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Abstract: The main aim of structural safety control is the multiple assessments of the expected
dam behaviour based on models and the measurements and parameters that characterise the dam’s
response and condition. In recent years, there is an increase in the use of data-based models for
the analysis and interpretation of the structural behaviour of dams. Multiple Linear Regression
is the conventional, widely used approach in dam engineering, although interesting results have
been published based on machine learning algorithms such as artificial neural networks, support
vector machines, random forest, and boosted regression trees. However, these models need to be
carefully developed and properly assessed before their application in practice. This is even more
relevant when an increase in users of machine learning models is expected. For this reason, this
paper presents extensive work regarding the verification and validation of data-based models for
the analysis and interpretation of observed dam’s behaviour. This is presented by means of the
development of several machine learning models to interpret horizontal displacements in an arch
dam in operation. Several validation techniques are applied, including historical data validation,
sensitivity analysis, and predictive validation. The results are discussed and conclusions are drawn
regarding the practical application of data-based models.

Keywords: concrete dam; machine learning methods; structural behaviour; sensitivity analysis;
model validation

1. Introduction

Dam safety is a continuous requirement due to the potential risk of environmental,
social, and economic disasters. In ICOLD’s bulletin number 138 [1] the assurance of
the safety of a dam or any other retaining structure is considered to require “a series of
concomitant, well-directed, and reasonably organised activities. The activities must: (i) be
complementary in a chain of successive actions leading to an assurance of safety, (ii) contain
redundancies to a certain extent so as to provide guarantees that go beyond operational
risks” [1]. Continuous dam safety control must be done at various levels. It must include
an individual assessment (dam body, its foundation, appurtenant works, adjacent slopes,
and downstream zones) and, as a whole, in the various areas of dam safety: environmental,
structural, and hydraulic/operational [2].

Structural safety can be understood as the dam’s capacity to satisfy the structural
design requirements, avoiding accidents and incidents during the service life. Structural
safety includes all activities, decisions, and interventions necessary to ensure the adequate
structural performance of the dam. The activities performed for the structural safety control
of large dams are usually aided by simulation models. According to Lombardi [3]: “the
difference between the predicted value and the actual reading is indeed the true criteria to
judge the behaviour of the dam”. Such predictions can be based on deterministic models,
such as finite element models or data-based models. Most large dams have an essential
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database of monitoring measurements, recorded along years, both from the environmental
variables (related to the main loads) and the dam response. This, together with the
developments in Machine Learning (ML) techniques, has led to a significant increase in
the use of ML models to support the analysis and interpretation of the observed structural
behaviour. The ML algorithms applied [4] include multiple linear regressions [3,5,6],
artificial neural networks [7–16], support vector machines [17,18], random forest [19] and
boosted regression trees [20]. A comparison of their performance can be found in [21].

Regression models are the most known and used data-based models for engineers
responsible for dam safety activities. They have been validated and tested over years of use,
and their capabilities and limitations are well known [21]. In recent years, new data-based
models based on ML methods have been adopted as a guaranty in redundancy to the
traditional adopted models to describe the observed behaviour or, in some cases, to study a
particular aspect of the dam behaviour. However, the growing use of ML models is mainly
restricted to scientific publications and academic examples, without a broad and deep
discussion about model validation and verification issues. These research and technical
gaps are partly because of the lack of agreement regarding how to reliably evaluating the
validity of these models and their scope of application. Open issues for their practical
implementation include:

• The adequate selection of input variables.
• The possibilities and limitations of their interpretation for identifying the effects of

the external variables.
• The required size of the available monitoring data for model fitting.
• The methods for handling missing values.
• The selection of training and predicted sets.
• The procedure for reliably evaluating model accuracy and defining warning thresholds

from model predictions.

In other fields with extended background on the application of data-based models, a
further effort was put into developing procedures and concepts for model validation. This
is the case of electrical engineering, where Sargent [22] proposed an overall framework for
verifying and validating simulation models in any area of expertise.

The problem is more relevant in social sciences, where the decisions of the modeller
have a substantial effect on the results because of the higher indetermination in the defini-
tion of the prediction task (e.g., [23]). Likewise, when complex databases are used, different
decisions may lead to opposite conclusions [24].

The main contribution of this work is the presentation of a methodology for the
validation and verification of ML models to the analysis and interpretation of the structural
behaviour observed in dams. In this work, Sargent’s framework is adapted to dam safety
for the validation and verification of data-based models for predicting dam behaviour. The
proposed approach is applied to the case study of an arch dam located in Portugal. Models
based on neural networks (NN), support vector machines (SVM), random forests (RF),
and boosted regression trees (BRT) are fitted for predicting the radial displacement of the
highest cantilever. The results are discussed, and conclusions are drawn regarding their
application in practice.

The article is organised as follows: Section 2 includes a state of art review regarding
the adoption and use of ML models to analyse and interpret the observed structural dam
behaviour. The proposed methodology for model validation and verification is presented
in Section 3. The case study is described in Section 4. The results of the application of the
proposed methods for validation and verification are presented and discussed in Section 5.
Finally, conclusions are included in Section 6.
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2. State of Art: Machine Learning Models for Dam Behaviour Interpretation
and Prediction
2.1. Overview about Machine Learning

Machine Learning is usually described as the study of “computer algorithms that
improve automatically through experience” [25]. There are two main ML approaches used
in different problems: supervised and unsupervised learning, Figure 1. In unsupervised
learning, only the input data is available. The objective is to define groups or classes of
similar samples, then assigning some class to new inputs. In supervised learning, both
the input variables and the true output of the system are available during the training
stage. The algorithm learns the association between inputs and response so that predictions
can be obtained when new inputs are provided to the model. Supervised learning is the
approach used in dam safety, using measured data from the past behaviour of the dam for
model fitting.

Figure 1. Supervised and unsupervised learning approaches.

Supervised models can in turn be classified into regression, if the output variable
is numerical, and classification, in case it is categorical. Although some applications of
classification in dam safety can be found in the literature [26,27], the vast majority of
examples of ML models in this field are based on regression.

As a result, only supervised regression models are considered in this work. Several
mathematical algorithms can be adopted, depending on the goal and the data available,
Figure 2. A description of the main algorithms used in the context of the interpretation
of the behaviour of dams can be found in [4,21]. As mentioned above, NNs, RF, SVM
and BRT are considered in this application. These algorithms are succinctly described
herein, together with the conventional multiple linear regression model, which is taken
as reference.

Figure 2. Main machine learning techniques used in dam safety assessment context.

The regression problem in dam safety can be formulated as follows: suppose that a
dataset with p independent variables and n observations,

(
X1, ..., Xp, Y

)
is available, where

Y represents the observed structural response, and X are the functions of water height
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above the dam base, temperature and time. The goal of a regression model is computing
an estimate of the response variable as a function of the inputs (Equation (1)):

Y = f
(
Xj

)
+ ε, j = 1 ... p (1)

where ε is the model error.
The overall process for building and applying data-based predictive models is sum-

marised in Figure 3. The monitoring data available is split into two separate datasets. The
former is used to calibrate the model parameters (e.g., number of neurons in a NN model),
while the latter is fed into the calibrated model for verifying prediction accuracy. Some
authors use all available data for training, which may be acceptable if regression models
are used. However, leaving an independent data set for model evaluation is essential for
most ML models to avoid overfitting.

Figure 3. General scheme for fitting and applying predictive models based on monitoring data.

2.2. Formulation by Separation of the Reversible and Irreversible Effects: The HST and
HTT Approaches

In the operation phase of the dam’s life, the thermal effect is directly related to the
air and water temperature variations. There are two main approaches for choosing the
parameters that represent the thermal effect in data-based models [6]: the HST (hydrostatic,
seasonal, time) approach and the HTT (hydrostatic, temperature, time) approach. In the
HST approach, the portion of the structural response due to the thermal effects is usually
considered as the sum of sinusoidal functions with an annual period, similar to air and
water temperatures variations. As a result, the thermal effects are smoothed. In the HTT
approach, the thermal effects are associated to temperatures measured on the dam body,
therefore, the actual evolution of thermal loads is considered. Although some authors have
presented the benefits of using measured temperatures of the concrete dam body with, or
instead of, sinusoidal functions [5], HTT models are not often used in day-to-day analysis
analysis because of the difficulty in the selection of the variables to represent the thermal
effect, especially when there is a large number of input variables. In this work, the HST
was the approach adopted to obtain the main results. More details regarding the input
variables usually adopted in this type of model can be found in [5–7,21,28].

The data-based models used for the prediction of the structural response of concrete
dams are based on the following simplifying assumptions:

(i) The analysed effects refer to a period in the life of a dam for which there are no
relevant structural changes.

(ii) The effects of the normal structural behaviour for normal operating conditions can
be represented by two parts: a part of elastic nature (reversible and instantaneous,
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resulting from the variations of the hydrostatic pressure and the temperature) and
another part of the inelastic nature (irreversible) such as a time function.

(iii) The effects of the hydrostatic pressure, temperature, and time changes can be evalu-
ated separately.

2.3. Machine Learning Models Used for the Dam Behaviour Interpretation and Prediction

Multiple Linear Regression (MLR) models are widely used by dam engineers. The
form of Equation (1) for a MLR model relating the independent variables to the dependent
variable can be written as (Equation (2)):

Y = β0 + β1X1 + β2X2 + ... + β jXj + ... + βpXp + ε (2)

where ε stands for the random error. The model can be represented by a system of n
equations that can be expressed in a matrix notation as Y = Xβ + ε where Y is a (n× 1)
vector of the dependent variable or response, X is a (n× (p + 1)) matrix of the levels of the
p independent variables, β is a ((p + 1)× 1) vector of the regression coefficients, and ε is a
(n× 1) vector of random errors.

The model assumes that the expected value of the random error is zero, i.e., E(ε) = 0;
the variance V(ε) = σ2 and the errors are uncorrelated [29–31]. In matrix notation, the
least squares estimator of β is β̂ =

(
XT X

)−1XTY while the fitted model is Ŷ = X β̂ and
the vector of the residuals is denoted by ε̂ = Y − Ŷ .

The general expression of the regression problem shown in Equation (1) applies to ML
regression models. However, the final mathematical expression is in general more complex
than that of the MLR, and, therefore, more difficult to analyse.

Neural networks can be considered as an extension of MLR models by adding a
non-linear transformation of the inputs [32]. The output of the model is computed as
presented in Equation (3):

yNN =
L

∑
l=1

wl · g(Xt) + b (3)

where L is the total number of neurons in the hidden layer, wl are the weights, Xt is a linear
transformation of the inputs Xj, and g(Xt) is a non-linear transformation. In this work, a
sigmoid function is used in the hidden layer, different for each neuron l, which is computed
as presented in Equation (4):

g(Xt) =
1

1 + eXt
(4)

Many variations of the original NN model have been proposed and used in different
fields: from the addition of several intermediate layers until the introduction of complex
algorithms to account for certain aspects of the model [33,34]. NN can be considered the
most popular ML algorithm in dam engineering [7,10,17].

In general, NN are prone to overfitting, i.e., their high flexibility allows for increasing the
prediction accuracy for the training data (in theory, perfect accuracy could be achieved [35]).
This issue can be alleviated using cross-validation or similar resampling techniques.

However, this does not imply that such model will be as accurate for an independent
data set. Therefore, the training process needs to be followed with care. An independent
data set needs to be considered to evaluate the model, for which prediction error should be
similar to that in the training set.

Support vector machines resemble NNs in some aspects, such as the inclusion of non-
linear transformations of the inputs. In this case, the inputs are transformed, then linear
regression is performed on the modified variables. Overfitting is also an issue for SVM
models, and the training parameters strongly influence the results. Consequently, SVM
models must be fitted with care: wide ranges of parameter values need to be considered,
and cross-validation or similar approaches must be followed to obtain reliable estimates on
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the prediction accuracy. SVM have been used in some publications related to dam safety,
but the effect of the model parameters was not examined in depth [4,11,17,21].

Other ML algorithms recently applied to the prediction of dam behaviour belong to
the family of tree-based models: random forests (RF) and boosted regression trees (BRT).
In both cases, the model outcome is computed from a typically large amount of simple
models, in this case, regression trees.

Regression trees are often used in classification problems because of their ease of
interpretation: usual rules can be represented by these models in the form of criteria for
dividing the original dataset into a series of groups with common features. However,
such approach can also be applied for regression, i.e., for predicting numerical variables,
by computing the average of the output variable for all elements in each of the resulting
groups. This approach keeps the interpretability, but prediction accuracy is lower than for
other algorithms. In addition, the resulting model is strongly dependent on the training set,
i.e., the addition of a few samples may result in highly different rules and predictions. To
overcome the limitations of regression trees, RF were proposed by Breiman [36], in which a
significant amount of simple regression trees is created, and the result is computed as the
average of their predictions. Additional ingredients of the RF algorithm include:

• Each tree is created from a bootstrapped sample of the training set, in which some the
samples are included, some are excluded, and others are duplicated.

• Only a random subsample of the inputs is taken for creating each split of each tree.

RF models are easy to implement and robust in complex settings [36], particularly
when the p

n ratio is high [37].
BRTs are also based on trees, with some differences:

• The tree models in the ensemble are simple, i.e., with just a few branches.
• Each tree is fitted on a random subset of the original training set.
• The residual of the previous ensemble is considered as the objective function for fitting

each tree. As a result, the model prediction is computed as the sum of outputs from
all trees (instead of the average, as for RF).

BRTs share some of the advantages of RFs regarding their robustness (low dependence
on the training parameters) and a lower tendency to overfitting [20].

An in-depth description of the mathematical foundation of these algorithms is out of
the scope of this article. They can be found in many publications with different viewpoints,
from theory to practice, a selection of which is included in Table 1.

Table 1. Reference publications on the ML algorithms considered.

Relevant Publications

Algorithm Theory and Fundamentals Practical Implementation

Neural networks [35] [7,8]
Support Vector Machines [38,39] [18,40,41]
Random Forests [36] [19,42]
Boosted Regression Trees [43,44] [20,45]

3. Methodology Proposed for Model Validation and Verification

The main concepts coined for general verification and validation of simulation models
can be summarised, based on Sargent’s framework [22], as follows:

• Model verification is “ensuring that the computer program of the computerized model
and its implementation are correct”.

• Model validation is a “substantiation that a computerized model within its domain of
applicability possesses a satisfactory range of accuracy consistent with the intended
application of the model”.



Water 2021, 13, 2717 7 of 27

• Model accreditation is determining if a model satisfies specified model accreditation
criteria according to a specified process.

• Model credibility is the concern with developing in (potential) users the confidence
they require to use a model and in the information derived from that model.

A model may be valid for one set of experimental conditions and invalid for another.
Performing model verification and validation is usually part of the (entire) model develop-
ment process. The graphical paradigm developed by Sargent [22] was adapted for dam
engineering (Figure 4).

Figure 4. Simplified version of the modelling process for dam engineering, adapted from [22].

These definitions presented by Sargent [22] were updated for the case of data-based
models in the field of dam safety and dam engineering. Thus, specialists in dam safety
activities can consider the verification and validation of ML models for the interpretation
of structural dam’s behaviour that:

(i) The problem entity is the system (real) composed of the reservoir, the dam and
its foundation.

(ii) The conceptual model is the mathematical/logical/verbal representation of the prob-
lem entity developed for a particular study, usually the analysis and interpretation of
the observed structural dam’s behaviour (based on recorded data).

(iii) The computerized model is the conceptual model implemented on a computer. In this
case, machine learning was adopted for the development of the model simulation.
A critical aspect of this topic is that the person who develops the ML model (as a
programmer or as a software user) must have a strong knowledge of how machine
learning techniques work and be familiarized with the programming language or
with the software in use.

(iv) The conceptual model validation is defined as determining that the theories and
assumptions underlying the conceptual model are correct and that the model repre-
sentation of the problem entity is “reasonable” for the intended purpose of the model.
For example, dam engineers usually perform this validation through the following
questions: Is the horizontal displacement of the dam body increasing with the increase
of hydrostatic water effect? Is the displacement downstream or upstream? Is the range
of displacements higher near the crest? Is the structural response due to the air temper-
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ature variations similar to a sinusoidal shape with an annual period? Can the effects
of the hydrostatic pressure, temperature, and time changes be evaluated separately?

(v) Computerized model verification is defined as assuring that the computer program-
ming and implementation of the conceptual model are correct. In the case of data-
based models used in dam engineering, this is performed through the knowledge
of the functioning, the field of application and the range of validity of the machine
learning methods. The computerized model is developed and tested to verify if the
conceptual model is well simulated using a “training set” of data from the reservoir-
dam-foundation system (problem entity). For the computerized model verification,
two types of verifications can be performed: (i) the first regarding the verification of
the programming code (if a home-made software is used) or regarding parameters
and to the learning method adopted in each case, and (ii) the second regarding the
verification of the conceptual model must be supported by a specialist with a strong
knowledge about the dam’s behaviour.

(vi) Operational validation is defined as determining that the model output behaviour
has sufficient accuracy for the intended purpose over the domain of the intended
applicability. This is usually achieved through the knowledge of the performance
indicators of the data-based models developed. In some cases, a new set of data from
the reservoir-dam-foundation system is used to validate the model.

(vii) Data validity is defined as ensuring that the data necessary for model building,
evaluation and testing, and conducting the model experiments to solve the problem
are adequate and correct. This is an important task usually performed through the
quality control of monitoring data—e.g., repeatability and reproducibility studies [46],
comparison between manual and automated measurements [47], the metrological
verification of the measuring devices [48], training of the operators, and through the
quantification of the measurement uncertainties in dam monitoring systems.

Verification and validation must be performed again when any change is made to the
model. For problem entity, some changes can result from some incident, change in the
properties of the dam body (e.g., due to changes in concrete proprieties due to alkalis-silica
reactions) or even improvement works performed in the structure or surrounding, e.g.,
due to tunnel excavations near the dam body for the construction of power boosts. In
typical situations, these models are used to characterize the pattern of the structural dam
behaviour in normal conditions of exploitation and then identify possible changes in the
structural condition of the dam.

In addition to the work used as the primary reference, several works [49–54] present
several validation techniques in different areas of expertise. Some of them have been used
in dam engineering for the validation of traditional models.

Based on the referred before, the authors propose the adoption of the following tech-
niques for the verification and validation of ML models for dam behaviour interpretation:
historical data validation, parameter variability-sensitivity analysis, predictive valida-
tion, comparison to other models, and analysis of the time evolution of the residuals, as
presented in Figure 5 and succinctly described in Table 2.

In dam engineering, the HST approach is consensually accepted, as referred before.
This approach assumes that the effects of the main loads (water level and temperature
variations) on the structural response can be considered independently (known as sep-
aration effects). This can be checked by applying a sensitivity analysis as proposed in
this work. Indirectly, the potential risk of dams (low probability of accident but with very
high consequences) is an aspect that justifies the need for robust model validation and
verification process.
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Figure 5. Proposed techniques for the verification and validation of ML models for dam
behaviour interpretation.

Table 2. Description of the proposed techniques for model validation and verification of ML models
for dam behaviour interpretation, adapted from [22].

Validation
Technique

Description

Historical data
validation

Part of the data is used to build the model, and the remaining
data are used to determine (test) whether the model reproduces
the behaviour of the system.

Sensitivity analy-
sis

The values of the input variables are changed and the effect on
the model output is analyzed, which should resemble the ob-
served behaviour of the real system. This technique can be used
qualitatively—directions only of outputs—and quantitatively—
both directions and (precise) magnitudes of outputs.

Predictive vali-
dation

The model is used to generate predictions of the behaviour of
the system, which are later compared to the observed response
to identify anomalies and draw conclusions regarding the safety
state of the dam. The data may come from an operational system
or be obtained by conducting experiments on the system, e.g.,
field tests.

Comparison to
other models

This action is transversal and is performed for all three previous
processes, i.e., results of different models in terms of historical
data validation, sensitivity analysis, and predictive validation are
compared and discussed.

Time evolution
of the residuals

This action allows to easily identify if there are singularities on
the observed behaviour or sometrend (such as a change of the
observed pattern) over time.

The mathematical calculation and the graphic representation presented in the follow-
ing sections were supported by the R project software and several packages [55–62].

4. Case Study
4.1. The Salamonde Dam

Salamonde dam (Figure 6) is located in the Cávado River, which flows through north-
western Portugal, being part of the hydro-electrical system of Cávado-Rabagão-Homem
owned and operated by EDP [63]. The Salamonde dam consists of a double curvature
arch. The construction completion date was 1953. The maximum dam height is 75 m,
and the total crest length is 284 m. The maximum reservoir water level is 280.0 m, with
a total storage capacity of 65 hm3. Following the best technical practices, the monitoring
system of the Salamonde dam aims at the evaluation of the loads, the characterization of
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the rheological, thermal and hydraulic properties of the materials, and the evaluation of
the structural response.

The monitoring system of the Salamonde dam consists of several devices, which
measure physical quantities such as concrete and air temperatures, reservoir water level,
seepage and leakage, displacements in the dam and on its foundation, joint movements,
and pressures, among others. The deformation of the dam body is controlled with five
inverted pendulums (FP1 to FP5).

In this case study, the measurements of the (absolute) horizontal displacements (radial
direction) measured at the highest base (at 277.07 m) of the combined FP3 and FP5 pendu-
lums is analysed (FP3/5–277.07 m). The location of the FP3/5–277.07 m base is shown in
Figure 6.

Figure 6. Salamonde dam: Upstream and downstream dam faces and pendulum distribution.

4.2. The Analysed Data

The data analysed corresponds to a period between January 2000 and December 2019,
resulting in more than 934 observations per variable. The data between January 2000
and December 2014 was used for training the ML models. The dam behaviour and its
structural condition during the period of the training set, are considered adequate by the
dam engineering specialists. So, the main purpose is to obtain ML models able to represent
the behaviour pattern observed in the training set with a good generalization capability.
Once the ML models are generated, the purpose is to use them in the day-to-day dam
monitoring and safety activities. Thus, the data from the time period between January 2015
and December 2019 was adopted as a predicted set. The time evolution of the reservoir
water level and radial displacements in the referred FP3/5–277.07 m base are presented in
Figure 7. The statistical characterization of the radial displacement and of the water height
variations is presented Table 3.
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Figure 7. Radial displacements in FP3/5–277.07 m and reservoir water level along time.

Table 3. Statistical parameters for the radial displacement measured in the FP3/5–277.07 m and for
the reservoir water level.

Radial displ. (mm) Water Height (m)
Training Set Predicted Set Training Set Predicted Set

Mean (mm) 14.49 9.90 66.16 69.09
Max (mm) 39.9 26.9 74.1 73.46
Min (mm) −4.1 −3.5 45.8 62.64
σ (mm) 10.58 7.69 6.60 2.60

The structural response of the displacement at any point of the dam is strongly
related to the corresponding variation in the water level in the reservoir. The observations
presented in Figure 7 were used for the computation of the models presented in this work.
Signs (+) indicate displacements towards upstream and signs (−) towards downstream.

A characterization and knowledge of the main data prior to any deep analysis are
essential to avoid misinterpretation of the dam behaviour. One part of this task is usually
performed through expedite data visualization, as presented in Figure 7. Figures 8–11 can
also support this first analysis in order to identify the domain of the training set, in terms
of (i) the water level (Figures 8 and 9) and also the thermal (indirectly to the range of data
in a month) loads and, (ii) in terms of the displacements observed (Figures 10 and 11).

Figure 8. Water height from 2000 to 2019, by month (training set: from 2000 to 2014 and predicted
set: from 2015 to 2019).

Figure 9. Water height from 2000 to 2019, in polar coordinate system, by month (training set: from
2000 to 2014 and predicted set: from 2015 to 2019).
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Figure 10. Radial displacements in FP3/5–277.07 m from 2000 to 2019 by month (training set: from
2000 to 2014 and predicted set: from 2015 to 2019).

(a) Positive values of measurements. (b) Negative values of measurements.

Figure 11. Radial displacements in FP3/5–277.07 m from 2000 to 2019 in polar coordinate system, by
month (training set: from 2000 to 2014 and predicted set: from 2015 to 2019).

4.3. The ML Models Developed

Once a basic knowledge about the main loads’ variations and radial displacement is
achieved, the ML models were developed following the HST approach. The ML methods
used were: the Multiple Linear Regression (MLR), Support Vector Machine (SVM), Mul-
tilayer Perceptron Neural Network (NN), Random Forest (RF) and Boosted Regression
Trees (BRT).

Although different ML models were considered in this work, the article focuses
on the methods and criteria for model validation and verification rather than on the
implementation of these models or their capabilities and limitations. This implies that
the models showed are not optimal, but they present an adequate generalization capacity.
In general, default training parameters were considered and a reduced amount of input
variables was included, being the same terms used for all models.

The MLR model was used for comparison since it is widely used and well known in
the dam engineering community. In addition, the radial displacement of an arch dam was
chosen, for which the HST approach is appropriate.

In this case study, the MLR model with the best performance for the radial displace-
ment of the FP3/5–277.07 m, yMLR was obtained as the sum of the hydrostatic pressure
term β4 × h4 (where h is the reservoir water level height and can vary between 0 and
75 m) and the temperature terms β5 × sin(d) + β6 × cos(d) to represent the effect of the
annual thermal variation of the temperature, where d = 2π j

365 and j is the number of days
between the beginning of the year and the date of the observation. No relevant variation
was recorded on the past behaviour of Salamonde Dam. This was verified in preliminary
fits of the MLR model, including time-dependent terms. The results (not shown) confirm
the negligible effect of time. Therefore, no time effect was considered in any ML model.

The input variables (h4, sin(d) and cos(d)) were used in the same form in all the ML
models. They were previously transformed in order to vary between zero and one. The
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regression coefficients of the MLR models obtained are β4 = −26.445, β5 = −12.378 and
β6 = −12.624, with β0 = 42.125; being the MLR model represented through the Equation (5).

yMLR = −26.445h4 − 12.378sin(d)− 12.624cos(d) + 42.125 (5)

The residuals were obtained through the difference between the observed horizontal
displacement and the corresponding predicted value. These values contain all information
that the model cannot explain.

Regarding the development of the remaining ML models:

• SVR model: a Gaussian RBF kernel with an ε-insensitive loss function was adopted
and several values of ε (0.05, 0.1, 0.5), C (1, 10, 20) and γ (0.1, 0.2, 0.3, 0.4) were tested
on 2/3 of the training data, and their accuracy evaluated on the remaining 1/3. The
best combination of parameters were ε = 0.1, C = 10 and γ = 0.3.

• NN model: Every neuron in the network is fully connected with each neuron of the
next layer. A logistic transfer function was chosen as the activation function for the
hidden layer and the linear function for the output layer. Parameter calibration was
used for the NN model to select the number of neurons in the hidden layers: models
with 3, 4 and 5 neurons were tested. To find out the optimum result, 15 initializations
of random weights and a maximum of 1500 iterations were performed for each NN
architecture. A cross-validation technique was adopted to select the best NN: 65%
of the training set was used for training, 20% of the training set was used to choose
the NN with better performance and 15% of the training set was used to check the
performance of the NN model.

• RF model: Default parameters were used for the RF model, i.e., 500 trees and one
input variable randomly taken for each split.

• BRT model: Default parameters of the gbm package [62] were applied, with 300 trees
in the final model.

Higher prediction accuracy may be obtained for the case study after a throughout
selection of variables and model calibration, but that is out of the scope of this article. By
contrast, stress is put on analysing the outcomes of the models and their comparison with
reference methods and engineering knowledge.

5. Results and Discussion

The results obtained from the proposed model validation and verification techniques,
splited in five steps, are presented and discussed in the following sections (Figure 12).

Figure 12. Workflow of the proposed techniques for the verification and validation of ML models for
dam behaviour interpretation.

5.1. Step 1: Historical Data Validation

The availability of monitoring data for a certain period is a requirement for fitting any
predictive data-based model. In general terms, reserving part of the data for validating
the model is always a good practice. The primary step in model validation is thus the
comparison between model predictions and the observed response for the time period used
for model fitting (training period). Once a model is obtained (e.g., a good performance and
generalization capacity are expected) and it is put into operation, new data is presented
to the model. In the case study, this new data, from the predicted period, results from
measurements obtained after the last measurement record of the training period. Being the
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training and the predicted periods part of historical data, a similar pattern within the two
periods is expected if there is no change in the behaviour of the reservoir-dam-foundation
system. As a consequence, a similar performance is expected when the predicted set is
presented to the model.

Three different ways of comparison are suggested. First, the time series of predictions
can be plotted together with the observations, i.e., placing the date in the horizontal axis
and both predictions and observations on the vertical one. This allows for analysing
whether the model predictions follow the variations observed due to changes in water
level and air temperature. A detailed analysis of this plot also permits identifying periods
of large errors, which can be later analysed in detail. Placing the time series of residuals,
i.e., the difference between predictions and observations is also a good practice. Figure 13
shows these plots for all models considered.

The nature of the predictive model needs to be considered for the interpretation of
these plots. In particular, the MLR model is less flexible and, therefore, usually presents
more bias and less variance. It can be taken as a reference for assessing the variance of ML
models, more prone to overfitting.

The reading frequency for water level is higher than for the response variable in
the selected case study. This is often the case in many dams without a fully automated
monitoring system. As a result, model predictions can be plotted with a higher degree of
detail, and thus conclusions can be drawn from the time evolution of predictions.

Having a low training error is a necessary condition for a ML model to be effective,
but it is not sufficient for ensuring high accuracy in practice. All ML models may overfit the
training data, in which case actual prediction accuracy, e.g., that obtained when new data
is fed to the model, is much lower. However, computing some error metrics is a useful first
step in model validation. Table 4 presents some performance parameters for the training
set: the mean error, mean(ε), the mean absolute error, mean(|ε|), the maximum absolute
percentage error, MAPE; the maximum absolute error, |εmax|, the minimum absolute error,
|εmin|, and the root mean square error, RMSE. As a complement to the table and plots
presented, the density function of the residuals is also useful, Figure 14. It can be seen that
the overall density functions resemble the normal distribution for all ML models, while
that of MLR shows a left tail.

Table 4. Performance parameters for the MLR, SVR, NN, RF and BRT models regarding the
training set.

MLR SVR NN RF BRT

mean(ε) (mm) 0.00 0.07 0.02 −0.01 0.02
mean(|ε|) (mm) 2.12 1.33 1.51 0.84 1.81
MAPE (%) 42.78 34.41 34.33 25.86 47.45
|εmax| (mm) 8.02 8.90 7.81 5.04 7.51
|εmin| (mm) 0.00 0.00 0.00 0.00 0.00
RMSE (mm) 2.60 1.88 1.97 1.15 2.22
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Figure 13. Measurements of the training set and output of the Machine Learning models for the
horizontal upstream-downstream displacements at FP3/5–277.07 m base, block GH.

Figure 14. ML model residuals distribution for the training data.

The performance metrics for the training set show higher accuracy for the SVR, NN,
RF and BRT models than for MLR model. This can be taken as a first verification of the
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validity of the calibration process. However, this result should be confirmed by the results
on an independent data set, not used for model fitting.

It should be noted that in spite of the low values of the mean absolute error and the
RMSE, MAPE is very high. This is because the target variable includes values close to zero,
for which even small prediction errors can result in very high MAPE (the error is divided
by the observed value). It is thus important to consider several performance parameters.

The graphical analysis of residuals (difference between predictions and observations)
is another helpful tool in model validation. This can be done by exploring the predictions
vs. observations plot, which is a conventional way of analysing predictive models. Adding
a straight line through the origin with a 1/1 slope helps the analysis, since it corresponds
to a perfect fit. These plots are included in Figure 13 for all models. In addition to the
spread of the results and their distance to the perfect fit line, these plots allow verifying the
sign of the errors and detecting changes for certain regions of the range of variation of the
target variable.

A modified version of the plots mentioned above that can be interesting in dam safety
analysis implies the separation of the overall predictions-observations couples as a function
of the month the measurements were taken. Figure 15 includes this representation for all
predictive models and the training data. Vertical lines were added to highlight the range of
variation of the response variable for each month. This is highly relevant for all models,
but particularly for those based on ML: their applicability is restricted to such range of
variation of the data. Their higher flexibility implies that their reliability greatly decreases
when new inputs are taken out of the scope of the training data. So, the application of any
ML model (even MLR models) for new data out of the domain of the training set is not
recommended because meaningless or even erroneous results may be obtained.

5.2. Step 2: Sensitivity Analysis

The identification of the effect of each external variable is often used when analysing
predictive models in dam safety. Different procedures can be applied, partially depen-
dent on the nature of the model. ML techniques are often criticised for being ”black
boxes”, difficult to interpret. These models can capture interactions among inputs and
non-linearities, making them more complex and challenging to analyse. Nonetheless, some
specific methodologies for model interpretation can be applied to particular algorithms.
For example, relative influence and partial dependence plots helped detect thermal inertia
in an arch dam from a model based on BRT [20]. Other techniques have been proposed for
the same purpose [64].

In the case of MLR, the conventional procedure implies plotting the predictions when
the input under analysis is varied along with its range of variation while other inputs are
fixed to their mean values. This is the simplest form of sensitivity analysis. This approach
has limitations since the external effects are not independent (water level variations affect
the thermal field in the dam body). However, it is simple and well known and can be
applied to any predictive model. Therefore, it was used in this work. The results are shown
and discussed herein.
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Figure 15. ML model values vs measurements of radial displacements in FP5/5–277.07 m from 2000
to 2014 (training data). The vertical lines are the maximum and minimum measured values obtained
during the training set.

5.2.1. Effect of Water Level

The analysis of the effect of water level as learned by each predictive model was made
based on the plots shown in Figure 16. Curves show models predictions for the 15th day of
each month, a vector of values of the water level taken with an interval of 0.1 m, along the
possible range of variation. The available measurements are also plotted for reference, as
well as vertical lines highlighting the maximum and minimum observed values. However,
the distance from the curves to the observations does not reflect the actual prediction errors,
since the actual day of record is, in general, different from the 15th for the observations.

The effect of hydrostatic load on the radial displacements in arch dams is well known:
higher water levels are associated with deformation toward the downstream side and
vice-versa. This was captured by all models considered, though relevant differences can
be mentioned.

The curves for models based on trees (BRT and RF) show high non-linearities for some
months, e.g., February, June, August. In addition, predictions follow a series of steps as the
water level increases. This is due to the underlying mechanism for fitting these models.
The regression trees used are created by dividing the input space into adjoint regions and
computing predictions independently.
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Figure 16. Sensitivity analysis due to the hydrostatic effect for Machine Learning model results based
on the training data. The vertical lines are the maximum and minimum measured values obtained
during the training set.

By contrast, NN and SVR, both based on non-linear smooth transformations of the
inputs, resulted in smooth effects. In general, this can be considered as more representative
of the actual effect of the hydrostatic load. Nonetheless, the results for some months are
not in accordance with engineering knowledge. For instance, the curve for July of several
models shows a horizontal part followed by a stretch with a high slope, then another
inflection. Similar shapes are obtained for May and June. This can reasonably be attributed
to some degree of overfitting. It should be noted that a small amount of observations
is available for these months and low water levels, whereas the density of records for
high levels is greater than for low levels. By contrast, the SVR model shows low variance
without inflection points and results close to those obtained from the MLR model.

Since predictions were generated for the whole range of water level variation and all
months, this plot is also helpful in observing the behaviour of the models when extrapo-
lating. Tree-based models take constant values when predicting out of the training range.
This results in close to horizontal sections of the curves (e.g., January, February, March).
The results for other models show the increasing variance from MLR (the lowest) to SVR
and NN.

The reliability of the results for all models is nonetheless poor for low water levels
and winter months since the information available in the training set for those conditions
is also poor.

However, the disagreement observed between the results for the water level effect
and the physical phenomenon does not imply that the correspondent models have to be
discarded for prediction. Their performance can be useful as far as the input variables
remain within the range of variation of the training set. This is actually the situation in the
case study: the reservoir level in the prediction period remained high (Figure 7).

5.2.2. Effect of Temperature

A similar process was followed to compute the effect of temperature on the radial
displacement. It should be remembered that temperature is indirectly considered in the
models as a function of the calendar day. Therefore, the curves are calculated in this case
from the predictions for each date. As for the water level, the range of variation from the
training set was divided into 8 regions with the same amount of records. Predictions are
made from the mean level for each region.
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Figure 17 show the results. The size of the intervals reflects the scarcity of records for
low water levels: the first two regions include around 8 m of water variation to have as
many records as for 1–3 m with a high water level.

Figure 17. Sensitivity analysis due to the thermal effect for Machine Learning model results based
on the training data. The vertical lines are the maximum and minimum measured values obtained
during the training set.

The shape of the curves of all models again matches the knowledge on the physical
process: high temperatures result in concrete expansion, which generates deformations in
the upstream direction due to the mechanical restrictions of arch dams. The same reason
results in deformation to the downstream side for the first months of the year.

The thermal effect is also well known in these structures and was captured by the
models. The higher deformations toward upstream do not match up with the hottest
months, but some time later. This reflects the delay between changes in air temperature
and the thermal field in the dam body.

5.3. Step 3: Predictive Validation

The same methods used for historical data can be applied to the recent period of
records, which was not used for model fitting.

The analysis of predictions for this period shall focus on detecting whether overfit-
ting exists in ML models. First, prediction errors were computed (Table 5). The highest
prediction accuracy was obtained for MLR, though differences were slight.

The comparison between these results and those for the training set reveals a relevant
difference between MLR and ML models: while the performance of MLR is better for the
prediction set, all the others ML models featured lower accuracy. This result is reasonable
and shows the tendency to overfitting of ML models. MLR is less flexible, which is a
limitation under some circumstances (if more relevant inputs are involved or if response
variables of a different nature need to be considered) and reduces the risk of overfitting.
It can be concluded that training error is a good estimate of generalization capability for
MLR but not for ML models. This implies that using a separated part of the training set
to evaluate model accuracy is essential when ML models are used (e.g., NN), but not as
critical for the MLR model.
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Table 5. Performance parameters for the MLP, SVR, NN, RF and BRT models regarding the predicted
set.

MLR SVR NN RF BRT

mean(ε) (mm) −0.61 −0.25 −0.29 −0.47 −0.52
mean(|ε|) (mm) 1.66 1.84 1.85 1.99 1.92
MAPE (%) 38.41 34.85 37.26 46.88 58.21
εmax (mm) 4.69 7.05 7.44 6.92 6.47
εmin (mm) 0.00 0.01 0.01 0.00 0.02
RMSE (mm) 2.02 2.39 2.40 2.51 2.42

The difference between accuracies on both datasets also depends on the distribution
of the target variable in both sets. In the case study shown, the water level in the prediction
period remains high. Consequently, the performance metrics of the models for this period
correspond to their predictive capability for high water levels. In this case, since high levels
were more frequent in the training set, model accuracy is also higher. Hence the overall
prediction accuracy can be expected to be lower for all models. This should be taken into
account in practice if the model is applied during a period of low hydrostatic load.

As in the training set, MAPE is high for all models for the same reason: a relatively
low error for small target values may result in extremely high MAPE. As an example, the
maximum MAPE for the MLR model is 560% for an observed displacement of 0.7 mm.
This suggests that MAPE can be misleading when applied to certain target variables.

Figure 18 shows the time series of predictions and observations with the corresponding
residuals. A first exploration of these plots may lead to the conclusion that all models
have excessive variance: the time series of predictions is noisier than that of observations.
However, it should be reminded that the reading frequency of the water level is higher
than that of the displacements, and all predictions are shown in the plot. In addition, the
time series of reservoir level is indeed noisy (maybe due to the daily variations of the water
height in the reservoir). Taking these factors into consideration, the variance in predictions
seems reasonable. In addition, similar variability can be observed for MLR and ML models.
These conclusions were confirmed from the comparison between the standard deviation of
the observations and that of the predictions from each model (see Table 6).

The plot of predictions vs. observations (Figure 19) shows no relevant differences
to that for the training set. However, this kind of representation may be useful to check
the performance and confirm that the prediction is within the domain of the horizontal
displacements considered in the training set (vertical lines in the figure).

Table 6. Standard deviation of predictions and observations for the training and predicted periods.

Time Series Standard Deviation (mm)
Training Set Predicted Set

Observations 10.58 7.69
MLR 10.25 7.86
SVR 10.43 7.9
NN 10.45 7.97
BRT 10.35 8.12
RF 10.19 7.51
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Figure 18. Measurements of the predicted set and output of the Machine Learning models for the
horizontal upstream-downstream displacements at FP3/5–277.07 m base, block GH.

5.4. Step 4: Time Evolution of Residuals

The effect of time is often interpreted as the contribution of irreversible deformations
to the displacements since, in principle, such term encompasses all effects not explained by
the loads. This is the case of displacements in arch dams. In other typologies and response
variables, other inputs may play a role and a more detailed analysis is recommended.

In the case study considered, preliminary tests on the MLR models showed no relevant
irreversible effects. As a result, time was not considered as input in the models. However,
further verification can be made even in models where time was considered negligible.
Since model predictions are solely based on the external loads (temperature indirectly
considered from the calendar day), the temporal evolution of the residuals may reveal
unforeseen irreversible effects. This approach is similar to the analysis of the ”Corrected
measurements” proposed by Guo et al. [65]: the difference between model predictions
without time-dependent input and observed data can be considered as the evolution of the
response of the dam for identical load conditions over time. It can be thus be expressed as
presented in Equation (6):
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CM = Yobs −Ypred (6)

provided that time is not considered in the calculation of Ypred.
Guo and co-authors also suggested fitting a linear model to the CM to draw conclu-

sions on the evolution of the dam behaviour with the Equation (7):

CM = a0 + a1t + ε (7)

where t is the time.

Figure 19. ML Model values vs measurements of radial displacements in FP5/5–277.07 m from
2015 to 2019 (predicted data). The vertical lines are the maximum and minimum measured values
obtained during the training set.

The linear model can later be analysed to identify irreversible effects. This procedure
was followed for all models. In all cases, the slope of the linear fit is positive and small,
which might indicate a temporal evolution of the deformations toward the upstream
direction, Figure 20. However, the fit of the linear model to the residuals is also poor for all
models (R2 below 0.1), so no reliable conclusions can be drawn in this case.
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Figure 20. Residuals along the training and the predicted sets.

5.5. Step 5: Comparison to Other Models

The interpretation of the structural behaviour through different models is fundamental
to support an informed decision. This step was performed along with the four steps before,
verifying that the presented ML models are suitable for the interpretation of the horizontal
displacement analysed in the case study.

6. Conclusions and Final Remarks

In the day-to-day safety control of dams, data-based models are developed to anal-
yse and predict structural dam behaviour (such as displacements in a concrete dam),
considering main loads effects (such as the hydrostatic, temperature, and time effects).

The use of data-based models, namely based on HST and HTT approaches, using
machine learning techniques, has had an interesting evolution in dam engineering. World-
wide, the increase in the day-to-day use of ML techniques is expected, mainly in large
hydroelectric companies and entities responsible for dam safety control activities. In order
to ensure that models are adequate, validation and verification of the models by specialists
with expertise in dam engineering is necessary. In this work, the authors present sev-
eral recommendations, with scientific and technical frameworks, to validate and verify
ML models.

Based on the specificity of the dam safety control activities, five techniques to perform
model validation and verification were proposed and applied to the following ML models:
multiple linear regression, support vector machine, multilayer perceptron neural network,
random forest, and regression trees. These five techniques were: historical data validation,
sensitivity analysis, predictive validation, time evolution of the residuals, and comparison
to other models. All the models presented showed to be suitable for the analysis and
interpretation of the horizontal displacements presented in the case study. The proposed
validation and verification of the ML models is based on five techniques that were never
performed simultaneously. Sensitivity analysis is performed on all ML models, which is
crucial for improving confidence in their day-to-day use.

Performing model validation and verification is part of the model development pro-
cess. Our reflections and contributions are based on the article presented by Sargent [22]
and on the authors’ experience acquired along years of activity in the field of dam safety
control. They can be summarised as follows:
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• Dams are made of, and founded on, materials whose properties change with time,
so each data-based model has a limited lifetime (from a couple of months until
several years) and a regular update of the parameters of the models based on “new
data” is recommended. However, the model updating must be performed with data
representing the typical (and acceptable) dam behaviour.

• Good data quality is necessary to obtain good ML models, but an adequate learning
process is also necessary. The performance of the ML models is a consequence of
the quality of data (directly related to the measurements uncertainties or even errors
from the measuring process) and the suitability of the ML techniques adopted for the
intended purpose (e.g., analysis and interpretation of the dam behaviour).

• ML models showed to be able to learn the pattern behaviour of the data (sometimes
unseen from the users of the data). Some ML techniques are too prone to overfitting.
However, an adequate generalization capacity can be achieved if a suitable learning
strategy is adopted.

• Day-to-day dam safety activities based on data-based models are usually split into
two parts: model development and operation. Each part uses different data (from the
same source) recorded along time: the training and the prediction sets. However, these
two sets are recorded measurements. So, regarding the historical data validation, two
strategies can be performed: (i) use a part of the training set to validate the behaviour
of the model or, in other words, to verify the adequacy and the generalization capacity
of the model, and (ii) to use the own prediction set for this purpose (as usually verified
in MLR because the shape of the terms adopted is well known in this field).

• To perform predictive validation is a routine activity of dam engineers. This process of
forecast the structural response (based on known inputs) and compare to the observed
response is fundamental to identify possible measurement errors or some change of
the dam behaviour pattern observed before (namely on the training set) in order to
draw conclusions regarding the safety state of the dam.

• The water level and the temperature variations are two important loads to be consid-
ered in the study of the dam behaviour, and their effect on horizontal displacements
in concrete dams is well known. For this reason, performing sensitivity analysis in
the model regarding these two loads is relevant to the model validation process. This
is more important because one premise of the HST approach (adopted in this work)
is that the effects of the hydrostatic pressure, temperature, and time changes can be
evaluated separately.

• The knowledge about the evolution of the residuals over time can provide beneficial
information about how the reservoir-dam-foundation system changes. The properties
of this system change over time. However, a slow time dependency variation is
expected in most dams in normal exploitation. Evidence of trends may be, for example,
related to changes in concrete proprieties due to alkalis-silica reactions.

• Using more than one predictive model and comparing the results is strongly rec-
ommended. This can also be useful if some of the models are based on the FEM,
particularly when complex behaviour is observed or when the interpretation of the
model suggests some potential anomaly.

ML methods have proven to be an interesting and suitable tool for developing data-
based models, increasingly relevant mainly when the amount of information increases
with the measurement history. Like any tool, it has to be used by specialists with a broad
knowledge of how it works in order to obtain data-based models that satisfy the needs
of the dam safety control activities. Within this continuous process, the validation and
verification of the ML models adopted are key to having suitable models for reliable
analysis and interpretation of the dam behaviour.

The proposed methodology for validation and verification of ML models can be
applied to the prediction and analysis of other dam typologies and physical quantities, such
as those related to the dynamic behaviour (e.g., frequencies modes) and hydro-mechanical
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phenomena (uplift pressure and seepage). This can increase the credibility of ML models
in the dam engineering community and thus foster their widespread implementation.
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