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Abstract: Denitrification processes are crucial in aquaculture as they convert the undesirable nitrate
to safer forms of nitrogen. Conventionally, plastic media are used for the biofiltration of wastewater.
However, alternative media may be as effective/better than plastic and enhance the sustainability
of the system. This study evaluated biochar and zeolite as alternatives for the denitrification of
aquaculture effluents. Triplicates of laboratory-scale bioreactors were fabricated to compare the
denitrification efficiencies of biochar and zeolite to that of plastic. The bioreactors were fed synthetic
aquaculture wastewater having nitrate loading rates of 50, 125, and 150 mg/L. Zeolite exhibited
highest values of surface roughness in terms of arithmetic mean height (0.89 µm), maximum height
(6.52 µm), and root-mean-square height (1.17 µm), as corroborated by surface profilometry and
scanning electron microscopy. The results revealed that under pseudo-steady-state conditions, zeolite
displayed the highest nitrate removal efficiency (maximum 95.02 ± 0.01%), which was followed by
biochar and plastic (maximum 92.91± 0.01% and 92.57± 0.02%, respectively) due to its extraordinary
surface roughness that provided better adhesion to the bacteria. However, by the end of the study, all
the media exhibited comparable rates. Thus, both zeolite and biochar are sustainable alternatives of
biomedia for nitrate removal. However, time and labor constraints must be accounted for to scale-up
such bioreactors.

Keywords: nitrate removal; denitrification; alternative media; biochar; zeolite; surface profilometry;
scanning electron microscopy

1. Introduction

Aquatic food production has transitioned from capture fisheries to aquaculture in
order to provide protein to an ever-increasing world population. By 2014, the contribution
of cultured fish for human consumption was at par with wild-caught fish. Thus, the 2030
Agenda for Sustainable Development of the United Nations recognizes the contribution
of aquaculture and fisheries in ensuring food security and nutrition for posterity with
simultaneous overall sustainable development [1–3]. The advancement of humankind
is conditional on the steady supply of food and energy. The domain of energy has been
explored by numerous researchers worldwide [4–8]. To meet the growing protein demand
and to supply fish for human consumption, aquaculture has shifted toward intensive
practices with a recirculating aquaculture system (RAS). The uneaten protein-rich fish feed,
fish excreta, and other nutrients can augment the nitrate–nitrogen level in aquaculture
effluents to as high as 100 mg/L [9–13]. Without optimal treatment, such nutrient-rich
effluents can lead to eutrophication and algal bloom in receiving water bodies, endanger
aquatic organisms, and cause methemoglobinemia in infants [14–16]. Thus, biofiltration
systems with biofilter media as its core composition are an integral component of RAS for
bringing about denitrification [17–19].

The denitrification process of converting nitrate to nitrogen gas follows the reac-
tion [20]:

5CH2O + 4NO3
− → 2N2 + 5CO2 + 3H2O + 4OH (1)
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where CH2O represents an organic compound. Conventionally, plastic materials are used as
biofilter media in RAS. Although plastic media possess good denitrification potential, they
require high maintenance, need to be managed, and must be disposed of after being used
up. The decommissioning phase of the plastic media also contributes to the environmental
footprint. The high cost of plastic media is a key constraint in the application of media-
based biofiltration for the denitrification of water.

Many researchers have studied alternative organic media for the remediation of
wastewater from different sources. Soares and Abeliovich [21] employed wheat straw as
biofilter media and as a carbon source to remediate drinking water. Similarly, Kim et al. [22]
and Robertson et al. [23] have also used wood chips and wood by-products for treating
stormwater runoff and septic tank effluents. Knapik and Stopa [24] used sunflower pith as
media to examine the sorption and filtration properties of sunflower fibers in a raw state
for treating oily wastewater. For the treatment of aquaculture effluents, Saliling et al. [25]
investigated the feasibility of two low-cost agricultural by-products viz. wheat straw and
wood chips as biofilter media in denitrification reactors. However, wheat straw has a
relatively short life span, which poses a hindrance in its widespread application.

Biochar and zeolite are two other biomaterials that can be used for nitrate removal
in denitrifying bioreactors due to their high porosity and high specific surface area that
is conducive for the adhesion of bacterial colonies. Bock et al. [26,27] had used biochar
in denitrifying bioreactors treating agricultural drainage wastewater for enhanced nitrate
as well as phosphate removal compared to wood chips. The potential of biochar has also
been harnessed for the removal of mixed contaminants from urban stormwater runoff [28].
Li et al. [29] had further packed biochar chips from porous palm residues in a two-phase
trickling biofilter for treating simulated wastewater with high concentration levels of nitro-
gen and phosphorous. Sidibe [30] had also explored biochar (generated from Salix leaves)
along with pine bark and activated charcoal as filter materials for the treatment of greywater
for subsequent reuse in agriculture. Likewise, zeolite has also been used as biofilter media
in many studies for nitrate removal from surface water [31], ammonia and suspended
solids removal using aerated filter from textile wastewater [32], nitrogen removal from
high-strength wastewater generated from fertilizer and tannery industries [33], and for
denitrification in an anoxic activated sludge [34]. Thus, both biochar and zeolite have been
explored for the removal of diverse contaminants from various types of wastewater. Yet,
there is a research gap on the use of these materials as biofilter media/physical support for
bacterial growth for the treatment of aquaculture wastewater specifically for the process
of denitrification. Hence, the use of these materials as potential biofilter media for the
denitrification of aquaculture wastewater is yet to be adequately explored. Consequently,
the focus of this study is to investigate the potential of pine-derived biochar and natural
zeolite as alternative biofilter media for the denitrification of aquaculture wastewater hav-
ing low, intermediate, and high nitrate levels. The performance of these alternative media
was compared to that of commercially available plastic media (control). Furthermore, the
physical characteristics of the media types were also analyzed to further the understanding
of the role of these biomaterials in bacterial growth.

2. Materials and Methods
2.1. Experimental Design

Nine 0.8 L laboratory-scale bioreactors (Figure 1) were fabricated using 5.08 cm (2-inch
internal diameter) diameter PVC pipes. These bioreactors were fed synthetic aquaculture
wastewater whose composition has been described by Saliling et al. [25]. Each bioreactor
was 40 cm in length and its ends were covered with plastic mesh in order to hold the
biofilter media inside the bioreactor. The top of the PVC pipe was fitted with PVC coupling
and cap (5.08 cm diameter each), and the bottom was fitted to another PVC coupling and
fixed on a base. Holes were bored in the PVC couplings and fitted with NPT adapters
(0.635 cm and barbed) to serve as inlet and outlet. Clear vinyl tubing (0.635 cm) was
attached to the inlets and outlets of the bioreactors for the delivery of wastewater.
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Figure 1. The design of the upflow denitrification bioreactor employed in this study.

Three types of media have been packed in these bioreactors: pine-derived biochar,
zeolite (Zeoderizer, Glacial Rivers), and plastic media (Sweetwater SWX bio-media, Pentair)
as presented in Figure 2. The choice of porous media was based on properties such as
chemical inertness and excellent surface area scalability [35–37]. The plastic media are
made from 100% high-density polyethylene with a diameter of 1 cm and a height of 0.7 cm.
Pine nuggets (obtained locally) were pretreated, which included washing and air drying.
Then, the nuggets were pyrolyzed in an electric kiln at 350 ◦C for 4 h with a continuous
flow of nitrogen gas. The obtained biochar nuggets were chipped so that the particles
were in the range of 0.9–2 cm in length and 0.3–0.6 cm in thickness. The zeolite rocks were
approximately 0.8–1.5 cm in length and 0.6–1.2 cm in height. Each type of filter media was
randomly assigned to three bioreactors.

Figure 2. The three different biofiltration media used in this study: (A) biochar, (B) zeolite, and
(C) plastic.

The experimental setup also consisted of a 567.8 L (150 gallons) wastewater storage
tank. Once filled, this tank had the capacity for a continuous supply of aquaculture
wastewater to the nine bioreactors for a week. Nitrogen gas was bubbled by diffuser stones
at the bottom of the storage tank to retain low levels of dissolved oxygen (DO) inside it.
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The inlet line of nitrogen was connected to a flowmeter for monitoring purposes. The inlet
and outlets of the storage tank were sealed with silicone to diminish the passage of air
inside the tank and avoid the passive oxygenation of the wastewater. Wastewater from the
storage tank was supplied to the packed upflow bioreactors using three identical peristaltic
pumps (Intllab). Each pump fed wastewater to three bioreactors having each type of media
(tests were run in triplicate). The influent flow rate of wastewater to each bioreactor was
8 mL/min. The schematic of the layout of the experimental setup is presented in Figure 3.

Figure 3. The layout of the different components of the experimental set-up.

These nine bioreactors were initially filled with the supernatant collected from the
tilapia tanks in the Grinnells Laboratory of the university. This supernatant served as an
inoculum for the bioreactors and is expected to have denitrifiers for nitrate reduction. The
reactors were run in a batch mode for 10 days, during which period the nitrate concentration
was monitored. After observing a reduction in nitrate concentration, the reactors were
operated in a continuous mode flow-through mode with synthetic aquaculture wastewater.
This synthetic aquaculture wastewater had three different loading rates of nitrate–nitrogen:
50, 125, and 150 mg/L. The reactors were fed synthetic wastewater for approximately
9 cycles (of 3 days each) per concentration level. This increasing trend of loading rate of
nitrate–nitrogen was used to simulate the increase in nitrate concentration in aquaculture
water along with the growth of fish and the increased feeding regime. The source of nitrate
in this synthetic aquaculture wastewater was fertilizer-grade sodium nitrate and methanol
(MeOH) was used as the source of carbon. A MeOH/nitrate–nitrogen ratio of 2.5 was used
in the study in accordance with the findings of Saliling et al. [25].

2.2. Water Quality Analysis

The effluent and influent water samples were collected and analyzed for nitrate–
nitrogen (Hach DR3900; TNT835 and TNT836). The effluent samples were also monitored
for nitrite (Hach-TNT839), ammonia (Hach-TNT830), pH (Extech-pH100), water tempera-
ture, alkalinity (Hach-TNT870), DO (Extech-407510), oxidation-reduction potential (ORP;
Extech RE300), and chemical oxygen demand (COD; Hach-TNT821). The nitrate–nitrogen
concentration and DO was measured once every 3 days, while other parameters were
measured once a week. The denitrification rate was calculated by the following equation:

Denitrification rate (g/m3/d) =
1440×Q× [(NO3-N)i − (NO3-N)e]

Vm
(2)

where Q is the flow rate (mL/min), Vm is the bulk volume of media (cm3), and (NO3-N)i
and (NO3-N)e are the influent and effluent nitrate–nitrogen concentrations, respectively.
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2.3. Characterization of Biofilter Media

The surface morphology of biochar, zeolite, and plastic media was studied by scanning
electron microscopy (SEM; Hitachi S3200N) in their pristine conditions as well as after
being retrieved from the denitrification bioreactors when bacterial development had been
initiated. The samples having bacterial development were first fixed with 3% glutaralde-
hyde and washed with graded alcohol before SEM analysis. To enhance the imaging quality
for SEM, the samples were coated with Au-Pd (total thickness of 70 nm) for 10 min. The
surface profilometry of biochar, zeolite, and plastic media was examined by employing a
confocal laser scanning microscope (CLSM, Keyence VKx1100). The CLSM generated 3D
optical images and a measure of the surface roughness of the three media by coupling opti-
cal microscopy with laser profilometry with subsequent analysis by the multifile software.
The laser used in this technique comprises violet and white light excitation sources of 404
nm. The surface roughness of each media has been presented in terms of Sa (arithmetic
mean height), Sz (maximum height), and Sq (root mean square height). Further information
about the acidity of biofilter media was obtained by determining the pH at the point of zero
charge (pHPZC) by pH drift method as outlined by Paul et al. [38] and Kolar and Jin [39].

2.4. Statistical Analysis

Statistical analyses were carried out using R to check if the type of media used had a
statistically significant effect on the effluent nitrate–nitrogen concentration. Furthermore, a
regression model (Equation (3)) was employed to compare the nitrate–nitrogen removal
efficiency by time for each media type. This was conducted by splitting the influent
nitrate–nitrogen concentration into three blocks corresponding to 50, 125, and 150 mg/L.

log(effluent) = day + media + (day x media) + € (3)

where media is a three-level factor variable (biochar, zeolite, and plastic), and € represents
errors that are independent and identically distributed.

Finally, Tukey’s HSD was employed to check whether there is a difference in effluent
nitrate–nitrogen concentration among the three types of media on a particular sample
collection day. This method compared the mean effluent nitrate–nitrogen concentration
among the three media. Here, bootstrapping was used to re-sample and obtain a large
number of samples to fulfill the Central Limit Theorem for normality. The statistical codes
are available in the Supplementary Material S1.

3. Results
3.1. Performance of Bioreactors

During a major part of the experimental period, the bioreactors with zeolite as filter
media exhibited the lowest values of NO3-N, which was followed by bioreactors with
biochar and plastic. Figure 4 presents the influent and effluent nitrate concentration at
loading rates 50 mg/L, 125 mg/L, and 150 mg/L for the three media types. Initially,
the NO3-N concentration in the plastic bioreactor was higher than that of biochar and
zeolite. Biomass appeared to develop slowly on plastic media, but once it commenced,
the nitrate removal exhibited by plastic media was similar to the others. Plastic media
also appeared to react slowly to an increase in NO3-N concentration especially during
transition periods when the loading rate was increased to 2.5 times (for 125 mg/L) and
3 times (for 150 mg/L) the initial nitrate concentration. The denitrification rates (DNR)
exhibited by the three types of media during the study period have been presented in
Figure 5. The DNR for all bioreactors increased with the rise in nitrate-loading rate and
reached a maximum value of 1776.48 g N/m3/d by the end of the study period. It was
observed that the denitrification rates approached pseudo-steady-state conditions (the last
three to four successive observations when denitrification rates had a variability of <10%)
at each loading rate after around two weeks of operation. In general, the plastic media
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were observed to be slow in adapting to new loads and at startups but were comparable at
pseudo-steady-state stages.

Figure 4. The NO3-N concentration of the influent wastewater as well as the change in NO3-N
concentrations for the three types of media used.

Figure 5. The denitrification rates of the three types of media for the three concentration levels
of NO3-N.

At the nitrate loading rate of 50 mg/L, statistically significant differences were ob-
served in the effluent nitrate concentrations of the combination of two media using Tukey’s
method for comparing a family of three estimates. Both biochar and zeolite bioreactors
had higher efficiency in nitrate removal compared to plastic (p-values of biochar–plastic,
biochar–zeolite, and plastic–zeolite <0.0001) with zeolite exhibiting even higher nitrate
removal efficiency than biochar. Under the pseudo-steady state, the highest removal of
NO3-N was exhibited by the zeolite bioreactors (90.15 ± 0.06%), followed by biochar
(83.59 ± 0.06%) and plastic (71.82 ± 0.08%).

During the 125 mg/L loading rate, the NO3-N removal efficiency of zeolite was
highest (95.02 ± 0.01%), while both biochar and plastic exhibited comparable values
(92.91 ± 0.01% vs. 92.57 ± 0.02%). These NO3-N removal efficiencies were not observed to
have statistically significant differences (p-values of biochar–plastic, biochar–zeolite, and
plastic–zeolite > 0.05) for a combination of two media using Tukey’s HSD. Thus, during
the first and second nitrate loading rates, the highest efficiency in nitrate removal was
observed in the zeolite bioreactors. This might be attributed to the extremely high surface
roughness of zeolite, which can support better bacterial growth, leading to less biomass
detachment (further discussed in Section 3.3).

During the last concentration level, the NO3-N removal efficiencies (77.09 ± 0.0%,
77.09 ± 0.03%, and 77.28 ± 0.03%) as well as DNR values (1710.80 ± 56.98, 1710.70 ± 63.04,
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and 1714.98 ± 64.07 g-N/m3/d) were comparable for biochar, zeolite, and plastic, re-
spectively, and no significant differences were observed among the media (p-values of
biochar–plastic, biochar–zeolite, and plastic–zeolite >0.05). This could be due to the fact
that with time, sufficient biomass had developed in all the bioreactors, irrespective of
media, and thus, they exhibited similar DNRs. Using Tukey’s HSD, it was observed that
on most days, the mean nitrate concentration was lowest for zeolite bioreactors, which was
followed by biochar and plastic. It is to be noted that among the three loading rates, the
performance of the bioreactors was least efficient (approximately 77%) at the highest nitrate
level (150 mg/L) for all media types. This might be attributed to the possibility that the
biomass developed was not adequate for the reduction of nitrate at such high concentration
but was efficient at the initial and intermediate nitrate levels. Additionally, the relatively
sluggish adjustment of the bacteria on plastic media with respect to the transitions in
nitrate concentrations compared to biochar and zeolite might be because the high surface
roughness had rendered biochar and zeolite more conducive to bacterial adhesion.

The performance of the bioreactors under pseudo-steady-state conditions is summa-
rized in Table 1, and Table 2 presents the DNR rates exhibited by numerous other media
from the literature. A comparative analysis of the DNR values of the media under consid-
eration in this study from the literature suggests that the DNR rates of biochar and zeolite
are high enough to ensure an efficient denitrification process in the system.

Table 1. Denitrification performance summary of the bioreactors under pseudo-steady-state conditions.

Influent NO3-N
Concentration (mg/L) Media Effluent NO3-N

Concentration (mg/L) % NO3-N Removal DNR
(g-N/m3/d)

51.21 ± 2.11 Biochar 8.72 ± 3.37 83.59 ± 0.06 638.98 ± 45.29
Zeolite 5.24 ± 3.16 90.15 ± 0.06 689.11 ± 42.75
Plastic 14.97 ± 4.43 71.82 ± 0.08 548.98 ± 61.17

127.64 ± 0.78 Biochar 9.07 ± 1.59 92.91 ± 0.01 1714.20 ± 33.84
Zeolite 6.37 ± 0.62 95.02 ± 0.01 1753.00 ± 16.59
Plastic 9.52 ± 2.24 92.57 ± 0.02 1707.85 ± 43.35

152.47 ± 1.56 Biochar 35.31 ± 3.96 77.09 ± 0.03 1710.80 ± 56.98
Zeolite 35.31 ± 4.38 77.09 ± 0.03 1710.70 ± 63.04
Plastic 35.89 ± 5.00 77.28 ± 0.03 1714.98 ± 64.07

Table 2. The DNR of different media used in the treatment of aquaculture wastewater.

Media DNR (g-N/m3/d) References

Biochar 1714.20 This study
Zeolite 1753.00 This study
Plastic 1714.98 This study

Rice hull 1025.00 [40]
Wheat straw 1360 [25]
Wood chips 1360 [25]

Kaldness media 1330 [25]
Wheat straw 53.00 [21]
Newspaper 22.58 [41]

3.2. Quality of the Effluents

The pH of the effluent wastewater from the bioreactors ranged between 7.4 and 8.9
throughout the study period and DO was maintained below 2 mg/L for adequate anoxic
conditions. The initial concentration of ammonia in the influent synthetic aquaculture
wastewater was very low, and thus, the ensuing concentrations of ammonia in the effluents
were also very low. The effluent concentrations of NH3-N and NO2-N for all the three media
types were in the range of 0.02 ± 0.03 mg/L to 0.05 ± 0.07 mg/L and 0.62 ± 0.31 mg/L to
1.02 ± 0.02 mg/L, respectively (Table 3).
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Table 3. The quality of various effluent parameters of the bioreactors.

Parameter Effluent Concentration

pH 7.4 to 8.9
DO <2 mg/L

NH3-N 0.02 ± 0.03 mg/L to 0.05 ± 0.07 mg/L
NO2-N 0.62 ± 0.31 mg/L to 1.02 ± 0.02 mg/L

NO3-N levels

50 mg/L 125 mg/L 150 mg/L

Residual COD 34.02 ± 0.5 mg/L to
35.08 ± 0.68 mg/L

40.36 ± 0.82 mg/L to
41.92 ± 0.26 mg/L

49.16 ± 0.85 mg/L to
50.22 ± 1.13 mg/L

Alkalinity as CaCO3 186.99 ± 2.21 mg/L 441.63 ± 4.14 mg/L 514.69 ± 4.89 mg/L

Since methanol was used as an exogenous source of carbon in this study, hence,
the residual concentration of COD was also analyzed in the effluent samples collected
from the bioreactors. The addition of carbon in denitrification experiments is crucial, as
carbon limitation can lead to low nitrate removal efficiency with high nitrite concentra-
tions [42–44]. On the other hand, the presence of surplus carbon in the wastewater feed
may cause dissimilatory nitrate reduction to ammonia with an added challenge of the
formation of hydrogen sulfide, which is highly detrimental to aquatic life [45–47]. In
this experiment, for the initial nitrate loading rate of 50 mg/L, the residual COD con-
centration in the effluents of all the bioreactors was in the range of 34.02 ± 0.5 mg/L to
35.08 ± 0.68 mg/L. However, for 125 mg/L of influent nitrate concentration, this increased
to the range of 40.36 ± 0.82 mg/L to 41.92 ± 0.26 mg/L and further augmented to the
range of 49.16 ± 0.85 mg/L to 50.22 ± 1.13 mg/L for 150 mg/L (as mentioned in Table 3)
of nitrate concentration. Thus, the residual COD in the effluent of the bioreactors at the
highest influent nitrate might necessitate a mild treatment to further decrease the COD
concentrations if needed.

The concentration of alkalinity in the effluent of the bioreactors increased along
with the level of influent nitrate concentrations. Irrespective of media types, the alka-
linity concentration was approximately 186.99 ± 2.21 mg/L as CaCO3 (for 50 mg/L of
influent nitrate), 441.63 ± 4.14 mg/L of CaCO3 (for 125 mg/L of influent nitrate), and
514.69 ± 4.89 mg/L of CaCO3 (for 150 mg/L of influent nitrate). Thus, alkalinity was
generated at approximately 3.5 mg/mg of nitrate reduced, which agrees with the results
reported by Li and Irvin [48]. The ORP of the effluent water from the bioreactors was
always in the range between −120 and −50 mV, which is well within the standard ORP
range for optimum denitrification [25,49,50].

3.3. Characteristics of Biofilter Media

The surface morphology of the three biofilter media was studied by SEM in their
pristine form (Figure 6A–C) as well as after being retrieved from the bioreactors when
bacterial development had started (Figure 6D–F). These micrographs validate the develop-
ment of bacteria on the surface of the media after the denitrification process had started.
Furthermore, the pictorial data from SEM of the media also provide information on the
surface roughness of the biofilter media: zeolite appeared to have the roughest surface
morphology followed by biochar, whereas plastic media appeared to exhibit minimal
surface roughness.
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Figure 6. The SEM micrographs of the biofilter media in their pristine form as well as after the
development of bacteria: biochar (A,D), zeolite (B,E), and plastic (C,F).

The SEM micrographs were further corroborated by the values and 3D pictorial
representations (Figure 7A–C) of surface roughness obtained by surface profilometry. As
outlined in Table 4, zeolite exhibited the highest surface roughness: it was more than
2.5 times rougher than biochar in terms of Sa (0.89 µm vs. 0.36 µm), Sz (6.52 vs. 2.22 µm),
and Sq (1.17 µm vs. 0.44 µm). When compared to plastic, zeolite was more than seven times
rougher in terms of Sa (0.89 µm vs. 0.13 µm), Sz (6.52 µm vs. 0.67 µm), and Sq (1.17 µm vs.
0.16 µm). Surface profilometry results comparable to this order have also been reported by
Paul et al. in a previous study [38]. It is widely reported in the literature [51–53] that the
higher surface roughness of the biofilter media leads to the better bacterial attachment on
the surface and consequently increased biofilm thickness. Hence, zeolite would provide
a better grip to the formation of bacterial colonies on its surface than biochar and plastic.
Thus, the media characterization data support the experimental denitrification results
obtained that suggest that zeolite exhibited the highest nitrate removal rates followed by
biochar and plastic.

The pHPZC of a material is the pH at which the net positive and negative charges
on the surface of the material are equal. The pHPZC for the biochar and zeolite samples
of this study were observed to be 5.82 and 6.74, respectively and have been reported
elsewhere [38]. The pHPZC of the plastic media was not observed to be significant, as it is
composed of a chemically inert material with respect to aqueous solutions. The pH of the
synthetic aquaculture wastewater used in this study was approximately 8.02 ± 0.52. Thus,
the solution pH was greater than the pHPZC of both biochar and zeolite. Consequently,
both biochar and zeolite would be negatively charged with respect to the aquaculture
wastewater. This implies that the adsorption of the nitrate ions from the wastewater onto
the media due to adsorption can be ruled out, and the nitrate removal in this study can be
associated with denitrification only.



Water 2021, 13, 2703 10 of 13

Figure 7. The 3D surface profilometry of (A) biochar and (B) zeolite, and (C) plastic media used in
this study.

Table 4. The values of surface roughness for the three types of media.

Values of Surface Roughness Biochar (µm) Zeolite (µm) Plastic (µm)

Average Sa 0.36 0.89 0.13
Average Sz 2.22 6.52 0.67
Average Sq 0.44 1.17 0.16
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3.4. Cost of Media

On the economic side, the cost of 1 m3 of commercially available plastic media is
about $1450 with a life span of around 10 years [25,54]. Pine nuggets can be obtained from
the market at $62.5/m3. Considering an industrial electricity rate at 6.64¢/kWh in North
Carolina, USA and use of electric kiln (7200 W), the electricity cost for charring the biochar
in a couple of batches is approximately $10. Thus, the cost of biochar can be estimated
to be $72.5/m3. If biochar has to be reloaded once a year, the total 10-year cost would be
$725, which is half the price of plastic media. Natural zeolite is widely available and can be
priced between $350 and $600/m3. Zeolite is less susceptible to physical degradation with
time than biochar. Hence, if zeolite needs reloading once every 5 years, the 10-year cost
will be between $700 and $1200. This cost analysis (Table 5) excludes the labor charge for
reloading media. Thus, the use of biochar and zeolite as alternatives to plastic substantially
reduces the cost of biofilter media used in the denitrification process.

Table 5. Cost analysis of the three types of biofilter media.

Media Cost/m3 Total Cost/m3 for a Period of 10 Years

Plastic $1450 $1450 (no reloading)
Biochar $72.5 $725 (reloaded once a year)
Zeolite $300 to $600 $700 to $1200 (reloaded every 5 years)

4. Conclusions

This study revealed that both pine-derived biochar and zeolite were better than
plastic initially but eventually exhibited comparable values overall for the growth and
development of denitrifying bacteria treating aquaculture wastewater. Moreover, the
surface morphology and 3D profilometry analysis of the media disclosed the extremely
high surface roughness exhibited by zeolite and biochar compared to plastic that might
also play a role in increased bacterial adhesion. Additionally, the high value to cost and
sustainable attributes of biochar and zeolite that aid in diminishing pervasive plastic
pollution are additional points to consider them as alternatives to plastic biofilter media.
Nonetheless, further investigation is necessary about the longevity of these alternatives
and their reload when used in larger-scale projects.
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