (correlations with 4 metrics).

These results were unexpected and did not support the hypothesis that the land cover
in the 30 m riparian area would affect water temperature to a greater extent compared to
the land cover in the 5 m riparian area. In addition, the only loggershed scale variable
that had significant correlations with water temperature metrics was the total length of
stormwater pipes that had seven significant correlations with water temperature metric
values (0.70 to 0.92, p ≤ 0.01 to 0.00).

3.2. Frequency and Duration of Exceedance
3.2.1. Metrics

Using April to October maximum daily temperatures (214 days), our study docu-
mented 11 out of 14 sites with events where n ≥ 100 days exceeded thermal stress water
temperatures for rainbow trout and four sites where n ≥ 50 days exceeded the thermal
stress water temperature for virile crayfish. Although this study is based on one year at
14 sites, this means that rainbow trout would experience thermal stress 50–60% of the April
to October period (214 days total) at 12 sites and virile crayfish would experience thermal
stress 20–30% of the time frame at 6 sites.
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The total number of days that the daily maximum temperature exceeded the thermal
stress water temperature (FmaxcT) for rainbow trout (≥20 ◦C) [73] ranged from 76 to
142 days, and 0 to 80 days for virile crayfish (≥25 ◦C) [71] at study sites. In addition, the
total number of days (FmaxcT) that the daily maximum temperature exceeded the critical
thermal maximum water temperature for brook trout (≥30 ◦C) [68] was 1 at the SLtribUS
site and 17 at the VNTrib site. The maximum number of consecutive days MaxT was
≥20 ◦C; Duration (n) ranged from 59 days in a row to 124 days in row at study sites for the
period of April to October (214 days).

3.2.2. Significant Correlations and Best Fit Mixed-Effects Models

Pearson correlation analysis identified negative correlations between the percent tree
canopy cover in the 5 m riparian area and FmaxcT, 20–29 ◦C (−0.70, p < 0.00), FmaxcT,
25–29 ◦C (−0.90, p < 0.00), FmaxcT ≥ 25 ◦C (−0.80, p < 0.00), and Duration (n) ≥ 20 ◦C
(−0.80, p < 0.00) (Figure 4). The best model to predict FmaxcT (25–29 ◦C) included percent
tree canopy in the 5 m riparian area (TC5m) (p = 0.00, Adjusted R2 = 0.71); the best model to
predict FmaxcT (≥25 ◦C) included percent tree canopy in the 5 m riparian area (TC5m) and
baseflow index (BF) (p = 0.00, Adjusted R2 = 0.73); and the best model to predict Duration (n)
of days ≥ 20 ◦C included percent tree canopy in the 5 m riparian area (TC5m), stormwater
pipes (SW Pipes), and baseflow index (BF) (p = 0.00, Adjusted R2 = 0.73) (Table 5).

Table 5. Mixed-effects models to predict water temperature metrics based on April to October 2016 data for 14 study
sites. The selected metrics are designed to quantify frequency and duration of exceedance of thermal stress thresholds
and magnitude of thermal change for aquatic species in urban streams with 4 to 62% impervious land cover. The models
listed in this table are the final, best fit model to predict each metric after testing 6 candidate models per metric. The best fit
predictive models for frequency of exceedance of thermal stress temperatures include baseflow (BF) and % tree canopy in
5 m riparian areas (TC5m) variables. The best fit predictive model for duration (Max days ≥ 20 ◦C) included BF, TC5m,
and total length of stormwater pipes per loggershed (SWPipes). The best fit predictive models for magnitude of change
(MaxT21, MaxT14, MaxT7) included TC5m and SWPipes.

Metric Model (Y) t Value Pr(>|t|) Model

Frequency 20–29 ◦C Intercept 7.54 0.00 25–29 ◦C = 139.97–5.73(TC5m)
TC5m −5.73 0.00 Adjusted R-squared: 0.71

Model: F statistic 32.79, p-value: 0.00

Frequency ≥ 25 ◦C Intercept 6.35 0.00 25–41 ◦C = 131.20–4.99(TC5m) + 2.37(BF)
TC5m −4.99 0.00 Adjusted R-squared: 0.73

BF 2.37 0.04 Model: F statistic 18.40, p-value: 0.00

Duration (n) days ≥ 20 ◦C Intercept 8.62 0.00 Max Days = 182.20–4.93(TC5m) + 2.33(SWPipes) + 1.51(BF)
TC5m −4.93 0.00 Adjusted R-squared: 0.73

SWPipes 2.33 0.04 Model: F statistic 12.40, p-value: 0.00
BF 1.51 0.16

MaxT21 Intercept 45.67 0.00 MaxT21 = 21.6586–0.0528(TC5m) + 0.0084(SWPipes)
TC5m −8.85 0.00 Adjusted R-squared: 0.97

SWPipes 11.41 0.00 Model p-value: 0.00

MaxT14 Intercept 78.67 0.00 MaxT14 = 21.7167–0.051(TC5m) + 0.0097(SWPipes)
TC5m −14.68 0.00 Adjusted R-squared: 0.99

SWPipes 22.74 0.00 Model p-value: 0.00

MaxT7 Intercept 134.11 0.00 MaxT7 = 23.1676–0.0505(TC5m) + 0.0117(SWPipes)
TC5m −23.26 0.00 Adjusted R-squared: 0.99

SWPipes 43.68 0.00 Model p-value: 0.00

3.2.3. Mixed-Effects Model Interpretation

The mixed-effects model for FmaxcT (25–29 ◦C) predicts that the percent tree canopy
in the 5 m riparian area will reduce MaxT water temperature values by 5.7 ◦C and 5.0 ◦C for
the mixed-effects model to predict FmaxcT (≥25 ◦C). The mixed-effects model for Duration
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(n) of days ≥ 20 ◦C predicts that the total length of stormwater pipes in the loggershed and
baseflow will increase the duration of ≥20 ◦C days by 2; the percent tree canopy in the
5 m riparian area will reduce the duration of ≥20 ◦C days by 5. Therefore, the prediction
that the greater the tree canopy per surface in the riparian area, the lower the frequency
and duration of exceedance for water temperature stress thresholds was well supported by
the data.

3.3. Annual Magnitude of Change
3.3.1. Metrics

The moving average of daily maximum temperature (MovingAMaxT) ranged from
16 to 22 ◦C for 21 days, and 17 to 22 ◦C for 14 days, which both include values for sites
that exceed the stress threshold water temperature value for rainbow trout (≥20 ◦C) [73].
The 7d Moving AMaxT range of values, 18 to 25 ◦C, includes 10 sites that exceed the stress
threshold water temperature value for rainbow trout and one site that exceeds the stress
threshold water temperature value for virile crayfish (≥25 ◦C) [71].

3.3.2. Significant Correlations and Best Fit Mixed-Effects Models

Pearson correlation analysis identified negative correlations between the percent tree
canopy cover in the 5 m riparian area and MaxT21 (−0.75, p < 0.02), MaxT14 (−0.71,
p < 0.03), and MaxT7 (−0.66, p < 0.05). Pearson correlation analysis also identified positive
correlations between the total stormwater pipe length in the loggershed and MaxT21 (0.85,
p < 0.00), MaxT14 (0.89, p < 0.00), and MaxT7 (0.92, p < 0.00) (Figure 4). The best model to
predict MaxT21 (p = 0.00, Adjusted R2 = 0.97), MaxT14 (p = 0.00, Adjusted R2 = 0.99), and
MaxT7 (p = 0.00, Adjusted R2 = 0.99) all included percent tree canopy in the 5 m riparian
area (TC5m) and total length of stormwater pipes at the loggershed scale (SWpipes).

3.3.3. Mixed-Effects Model Interpretation

These models for MaxT21, MaxT14, and MaxT7 predict that the percent tree canopy
in the 5 m riparian area will reduce MaxT water temperature values by ~0.05 ◦C; the
length of stormwater pipe in the loggershed will increase the MaxT water temperature
values by 0.01 ◦C (Table 5). The Moving AMaxT range of values exceeded the stress
threshold water temperature for rainbow trout at 10 sites and for virile crayfish at one
site. Significant mixed-effects models for MovingAMaxT predicted that the percent tree
canopy in the 5 m riparian area would reduce the MaxT water temperature by ~0.05 ◦C.
In addition, significant mixed-effects models for May–August ADMax water temperature
predicted that the percent canopy in the 5 m riparian area would reduce the MaxT water
temperatures ~ 4–7 ◦C. Therefore, the prediction that the greater the tree canopy in the
riparian area, the lower the water temperature was well supported by the data.

3.4. Monthly Magnitude of Change
3.4.1. Metrics

The mean Monthly ADMax (April to October) for all sites ranged from 15 ◦C in April
to 25 ◦C in August. The JuneADmax and SeptemberADmax values for 11 out of 14 sites
were ≥20 ◦C (stress threshold water temperature for rainbow trout). The JulyADMax and
AugustADMax values were ≥20 ◦C at all sites; and the April, May, and October ADMax
values were all ≤20 ◦C at all sites.

3.4.2. Significant Correlations and Best Fit Mixed-Effects Models

Pearson correlation analysis identified negative correlations between the percent tree
canopy cover in the 5 m riparian area and all monthly ADmax values (April to October),
(correlation range −0.70 to −0.90, p values range < 0.00 to 0.01. Pearson correlation analysis
also identified correlations between the percent tree canopy cover in the 30 m riparian
area and monthly ADmax values for April to July and October (correlation range −0.70 to
−0.90, p values range < 0.00 to 0.00). There were also positive correlations between percent
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impervious surface in the 30 m riparian area and both April ADmax (0.8, p < 0.00) and May
ADmax (0.7, p < 0.01). The total length of stormwater pipe in the loggershed was positively
correlated to April through July ADMax (0.70, p values range < 0.00 to 0.01) (Figure 4).

The best model to predict April ADmax (p = 0.00, Adjusted R2 = 0.79) included percent
impervious surface in the 30 m riparian area (Imp30m) and total length of stormwater
pipes at the loggershed scale (SWpipes). The best model to predict May ADmax (p = 0.00,
Adjusted R2 = 0.89) included percent tree canopy in the 5 m riparian area and total length of
stormwater pipes at the loggershed scale. The best models to predict June ADmax (p = 0.00,
Adjusted R2 = 0.88) and July ADmax (p = 0.00, Adjusted R2 = 0.83) included percent tree
canopy in the 5 m riparian area, total length of stormwater pipes at the loggershed scale,
and baseflow index. The best model to predict August ADmax (p = 0.00, Adjusted R2 = 0.68)
included percent tree canopy in the 5 m riparian area and baseflow index. The best model
to predict October ADmax (p = 0.00, Adjusted R2 = 0.88) included percent tree canopy in
the 30 m riparian area and baseflow index (Table 6).

Table 6. Mixed-effects models to predict water temperature metrics for magnitude of change and variability based on April
to October 2016 data for 14 study sites. The average of daily maximum water temperature per month (Monthly ADMax),
maximum range per month, and variance of the mean daily water temperature per month are designed to quantify the
magnitude and variability in water temperature change per month for aquatic species in urban streams with 4 to 62%
impervious land cover. The models listed in this table are the final, best fit model to predict each metric after testing
6 candidate models per metric. The predictive variables included in the best fit predictive models for monthly ADMax are
variable by month, suggesting that sources of variability in urban stream habitats may affect aquatic species differently
during times of spawning (April to May), growth of early life stages (June), and times typically most thermally stressful
(July to August). Final candidate models to predict water temperature variability were only significant for June variance
and October range.

Metric Model (Y) t Value Pr(>|t|) Model

AprADMax Intercept 91.95 0.00 AprADmax = 14.23 + 4.39(Imp30m) + 2.61(SWPipes)
Imp30m 4.39 0.00 Adjusted R-squared: 0.79
SWPipes 2.61 0.02 Model: F statistic 25.48, p-value: 0.00

MayADMax Intercept 27.28 0.00 MayADmax = 19.78–6.72(TC5m) + 2.43(SWPipes)
TC5m −6.72 0.00 Adjusted R-squared: 0.89

SWPipes 2.43 0.03 Model: F statistic 54.86, p-value: 0.00

JuneADMax Intercept 19.40 0.00 JuneADmax = 25.94–5.28(TC5m) + 2.63(SWPipes) + 2.08(BF)
TC5m −5.28 0.00 Adjusted R-squared: 0.88

SWPipes 2.63 0.03 Model: F statistic 31.79, p-value: 0.00
BF 2.08 0.06

JulyADMax Intercept 17.56 0.00 JulyADmax = 28.73–4.25(TC5m) + 2.28(SW Pipes) + 1.75(BF)
TC5m −4.25 0.00 Adjusted R-squared: 0.83

SWPipes 2.28 0.05 Model: F statistic 21.58, p-value: 0.00
BF 1.75 0.11

AugADMax Intercept 15.40 0.00 AugADmax = 30.87–3.64(TC5m) + 3.22(BF)
TC5m −3.64 0.00 Adjusted R-squared: 0.68

BF 3.22 0.01 Model: F statistic 14.72, p-value: 0.00

OctADMax Intercept 92.43 0.00 OctADmax = 17.26–9.43(TC30m) + 2.36(BF)
TC30m −9.43 0.00 Adjusted R-squared: 0.88

BF 2.36 0.04 Model: F statistic 45.89, p-value: 0.00

JuneVar Intercept 10.34 0.00 JuneVar = 0.89 + 5.38(Imp5m) + 3.58(SWPipes)
Imp5m 5.38 0.00 Adjusted R-squared: 0.79

SWPipes 3.58 0.00 Model: F statistic 27.4, p-value: 0.00

OctRange Intercept 15.35 0.00 OctRange = 6.37– 5.15(TC)
TC −5.15 0.00 Adjusted R-squared: 0.70

Model: F statistic 26.56, p-value: 0.00
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3.4.3. Mixed-Effects Model Interpretation

These models for monthly ADmax predict that the percent tree canopy in the 5 m
riparian area will decrease average daily maximum water temperature per month by
~6.7 ◦C in May, ~5.3 ◦C in June, ~4.3 ◦C in July, and ~3.6 ◦C in August. The models predict
that the total length of stormwater pipes per loggershed will increase the average daily
maximum water temperature per month by ~2.6 ◦C in April, ~2.4 ◦C in May, ~2.6 ◦C in
June, and ~2.3 ◦C in July. The models predict that baseflow will increase the average daily
maximum water temperature per month by ~2.1 ◦C in June, ~1.8 ◦C in July, ~3.2 ◦C in
August, and ~2.4 ◦C in October. In addition, the model for April ADmax predicts that
the percent impervious surface cover in the 30 m riparian area will increase the average
daily maximum water temperature per month by ~4.4 ◦C; the model for October ADmax
predicts that the percent tree canopy cover in the 30 m riparian area will decrease the
average daily maximum water temperature per month by ~9.4 ◦C (Table 6).

3.5. Monthly Variability
3.5.1. Metrics

The mean maximum range per month (April to October) for all sites ranged from
3.46 in September to 7.52 in April. The greatest variance of the mean daily water tempera-
ture per month for all sites ranged from 1.4 in June to 7.4 in May. The greatest values for
mean maximum range per month and variance of the mean were both in April and May
(Figure 5).

3.5.2. Significant Correlations and Best Fit Mixed-Effects Models

Pearson correlation analysis identified negative correlations between the percent tree
canopy cover in the 5 m riparian area and April (−0.80, p < 0.0), May (−0.70, p < 0.00),
and October (−0.80, p < 0.00) variance of the mean daily water temperature. June (−0.70,
p < 0.00) and October (−0.70, p < 0.01) variance of the mean were negatively correlated to
the percent tree canopy cover in the 30 m riparian area. Positive correlations to impervious
surface cover included correlations of April variance to percent impervious cover in the
5 m riparian area (0.70, p < 0.01), and May variance to impervious surface cover in the
5 m riparian area (0.80, p < 0.00) and percent impervious cover in the 30 m riparian area
(0.90, p < 0.00). October maximum range of water temperature was the only maximum
range per month value with significant correlations. These correlations included a negative
correlation with percent tree canopy cover in the 30 m riparian area (−0.70, p < 0.01), a
positive correlation with percent impervious cover in the 5 m riparian area (0.70, p < 0.00),
and a positive correlation with percent impervious cover in the 30 m riparian area (0.70,
p < 0.00) (Figure 4).

The only mixed-effects linear regression models with adjusted R2 ≥ 0.7 and p < 0.05
were models to predict June variance and October maximum range that included percent
impervious surface area in the 5 m riparian area, total length of stormwater pipes per
loggershed, and percent tree canopy cover per loggershed.

3.5.3. Mixed-Effects Model Interpretation

The best model for June variance (p = 0.00, Adjusted R2 = 0.79) predicts that the percent
impervious surface area in the 5 m riparian area will increase monthly variance by ~5.4 ◦C
and the total length of stormwater pipes per loggershed will increase monthly variance
by ~3.6 ◦C. The best model for October maximum range (p = 0.00, Adjusted R2 = 0.70)
predicts that the percent tree canopy cover per loggershed decreases the monthly variance
by ~5.2 ◦C (Table 6).

The prediction that the amount of impervious surface in the loggershed the greater the
water temperature variability was not well supported by the data, as only the June variance
predictive model included this variable in the candidate model with a lower adjusted
r2 (0.71) compared to the other candidate models (0.77 and 0.79). Otherwise, we found
no significant mixed effects models to predict frequency, duration, magnitude of change,
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and variability that included this variable. The prediction that the greater the length of
stormwater pipes in the loggershed, the greater the water temperature variability was not
well supported by the data either, as there were no significant correlations between any
monthly variance or maximum range values, and only the mixed effects model for June
variance included stormwater pipes as a predictive variable.
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4. Discussion

To our knowledge, this is the first time that the relationship between stormwater pipes
and water temperature metrics has been explored to better understand thermal dynamics
in urban watersheds. The results highlight important aspects of thermal habitat quality and
water temperature variability for aquatic species living in urban streams based on thermal
thresholds relevant to species metabolism, growth, and life history [9,10,78]. Although this
study was based on a limited number of study sites from one year of logger data, results
highlighted significant negative correlations (19 metrics) between percent of tree canopy in
the 5 m riparian area and water temperature.

Our results were consistent with the literature showing a negative effect of urbaniza-
tion on aquatic organisms, especially sensitive species such as trout, due to thermal stress
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and unsuitable thermal habitat [79,80]. Spring to early summer is an important period
for spawning behavior for many fish species, including blacknose dace [81] and rainbow
trout [82] that occur at sites of this study. Increases in water temperature variability during
these months associated with impervious surface cover may result in changes in timing of
spawning or changes in emergence and length of adult life stages for aquatic macroinverte-
brates [83,84]. Additionally, early life stages of fish that typically develop during the spring
and early summer require available prey at the right time for survival and growth into
the adult stage [16,17,59,60]. Change in the thermal triggers associated with spawning or
emergence can result in seasonal asynchronicity (match mismatch hypothesis) (e.g., [85]).
Using water temperature metrics to monitor thermal habitat conditions and to identify
times of the year when life history behaviors, such as timing of spawning migrations may
be affected, can be a useful tool for managers to better identify the thermal habitat being
impaired [22,62,74,86]. Our results showed that such as ADMax values for the months
of April, May, and June could be used to monitor the effects of thermal stress and water
temperature variation on early life stages of fish.

Urbanization and Thermal Degradation Mitigation

Although significant relationships between landcover and thermal metrics were ob-
served, this consistency of significant correlations was not the case for relationships between
water temperature and percent tree canopy in the 30 m riparian area (8 metrics), percent im-
pervious cover in the 5 m (3 metrics), or percent impervious cover in the 30 m riparian area
(4 metrics). In addition, tree canopy cover at the loggershed scale was the only significant
variable retained in the mixed effects model to predict October variability. These results
highlighted the importance of investigating other variables that can offset the benefits of
riparian trees and influence thermal results in urban streams.

Moreover, this study only found significant correlations between land cover variables
in the 5 m and 30 m riparian areas with the April, May, June and October variance and
October maximum range water temperature metrics. The only significant candidate mixed
effects models for monthly variability were for June, which included impervious surface in
the 5 m riparian area and length of stormwater pipes; October maximum range included
tree canopy cover at the loggershed scale.

This study showed the greatest values in monthly variance and maximum range in
April, May, and June (Figure 5). This variability in April and May was positively correlated
to impervious surface in the 5 m and 30 m riparian area. In addition, the June variability
was positively correlated to impervious surface in the 30 m riparian area and significant
mixed-effects models included impervious surface in the 5 m riparian area and total length
of stormwater pipes in the loggershed. These results are consistent with previous research
that documented greater fluctuation in water temperatures in urban streams relative to
percent impervious surface cover [87–90]. However, in addition to effects of impervious
surface cover on water temperature variability, this study identified significant negative
correlations between water temperature variability and tree canopy cover. Specifically, this
study identified significant negative correlations between April and May water temperature
variability and percent tree canopy cover in the 5 m riparian area and between variability
in June and percent tree canopy cover in the 30 m riparian area. Results of this study also
predicted a reducing effect of tree canopy cover in 5 m riparian areas on May and June
water temperatures of ~5–7 ◦C.

The study found positive significant correlations between the total length of stormwa-
ter pipes at the loggershed scale and 8 magnitude water temperature metrics, in loggersheds
with up to 5.34 km of pipe to 0.48 km of stream (Figure 2). Although significant mixed
effects models to predict water temperature variability included length of stormwater
pipes, this result is based on geospatially extracted data and was not based on direct mea-
surement of stormwater pipe leaks, stormwater inflows, green infrastructure effectiveness
for treating thermal pollution from stormwater effects, or groundwater input at study sites.
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Variability of water temperature is known to be influenced by local, reach scale inputs such
as groundwater inputs [1,27] and locations where tributaries enter the main channel [1,28].

Our results showed that the presence of stormwater pipes could potentially offset
the benefit of riparian trees, which highlights the need for further investigation of other
important variables which may affect riparian restoration outcomes. Similarly, other un-
derground structures could leak water with different temperatures (e.g., cooler), and mask
the effect of features such as impervious surfaces that usually cause thermal degradation.
Our results highlighted the importance of understanding connections between specific
urban features and thermal regimes. This is especially important for a project aiming to
mitigate the impact of urban thermal degradation. Additionally, our studies provided
insight on how the scale of the study could also influence the scale of the restoration action
and outcomes, as some variables may have a more significant influence over larger scales
(e.g., impervious surface). In contrast, others might have a more localized impact within
the loggershed space (e.g.,) tree canopy. This study highlighted that urban streams are
a complex mosaic of intertwining variables that ultimately influence the thermal regime.
More research on the thermal sensitivity for each variable is needed in order to develop
more meaningful management and mitigation recommendations for thermal degradation.

5. Conclusions

The most commonly applied thermal cooling best management practice (BMP) is
riparian tree planting, a strategy that has been applied in the United States since the 1970s
to mitigate the impacts from logging and agriculture [46,91–93]. Considering the results
of this study, which found significant correlations and predicted effects of stormwater
pipes, impervious surface, and riparian tree canopy cover on water temperature, further
research is needed to identify additional urban variables of importance and if riparian
tree canopy cover could still be used to mitigate increases in water temperature in urban
catchments [50,94,95]. Future studies using multiple years of water temperature data at
the loggershed scale and on-the-ground surveys of tree species within riparian area widths
5 to 30 m and greater, in addition to geospatial data, would be helpful to further investigate
characteristics of riparian areas that affect thermal regime along urban streams.

In urban areas with stormwater pipe networks such as the sites in this study with
10 out of 14 sites, ≥4 to 6 km of pipes per 1 km of stream, the local influence of stormwater
pipe outlets on water temperature is likely [96]. However, our study design was set up
with a logger at every ~50 m and geospatial data were extracted at the loggershed scale.
This study design was not set up to effectively quantify the effects of every tributary and
stormwater pipe outlet, which would require a more extensive network of loggers upstream
and downstream of each tributary confluence and stormwater pipe input longitudinally
throughout the stream network. In addition, the baseflow index was estimated using
USGS gage watershed locations at a scale too large to quantify local groundwater inputs
effectively [97]. Riparian vegetation is also known to influence local variability [25], and
local reach scale, transect based surveys of tree canopy cover, solar radiation, and tree
species influence on local hydrology and microclimate may offer insights into local water
temperature variability [42,98].

Our results confirmed that one of the greatest impacts of urbanization for aquatic
species is the induced thermal stress. The extent of thermal stress for aquatic species
depends on the availability of habitat with temperatures below thermal stress temperature
thresholds and the ability of species to disperse to those habitats. This highlight the impor-
tance of conservation and creating coldwater refugia within connected stream networks
that would offer refuge during times of thermal stress [28,99–101]. Previous studies have
documented coldwater refugia in highly urbanized watersheds (17% impervious) where
groundwater enters the stream [102,103]. Further direct measurement of groundwater
availability within stream networks at the loggershed scale and catchment (HUC 12) scale
may offer opportunities to identify other urban thermal refugia locations, keeping in mind
that groundwater can be an important source of water temperature variability at the local
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reach scale. Understanding how managers can use cold water refuges to create a mosaic of
thermal habitat for fish to thermoregulate may help prevent urban areas from becoming
thermal barriers to dispersal throughout stream networks.
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