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Abstract: Vegetation cover is an important factor controlling erosion and sediment yield. Therefore,
its effect is accounted for in both experimental and modelling studies of erosion and sediment yield.
Numerous studies have been conducted to account for the effects of vegetation cover on erosion across
spatial scales; however, little has been conducted across temporal scales. This study investigates
changes in vegetation cover across multiple temporal scales in Eastern Cape, South Africa and how
this affects erosion and sediment yield modelling in the Tsitsa River catchment. Earth observation
analysis and sediment yield modelling are integrated within this study. Landsat 8 imagery was
processed, and Normalised Difference Vegetation Index (NDVI) values were extracted and applied to
parameterise the Modified Universal Soil Loss Equation (MUSLE) vegetation (C) factor. Imagery data
from 2013–2018 were analysed for an inter-annual trend based on reference summer (March) images,
while monthly imagery for the years 2016–2017 was analysed for intra-annual trends. The results
indicate that the C exhibits more variation across the monthly timescale than the yearly timescale.
Therefore, using a single month to represent the annual C factor increases uncertainty. The modelling
shows that accounting for temporal variations in vegetation cover reduces cumulative simulated
sediment by up to 85% across the inter-annual and 30% for the intra-annual scale. Validation with
observed data confirmed that accounting for temporal variations brought cumulative sediment
outputs closer to observations. Over-simulations are high in late autumn and early summer, when
estimated C values are high. Accordingly, uncertainties are high in winter when low NDVI leads
to high C, whereas dry organic matter provides some protection from erosion. The results of this
study highlight the need to account for temporal variations in vegetation cover in sediment yield
estimation but indicate the uncertainties associated with using NDVI to estimate C factor.

Keywords: MUSLE; sediment yield; erosion; C factor; Tsitsa River

1. Introduction

The relationship between precipitation, vegetation and erosion is well known, having
been documented in the early work of inter alia [1]. The non-linear relationship between
precipitation and sediment yield were quantified by [1]. They showed that there is a con-
tinuous competition between vegetation and precipitation, where precipitation increases
erosion, and vegetation inhibits erosion. The study by [1] was expanded on by [2]. They
showed the influence of climate change on the drainage density by developing the empiri-
cal relationships concerning erosion, vegetation, and climate. The understanding of the
effects of vegetation on erosion ensured that it was listed as one of the parameters within
the Universal Soil Loss Equation (USLE) [3]. However, representing vegetation spatial and
temporal changes within models remains a challenge and recent studies refer to attempts to
find an appropriate temporal scale for parameterising the vegetation cover management (C)
parameter, typically using remote-sensing techniques [4–6]. Look-up tables for the USLE
to guide the derivation of C values for specific vegetation coverage categories is provided
by [3]. However, they also warn that these may not be directly applicable to conditions
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outside the areas in which the estimation methods were developed. Further developed
guidelines for C factor estimation were developed by [7], with a focus on conditions in the
USA where detailed vegetation cover data are available. Despite the restricted applicability
of these results, their insights remain a crucial starting point for developing region-specific
guidelines, particularly for countries such as South Africa where field measurements are
scarce, and the use of less detailed, low-resolution satellite data is a more accessible option.
It therefore remains important to explore different methodologies for deriving the value of
C [6,8], while also paying attention to temporal variations as a way of reducing some of the
many uncertainties associated with modelling erosion and sediment yield.

The C factor, as defined in the Modified Universal Soil Loss Equation (MUSLE), is
generally similar to that defined in the USLE and the revised USLE (RUSLE) [7]. Both
studies suggest that because the USLE was developed to estimate long-term average soil
loss, the factors in the equation (including the C factor) represent an integrated average
annual condition. Ref. [7] Suggestions that the effects of vegetation cover fluctuations
associated with rainfall and temperature tend to average out over time were made by [7].
Consequently, Ref. [9] proposed the runoff factor for representing specific events and
suggested that the new equation (MUSLE) could be coupled with a hydrological model [10]
to simulate the time series of sediment yield. However, the original USLE factors were
maintained [10,11] without an indication of how to account for variations in the C factor.
The C value is a simple linear scaling factor in MUSLE and understanding the effects
of changes to the value for a single storm event (or day) is trivial. However, if the C
value varies systematically with the value of the erosivity factor (R—based on runoff
estimates), the effects on both long-term sediment yield and the frequency distribution of
daily sediment yield are not readily predictable.

As the spatial scale of applications of USLE-based models has extended from the
plot to the watershed scale with the help of GIS [12], some of the USLE factors have
become difficult to estimate as prescribed in the original USLE and RUSLE handbooks [13].
However, GIS and remote-sensing data have enabled erosion factors to be mapped over
large areas, although limitations associated with accuracy still exist [6,10,12,14].

This paper explores the impact of different approaches to estimating the C factor on
simulated sediment yield, using the Tsitsa River catchment as an example. The approaches
include comparisons between a fixed value and a time-varying value and the use of NDVI
remote-sensing data to quantify the time-series variation in C. The general application of
the MUSLE model is based on fixed C values and this part of the study is designed to
assess whether adopting a more detailed approach to the C value estimation methods can
be justified in terms of improved results.

C Factor Mapping through Remote Sensing Technologies

Traditionally, the C factor has been determined by field measurements and interpola-
tion [3] using look-up tables for different land-cover classes. This approach is only feasible
at plot or field scales and becomes increasingly prohibitive as the study area increases,
because accurate measurements are expensive and time-consuming, and standard equip-
ment is often not available [8]. Recent applications of USLE and MUSLE type models are
frequently at the basin scale [15–18] and, therefore, C factor mapping using remote-sensing
data has been adopted [8]. A common approach is the use of classification of satellite
imagery to derive land cover/use, from which the C factor is then calculated e.g., [4].

During the classification of multi-spectral satellite imagery, thematic information
relating to land cover is extracted using semi-automated routines [19]. Various methods
of classifying satellite imagery have been developed. These can be merged into two
distinct categories: supervised and unsupervised classification methods [19]. Classification
methods cluster pixels within the satellite image based on their similarity to create land-
cover maps. The traditional method of assigning C factor values from the literature to
classified land-cover maps gives results that are constant over large areas [20] and fails to
represent the spatial variability of vegetation cover [21]. Errors in classification [10] are
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also introduced to the resultant C factor map [20]. Therefore, direct regression of NDVI to
the C factor is now used as an easier and cost-effective method of determining a spatially
variable C factor [8,20,22].

Different land-cover types have different spectral signatures, and it is possible to
isolate land-cover types in a satellite image based on spectral properties. Vegetation
indices (VI) [23] such as the The Normalised Difference Vegetation Index (NDVI) [24] are
continuous variables that allow for a detailed spatial and temporal comparison [8], whereas
land-cover/use databases do not offer such flexibility. Vegetation indices are influenced by
pigmentation, moisture content and the physiological structure of a vegetation type [25].
Chlorophyll absorbs more red and blue bands in the visible spectrum and reflects green
bands. In the near-infrared spectrum, the reflectance is high and proportional to the leaf
development and cell structure, whereas in the mid-infrared spectrum, the reflectance
is based on water content in the leaves [25]. Leaves of low water content reflect highly,
whereas those of high water content absorb light of the mid-infrared spectrum and reflect
less [25]. Consequently, NDVI is generally used to assess vegetation greenness [26] and
associated hydro-meteorological trends [27].

NDVI is calculated as a ratio of the different reflectance signals between the infrared
and red bands [19,28]. The NDVI is one of the most widely used vegetation indexes to
investigate vegetation health [8] and an important index used in vegetation and climate
change research [28]. NDVI values range from −1.0 to +1.0. Areas of bare soil, rock and
snow have low NDVI values of ≤ 0.1. Sparse vegetation such as grass and shrubs may
have NDVI values ranging from 0.2 to 0.5, whereas dense forest vegetation may exhibit
NDVI ranges of 0.6 to 0.9 [29]. Green vegetation, therefore, yields high NDVI values, bare
soil the lowest and water yields negative values.

Several studies [30–32] have attempted to develop NDVI to C factor conversion
methods. However, limitations include the fact that NDVI is sensitive to vegetation
vitality, which is not consistently correlated to its soil protective function [31]. Despite the
limitations, NDVI continues to be a commonly used method to determine the C factor for
large spatial scales (e.g., [11,20,22,33–36]). The close relationship between NDVI and Leaf
Area Index (LAI) [37,38] has also led to LAI being used to estimate the C factor (e.g., [39]).
However, satellite LAI data have been criticised for their poor representation of short
stature vegetation [37] and for sometimes being inaccurate by a factor of 2 [25]. The two
vegetation indices represent some of the more widely used methods to estimate the spatial
and temporal variability of the C factor [19,39,40], and this is important for catchment-scale
modelling.

2. Materials and Methods
2.1. Study Area

The Tsitsa River catchment is part of the larger Umzimvubu River catchment and the
Eastern Cape Province of South Africa (Figure 1). The Tsitsa River Catchment lies in a
mountainous region characterised by steep mountain slopes, gentle undulating foot slopes,
and almost flat valley floors [41]. The complex topography varies considerably in elevation
(900–2500 masl).

The catchment is also geologically variable, with high areas around the escarpment
consisting of basaltic lava from the Drakensberg formation (Jurassic), underlain by a
stratum of Triassic sandstones and mudstones [41]. The most frequent geological formation
is the fine sandstones from the Clarens formation, followed by mudstones from the Elliot
formation and sandstones of the Molteno formation [41]. There is also a small presence of
quaternary alluvium and intrusive dolerites occurring in thin bands.
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Figure 1. Map showing the location of the study area in the Eastern Cape Province, South Africa. The Inxu and T35C
sub-catchments flow into the greater Tsitsa catchment. The two sub-catchments were modelled independently and as part
of the entire catchment.

Soil depth is relatively low on the steep slopes and gradually deepens towards the
foot slopes and valley bottom areas due to colluvial and alluvial deposits. The thin soils on
steeper slopes become highly erodible when vegetation is removed [42], and this situation
is exacerbated by livestock over-grazing. Highly erodible duplex soils occur in some parts
of the catchment, resulting in massive gullying [43].

The climate is characterised by a distinct seasonality in rainfall and temperature. Most
rainfall (around 80%) occurs during the summer (October to March), whereas winters are
generally dry [44]. Mean annual rainfall ranges from 625 mm in the low-lying areas to
1415 mm in the mountainous regions [44]. Mean monthly temperatures range from 7 ◦C in
winter to 19 ◦C in summer, with high variation during the day.

The Tsitsa River catchment is dominated by the grassland biome, whereas the Eastern
valley bushveld thrives along river channels in the lower catchment [45]. The natural
vegetation is primarily influenced by altitude and burning [41], and small pockets of the
Afromontane forest occur along drainage lines and ravines, where fire has a minimal effect.
The National Land Cover [46] database shows that over 60% of the catchment area is
covered by grassland. Patches of natural forest also occur alongside forest plantations.
Other minority land cover/uses include commercial and subsistence agriculture, water
bodies, bare/degraded land, and urban and rural settlements [46].
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2.2. Acquiring and Processing NDVI Data

Mean monthly (years 2016–2017) values of catchment NDVI were accessed from
Google Earth Engine (GEE) [47] based on a script made available by the GEE developers
(https://code.earthengine.google.com/, accessed on 1 July 2020). LAI was also accessed
from GEE in order to assess the relationship between LAI and NDVI in the catchment.
For spatially distributed NDVI data, it was necessary to download and process images
within ArcGIS (ESRI, Redlands, CA, USA) to extract spatial attributes. Therefore, ‘Landsat
8 OLI/TIRS C-1 Level-2’ images were acquired. The data are atmospherically corrected
surface reflectance values. The raw satellite imagery used within the present study is
freely downloadable from the United States Geological Survey (USGS) Earth Explorer
(https://earthexplorer.usgs.gov/, accessed on 1 February 2018).

The imagery acquired were less contaminated with cloud cover because images with
>10% cloud cover were filtered in the search criteria. Two approaches were used to assess
the impacts of a variable C factor. The first was an inter-annual analysis over six years
starting in 2013 (the launch year of the satellite) and based on data for a single month (see
Table 1). Satellite images from March were chosen at the suggestion of [8] that a single
image selected over the main erosive season can suffice to describe the annual variability
in the C factor. March is part of the summer rainfall season and images for that month had
the least cloud cover. The second approach represents an intra-annual analysis using data
for all months over two years, 2016–2017.

Table 1. Dates of images acquired for inter-annual analysis.

Year Acquisition Date

2013 28 March

2014 14 March

2015 8 March

2016 19 March

2017 18 March

2018 9 March

For the downloaded satellite images, the red (band 4) and near-infrared (band 5) data
of Landsat 8 images were used in the analysis. NDVI was computed from these band
images using the ‘Raster calculator’ tool in ArcGIS 10.3. The expression used for calculating
the NDVI is:

NDVI =
NIR − Red
NIR + Red

(1)

2.3. NDVI to C Factor Conversion

Several methods of scaling NDVI to the C factor were assessed in order to find a
method that could be applied to the present study area. The assessment revealed that some
methods calculated C values that were outside the 0–1 from NDVI values above certain
thresholds (e.g., [31,48,49]) (see Table S1). Other methods calculated C factors that were
too high [11]. The method proposed by [32] gave C factor values within the reasonable
range without the need for modification (Equation (2)); hence, it was adopted for use in the
current study:

C = exp
[
−α· NDVI

(β− NDVI)

]
(2)

In Equation (2), α and β are parameters that determine the shape of the NDVI—C factor
curve, with values of 2 and 1, respectively. A low NDVI suggests little or no vegetation
and results in a high C factor, while a high NDVI results in a lower C factor.

The method proposed by [32] has been criticised for underestimating the C factor in
areas with intense rainfall [48], with specific reference to a catchment in Brazil. However,

https://code.earthengine.google.com/
https://earthexplorer.usgs.gov/
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a recent study by [4] reported that the same method over-estimates the C factor in a
tropical Brazilian catchment. Such disparities highlight the uncertainties associated with
the method, so that it is vital to assess if predicted C factor values correspond with field-
collected data [49]. In the current study, an assessment of the predicted C factor was
performed by collecting GPS points for each land cover (up to five replicates); more than
ten replicates for the prominent grass-cover type and then comparing the C factor of each
cover type to the NDVI-calculated C factor for the same area. The comparison yielded linear
regression R2 = 0.75 compared to field data (see Table S2), indicating that the calculated
NDVI C was a good predictor of the literature-suggested C values for the specific land-cover
types. A similar assessment was used by [31] and [32].

Differences in the intra-annual variations in the C factor were also analysed for the two
most prominent natural vegetation cover classes: grass (74%) and thicket/forest (5%). This
analysis was designed to assess which vegetation class was more variable, and thus might
have a significant influence on the mean catchment C. Vegetation classes (e.g., cultivation
[1.4%] and plantations [14.8%]) were not included because their temporal variation may
depend on human influence and the management information with regards to planting
and cropping is not easily accessible.

2.4. Sediment Yield Calculations

Three catchments, including the main Tsitsa catchment and sub-catchments Inxu and
T35C, were considered for the analysis and were all modelled independently. Initially, the
smaller T35C was used for the long-term inter-annual and two-year intra-annual analysis.
The other two catchments subsequently served to validate the outcome of the T35C analysis
based on observed sediment data. The sediment yield calculations were conducted using
the MUSLE, as applied in [50,51] in the form:

Sy = R.K.LS.C.P (3)

R = 1.586· (QD·qdp)0.56·(Area)0.12 (4)

where Sy is sediment yield (tons ha−1) for the entire catchment, is runoff depth in mm, qdp
is peak runoff in mm h−1, and Area is the total catchment area in ha. K, LS, C and P are the
soil erodibility, slope length and steepness, cover management, and soil erosion control
practice factors, respectively. The MUSLE factors were calculated similarly to [51] from
readily available spatial and hydrological datasets. Discharge data for the greater Tsitsa
and T35C catchments were accessed from the Department of Water and Sanitation (DWS;
http://www.dwa.gov.za/Hydrology/Verified/hymain.aspx, last accessed 20 August 2020).
Observed sediment data and discharge for the Inxu and Tsitsa catchments were measured
under the Tsitsa Project (see [51,52]),but only a few months of daily observed data were
available in both catchments. Seven months of data were available for the Inxu (October
2016 to April 2017). Monthly data were available for the Tsitsa catchment in 2016, except for
October. The LS factor was calculated from the Shuttle Radar Topography Mission (SRTM)
30 m DEM (https://earthexplorer.usgs.gov/ last accessed 1 February 2020) and ArcGIS
10.3.1. Soil erodibility data were obtained from the South African Atlas of Climatology
and Agro hydrology database [53]. The fixed C and P factors were estimated from the
South African National Land Cover [46] database (https://www.sanbi.org/biodiversity/
foundations/national-vegetation-map/ last accessed 21 July 2016), whereas the NDVI
C factor was calculated as explained in the previous section. Tables with the calculated
MUSLE factors are presented in Table S3.

The focus of the application was to assess whether the potential temporal variability in
the C factor would lead to significant differences in cumulative sediment yield. To achieve
this, the model was first run with fixed C factor inputs calculated using the widely used
land-cover/use maps and, secondly, run with variable C factor inputs calculated using
the NDVI method (Section 2.3). Although the model was applied at a daily timescale,
computed monthly C factors remained constant over the entire month and the entire year

http://www.dwa.gov.za/Hydrology/Verified/hymain.aspx
http://www.dwa.gov.za/Hydrology/Verified/hymain.aspx
https://earthexplorer.usgs.gov/
https://www.sanbi.org/biodiversity/foundations/national-vegetation-map/
https://www.sanbi.org/biodiversity/foundations/national-vegetation-map/
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for the intra-annual and inter-annual analyses, respectively. The fixed C factor remained
constant across all the timescales. The flow data input to the model was based on records
of observed daily discharge. Sediment outputs were evaluated based on the R2, PBIAS [54]
and Nash Sutcliffe Efficiency (NSE) [55].

3. Results
3.1. Fixed C Factor

The fixed C factor for catchment T35C was calculated as 0.098. Table 2 summarises
the C factor calculation for the T35C catchment using land-cover/use maps and C values
from the literature. The total weighted C factor was used as the C factor value within the
MUSLE.

Table 2. Fixed catchment (T35C) C factor calculated using maps and values from the literature.

Class Name Pixel Count % of Total C Factor Weighted C Factor

Thicket /Forest 13,441 5.1 0.009 0.000461

Woodland/Open bush 4234 1.6 0.012 0.000194

Low shrub land 1306 0.5 0.013 0.000065

Plantations 38,838 14.8 0.012 0.001776

Cultivated 3553 1.4 0.37 0.005008

Settlements 728 0.3 0.1 0.000277

Wetlands 5897 2.2 0.038 0.000854

Grasslands 19,4031 73.9 0.12 0.088708

Waterbodies 31 0 0.01 0.000001

Bare Ground/Degraded 417 0.2 1 0.000715

Total 262,476 100 0.098

3.2. NDVI and Variable C Factors

Figure 2 illustrates that the NDVI values are higher for the summer rainfall months
and lower during the generally drier and cold winter months. They generally start to
increase with the onset of the rainfall season after September. Figure 3 indicates a weak
positive linear relationship (R2 = 0.49) between NDVI/C factor and rainfall and a somewhat
stronger linear relationship (R2 = 0.55) with temperature. A similar trend in the monthly
NDVI was noted for 2017 (Figure 2). The lowest C values occurred in February during
both years (0.02 in 2016 and 0.016 in 2017), while the highest values of 0.30 and 0.32 were
obtained in September for 2016 and 2017, respectively. The LAI displays a similar seasonal
trend compared to the NDVI; a strong linear regression (R2 = 0.88) is exhibited between
the LAI and NDVI (Figure 2). LAI is shown to be much higher in the mid-summer season
(Jan–Mar), when leaf development is at its peak.
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Figure 3. The relationship between normalised rainfall and temperature with C factor; insert linear
regression of rainfall, temperature and C factor for 2016–2017. The climate values were normalised
by dividing all values by the first value in the distribution (i.e., January).

The inter-annual C factor distribution presented in Table 3 shows the differences
between the variable C factor (based on March NDVI data) and the fixed value. It is
immediately apparent that C factors calculated for March are much lower than the fixed
values calculated from the literature values of vegetation-cover types. Figure 3 illustrates
that the late autumn to early spring (May to September) C values are much higher than
the fixed C value or the single-month NDVI estimate. However, as already noted, the
important issue regarding impacts on sediment yield depends on the seasonal variations
in the erosivity factor driven by the runoff data.
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Table 3. Percentage variation between inter-annual (based on March values) and fixed C factors for
catchment T35C.

Year NDVI C Factor % of Fixed C (0.098)

2013 0.67 0.017 17

2014 0.70 0.009 9

2015 0.68 0.014 14

2016 0.65 0.024 24

2017 0.67 0.017 17

2018 0.69 0.012 12

Figure 4 illustrates the variation in the C factor values derived from NDVI data for the
two main vegetation types within the T35C catchment. The maximum and minimum values
represent the range of calculated NDVI C values across all the pixels classified into the two
vegetation types. The grassland type has the largest seasonal range, particularly in the
maximum values and the largest difference between maximum and minimum values. This
could reflect the fact that grasslands in this area include both natural grassland and heavily
grazed and, therefore, degraded grassland. The minimum values for the thicket/dense
bush vegetation type are always 0, while the maximum values vary from 0.04 in the wet
season to 0.21 in the dry season. This may reflect the variations in the location of the bush
areas within the landscape, with the consistently low values lying in well-watered valley
bottom locations, while the more variable C values reflecting locations on slopes and ridges
that are more prone to seasonal variations in moisture availability.
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3.3. T35C Catchment Sediment Yield (SY) Distribution

The results for 2016 (Figure 5) show that the fixed C factor yielded much higher
sediment output than the variable C factor, with total annual sediment yields calculated
as 5464 × 103 and 4625 × 103 tons, respectively. The major differences occur in the three
main summer runoff months. These impacts are somewhat offset by higher sediment
yields using the variable C factor in the winter and spring months when the C values are
quite substantially higher than the fixed value. The results for 2017 (Figure 6) also display
the typical seasonal variability exhibited in 2016. However, there is a larger difference
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between the total sediment yields simulated using the fixed (5203 × 103 tons) and dynamic
(2871 × 103 tons) C factors. In 2017, the sediment generated during the two main summer
months (January and February) is substantially reduced. There is little sediment generated
during the winter. During November and December, the fixed and variable C values are
similar. The analyses of the two years indicate that the differences between the use of fixed
and variable C factor values are dependent upon the rainfall and streamflow regime during
the year and whether the dominant erosion and transport events occur during the year
when the variable values are close to, or very different from, the fixed estimates.
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Figure 7 shows the results of the inter-annual analysis using annual variations in the
C factor based on March NDVI data, compared with a fixed C value. The differences are
substantially greater than those revealed by the intra-annual analysis based on 2016 and
2017. The variable C value results in approximately 85% less sediment compared to 16%
and 45% less based on the intra-annual analysis for 2016 and 2017. This is a result that could
have been predicted from the data provided in Table 3, which indicates that the March-based
C values are only ~15% of the fixed value. The clear conclusion is that using a single month
to determine the annual variability in C values is likely to be a very uncertain exercise.
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3.4. Validating the C Factor Assessment in the Tsitsa Catchment and Inxu Sub-Catchment

The results summarised in Table 4 and Figures 8 and 9 corroborate the findings
reported in Section 3.3, showing that using a fixed C factor results in the over-estimation
(up to ten times higher) of sediment yield compared to observed data in both sample
catchments. However, the R2 values for both daily and monthly time scales suggest that
the poor results are a consequence of systematic bias. Given that the C factor is a linear
multiplier in the MUSLE, it could be calibrated (together with the other linear factors in the
equation) to generate a much more acceptable result based on the NSE and PBIAS statistics.
This would involve reducing the fixed C value. For the Inxu, the use of a variable C factor
leads to an under-estimation of about 80% but a much higher over-estimation exists when
the fixed C is applied. While the NSE and PBIAS statistics are much improved (Table 5),
the R2 values for daily and monthly are much lower compared with the fixed C factor
result. The conclusion is that the fixed C model result is better (in terms of the R2) and that
a simple scaling calibration would be effective. For the Tsitsa, the variable factor model
results in over-estimation (but less than with a fixed factor), and the conclusions on further
calibration are the same as for the Inxu catchment.
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Table 4. Summary of sediment yield (SY) output in the Inxu and Tsitsa catchments compared to
observed data.

Catchment Fixed C Value
Sediment Yield (ton × 103) SY Relative to Observed

Fixed C Variable C Observed Fixed C Variable C

Inxu 0.13 11,312 840 1072 10.60 0.80

Tsitsa 0.12 785 455 362 2.20 1.30

Table 5. Summary statistics comparing observed data sediment yield (SY) output attained using a
fixed or variable C factor at daily and monthly timescales.

Catchment C Factor Type
Daily Monthly

R2 NSE PBIAS R2 NSE PBIAS

Inxu
Fixed C 0.76 −32 954 0.99 −0.81 954

Variable C 0.52 0.37 −21 0.67 0.49 −21

Tsitsa
Fixed C 0.75 −0.22 115 0.89 −0.92 117

Variable C 0.45 0.40 22 0.65 0.62 26

The limited observed records available for the Inxu catchment preclude an analysis of
the seasonal variations in sediment output. However, the relatively short record for the
Tsitsa suggests that winter runoff and sediment yield can play a quite important role, at
least in some years. Therefore, it is interesting to note that the largest over-simulations
occur from the late autumn to early summer months, when the estimated C values are
quite high. This could reflect the uncertainties in the use of the NDVI data to estimate the
C values, particularly when the NDVI values are low in winter when the organic matter
cover on the soil surface still provides some protection from erosion.

4. Discussions and Conclusions

In general, the analysis showed greater intra-annual variability in the C factor as
compared to inter-annual variability. The findings of [8] support the above result, as they
found that vegetation cover and, hence, the C factor, can show high intra-year variability,
depending on seasonal effects and land management. A correlation of C factor values
between the months of years 2016 and 2017 yielded 0.9, indicating that there was little
variability in the distribution of C factor values on a month-to-month basis for the two years.

The linear regressions between the C factor, temperature, and rainfall (Figure 3) show
no strong individual linear relationships between rainfall or temperature and the C factor
derived from NDVI, although the relationship with temperature is slightly higher. This can
partly be attributed to the fact that both temperature and moisture availability are likely
to affect increased NDVI values [56], and that vegetation cover response to rainfall and
temperature is likely to be lagged. The strong linear relationship between LAI and NDVI
(Figure 2) in the catchment is important [37], as both have been criticised [6] for different
reasons: NDVI for failure to represent the erosion resistance of poor vitality vegetation as it
is bound to chlorophyll reflectance, and LAI for failure to represent short stature vegetation
(e.g., grasses).

Additional criticism concerning the failure of both LAI and NDVI to represent poor
vitality and above-ground biomass of short-stature vegetation (during winter) reveals a
major shortcoming of the two spectral indices. This limitation is apparent in the Tsitsa
catchment results, where overestimates in winter dominated the simulations, while many
of the overestimates for the short Inxu data record are in spring and early summer, before
the NDVI values reach their highest peaks. Accordingly, the popular methods of calculating
the integrated C factor at the plot scale then extrapolating/scaling the information to larger
areas using land-use/land cover areas (e.g., [14]) have already been identified as flawed
by [57]. Both the Inxu and Tsitsa examples highlight the likely over-simulations that might
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occur by using a fixed C factor based on land cover and look-up tables. While the use of
the NDVI-derived variable C values improved the simulations, substantial uncertainties
remain in the applicability of the NDVI-based estimation methods for the C factor. The
developers of the NDVI to C factor conversion methods did not seem unaware of the
limitations of the index but sought to conduct a direct conversion based on the similarity
of the range of NDVI values to the original C factor range.

The present study results suggest that failure to account for temporal changes in
vegetation cover may add to some of the many uncertainties associated with modelling
sediment yield. The sediment yield simulations using the fixed C factor were generally
higher because the wet summer season C values are typically lower than the fixed value.
The fact that a high C factor might not translate into high sediment yield if there is lim-
ited runoff during the winter season is a somewhat obvious conclusion. However, the
admittedly short period of data for the Tsitsa catchment suggests that winter rainfall and
runoff is possible in at least some years and locations in this region and climate type of
South Africa. This implies that the apparent overestimation of the C factor in winter could
be important and represents a major limitation of the NDVI estimation approach. It is
also evident from both catchments that the transition months from low to high C values
(autumn), and from high to low values (spring) can represent periods when sediment load
over-estimations occur. The overall conclusion is that while the NDVI approach is useful
in terms of identifying spatial and temporal variations in the C value, the actual estimation
equation (Equation (1)) requires some revisions. Revisions may also focus on the method
of NDVI calculation, as proposed by [5]. It is likely that these revisions may be site-specific.
For example, the effects of using the approach in the winter rainfall regions of the Western
Cape Province may be quite different from the effects illustrated in the T35 region of the
Eastern Cape (mainly summer rainfall, but with some winter rainfall), and may be different
again in other parts of South Africa where winter rainfall is sporadic. The inter-annual
analysis, based on annual variations using a fixed month, illustrated that this somewhat
simpler approach to allowing for C variations will be very uncertain. This is particularly
true for a region with a variable rainfall (and therefore runoff) regime in which high rainfall
events can occur during most months of the year, even if they are more frequent during the
summer months.

The analysis of C variability across the two vegetation types (Figure 4) suggests that
any revisions to the NDVI-based estimation approach may also need to be vegetation-type
specific. The seasonal and spatial variations in the derived C values are much greater for the
dominant grassland type than for the less frequent bush/forest type. This has a substantial
impact on sediment yield variations, as the grass has the highest spatial coverage in all the
catchments. A further potentially related issue is that over-grazing has often been cited as
one of the reasons for high sediment loads in the T35 region [43,58]. However, it is also
suggested that a great deal of the sediment load may be derived from gully erosion [43],
which is not explicitly simulated by the MUSLE and, therefore, is a potentially different
issue, unrelated to how the seasonal C values are estimated.

The availability of satellite data and GIS processing tools allows for an alternative
approach to the use of a lumped C factor estimation using land-cover maps by employing
spatially distributed approaches based on spectral indices such as NDVI. Nevertheless,
access to high-quality satellite data is often expensive, and some available data may not be
useful for analysis because of problems such as poor resolution and cloud cover. Although
cloud cover removal techniques are available, this only adds uncertainty to the quality of
the pre-processed image. Consequently, some of the 30 m Landsat data used were carefully
selected and manually processed to ensure the quality of the NDVI output. However, as
the analysis was conducted in a single region over a small number of years, more robust
assessments are needed to investigate the NDVI-to-C-factor conversion used in this initial
assessment. Nevertheless, the study highlights the variations in outputs associated with
different approaches to estimating the C factor. Increasing spatial and temporal resolution
is vital for describing catchment processes in greater detail. Maintaining simplicity in
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model parameterisation is also important in data-scarce regions and the results should
assist potential users in anticipating the likely effects of scale (temporal and spatial) in
MUSLE applications. Overall, the current study shows the importance of adopting a
monthly/seasonal distribution of C factor values when applying the MUSLE to calculate
sediment and highlights several uncertainties in the current methods used to calculate the
variability of the C factor.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/w13192707/s1, Table S1: Assessing NDVI C against control points collected in the field, Table
S2: The performance of some of the NDVI to C conversion methods for use within the study area,
Table S3: Average MUSLE factors (including fixed C) calculated for the catchments.
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