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Abstract: As determining the probability of the exceedance of maximum precipitation over a spec-
ified duration is critical to hydrotechnical design, particularly in the context of climate change, a
model was developed to perform a frequency analysis of maximum precipitation of a specified
duration. The PMAXTP model (Precipitation MAXimum Time (duration) Probability) harbors a pair
of computational modules fulfilling different roles: (i) statistical analysis of precipitation series, and
(ii) estimation of maximum precipitation for a specified duration and its probability of exceedance.
The input data consist of homogeneous 30-element series of precipitation values for 16 different
durations: 5, 10, 15, 30, 45, 60, 90, 120, 180, 360, 720, 1080, 1440, 2160, 2880, and 4320 min, obtained
through Annual Maximum Precipitation (AMP) and Peaks-Over-Threshold (POT) approaches. The
statistical analysis of the precipitation series includes: (i) detecting outliers using the Grubbs-Beck
test; (ii) checking for the random variable’s independence using the Wald-Wolfowitz test and the
Anderson serial correlation coefficient test; (iii) checking the random variable’s stationarity using
nonparametric tests, e.g., the Kruskal-Wallis test and Spearman rank correlation coefficient test for
trends of mean and variance; (iv) identifying the trend of the random variables using correlation
and regression analysis, including an evaluation of the form of the trend function; and (v) checking
for the internal correlation of the random variables using the Anderson autocorrelation coefficient
test. To estimate maximum precipitations of a specified duration and with a specified probability of
exceedance, three-parameter theoretical probability distributions were used: a shifted gamma distri-
bution (Pearson type III), a log-normal distribution, a Weibull distribution (Fisher-Tippett type III), a
log-gamma distribution, as well as a two-parameter Gumbel distribution. The best distribution was
selected by: (i) maximum likelihood estimation of parameters; (ii) tests of the hypothesis of goodness
of fit of the theoretical probability distribution function with the empirical distribution using Pear-
son’s χ2 test; (iii) selection of the best-fitting function within each type according to the criterion of
minimum Kolmogorov distance; (iv) selection of the most credible probability distribution function
from the set of various types of best-fitting functions according to the Akaike information criterion;
and (v) verification of the most credible function using single-dimensional tests of goodness of fit:
the Kolmogorov-Smirnov test, the Anderson-Darling test, the Liao-Shimokawa test, and Kuiper’s
test. The PMAXTP model was tested on data from two meteorological stations in northern Poland
(Chojnice and Bialystok) drawn from a digital database of high-resolution precipitation records
for the period of 1986 to 2015, available for 100 stations in Poland (i.e., the Polish Atlas of Rainfall
Intensities (PANDa)). Values of maximum precipitation with a specified probability of exceedance
obtained from the PMAXTP model were compared with values obtained from the probabilistic
Bogdanowicz-Stachý model. The comparative analysis was based on the standard error of fit, graphs
of the density function for the probability of exceedance, and estimated quantile errors. The errors of
fit were lower for the PMAXTP compared to the Bogdanowicz-Stachý model. For both stations, the
smallest errors were obtained for the quantiles determined on the basis of maximum precipitation
POT using PMAXTP.
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1. Introduction

A frequency analysis of values of maximum precipitation of a specified duration and
probability of exceedance is an essential part of engineering [1]. Given the significant
impact of maximum precipitation on various spheres of human activity (e.g., the economy,
agriculture, industry, and the environment), such an analysis is widely applied, particularly
in the context of observed climate change [2,3].

A widely used tool in the statistical description of rare meteorological (climatic)
events is the extreme value theorem (EVT). Two probability distributions are used when
employing the EVT: the generalized extreme value distribution (GEV) and the generalized
Pareto distribution (GPD) [4,5]. Encompassing three families of distributions (Gumbel (G),
Fréchet (F), and Weibull (WE)), the GEV distribution offers the advantage of high accuracy
of fit to observed precipitation data [6]. Commonly used methods for the estimation
of the unknown parameters of theoretical probability distributions include: maximum
likelihood, L-moments, and the Bayesian method [7–9]. Ragulina and Reitan [10] proposed
a Bayesian hierarchical model approach to the selection of a GEV distribution, where
Bayesian inference was applied both to parameter estimation and model selection. For
most locations in Japan investigated by Yuan et al. [11], a log-Pearson type 3 distribution
(LGA) proved to be the best-fitting theoretical probability distribution for annual maximum
hourly precipitation data. Młyński et al. [12] found that among the G, GA, WE, log-normal
(LN), and GEV distributions, the latter best described annual maximum daily precipitation
in Poland’s upper Vistula basin.

An assumption of the EVT is that the random variables subjected to analysis show
stationarity, i.e., the statistical properties of the mechanism generating these variables re-
main unchanged over time. Such conditions are rarely encountered in nature, and extreme
events are increasingly of a nonstationary nature. In the case of maximum precipitation,
its natural variation is overlaid by changes in climate and human intervention in land use
(e.g., reduction in soil drainage). In this situation, time series of maximum precipitation
values exhibit non-stationarity in the form of long-term trends and/or periodic fluctuations.
In recent years, it has become increasingly common to analyze the frequency of nonstation-
ary phenomena using the theory of nonstationary extreme value (NSEV). Katz et al. [13]
extended the traditional approach to a frequency analysis to deal with nonstationary cases,
where it is assumed that there is a constant probability of the occurrence of an extreme
event with values that vary with time. Likewise, Adlouni et al. [14] developed a method
for estimating a GEV distribution under nonstationary conditions. Parameters of the distri-
bution were estimated by the maximum likelihood method (MLM), and the covariance of
the observed variables was included in the parameters of the probability distribution.

Another approach, used in engineering practice for estimating values of maximum
precipitation with a specified duration and probability of exceedance, is regionalization.
In Poland, Bogdanowicz and Stachý [15,16] used a clustering procedure for a series of
annual maximum precipitation values to distinguish three precipitation regions. In these
regions, annual maximum values were described using a WE extreme value distribution.
Satisfying the assumptions of independence, stationarity, and identity of probability dis-
tribution, Shahzadi et al. [17] used a regional analysis of flooding frequency and a Monte
Carlo method to divide the territory of Pakistan into three homogeneous subregions. The
estimation of parameters followed the L-moments method, while quantile estimation was
carried out using GA, GEV, GPA, generalized normal (GNO), and generalized logistic
(GLO) distributions.
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Quantiles of an extreme value distribution are usually estimated directly from a ran-
dom sample of annual maximum precipitation (AMP) values. In view of the shortness of
the time series, alternative solutions were used, thereby enabling statistical inference to
be carried out based on a broader set of information than the annual maxima. Examples
include analyses of seasonal maxima and models of annual maxima with different seasonal
variances. In these models, the probabilistic description is usually based on mixed dis-
tributions. Earlier research on mixed distributions assumed the same probability density
function for the distinguished seasons (homogeneous mixed distributions). An example of
this approach is the two-population general extreme value distribution (TPGEV), based
on the assumption of GEV-GEV distributions [18], gamma-gamma distributions (GA-GA),
and log-normal-log-normal distributions (LN-LN) [19,20]. However, hydrometeorological
variables are composed of different types of probability density functions.

Numerous studies on non-homogeneous mixed distributions have led to an improve-
ment of the characteristics of the analyzed variables through the use of two-component
models, such as the mixed gamma-Gumbel distribution (GA-G) [21] or the two-component
generalized extreme value distribution (TCGEV) composed of a GEV and a Gumbel (G)
distribution [22]. A GA-GP mixed distribution, incorporating a gamma distribution [23]
and generalized Pareto distribution (GP), is commonly used. It serves mainly to model
meteorological situations featuring both dry and wet periods. Another approach to the fre-
quency analysis of maximum precipitation is the determination of the relationship between
the intensity of precipitation and duration, and between duration and frequency of occur-
rence. For the modeling of two-dimensional dependences, the use of copula functions is
recommended as a method of estimation of a two-dimensional distribution function [24,25].
In recent years, analyses have been made of a multidimensional dependence structure of
extreme precipitation event variables using vine copula functions. The method involves
the step-by-step mixing of two-dimensional copulas, which leads to a simplification of the
estimation of multidimensional distribution functions [26].

Although there have been many attempts at using models for nonstationary series of
extreme events [27–34], engineering practice shows that the assumption of the stationarity
of time series is still widely adopted.

The purpose of this paper is to present the PMAXTP model for a frequency analysis of
maximum precipitation with a specified duration and probability of exceedance, together
with the results of testing the model against data from two meteorological stations located
in northern Poland: Chojnice and Białystok. Values of maximum precipitation with a
specified duration and probability of exceedance were estimated for two time series: (i) a
30-year series of annual maximum precipitation (AMP) values from the period 1986–2015
and (ii) a 30-element series of maximum precipitation values from the period 1986–2015
obtained by means of peaks-over-threshold (POT) analysis. The 30 highest values from the
obtained set were used for further analyses. Computations were performed for 16 different
durations: 5, 10, 15, 30, 45, 60, 90, 120, 180, 360, 720, 1080, 1440, 2160, 2880, and 4320 min.
The results given by the PMAXTP model were compared with those obtained with the
probabilistic Bogdanowicz-Stachý model of maximum precipitation [15,16], which is in
common use in Polish engineering practice.

2. Problem Formulation and Methodology

The PMAXTP model for a frequency analysis of maximum precipitation with a speci-
fied duration and probability of exceedance was developed with the use of the method of
alternative events (MAE), which serves to compute annual maximum flows with a specified
probability of exceedance [35]. The overall scheme of the PMAXTP model is shown in
Figure 1. The model contains two computational modules, one that performs a statistical
analysis of series of precipitation data, and another that estimates maximum precipitation
with a given duration and probability of exceedance. The latter includes an estimation of
parameters of the distributions by the maximum likelihood method, verification of good-
ness of fit by Pearson’s χ2 test, selection of the best-fitting probability distribution function
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within each distribution type according to the criterion of minimum Kolmogorov distance,
selection of the most credible function according to the Akaike information criterion (AIC),
and determination of the quantile confidence interval with regard to the randomness of the
series of observations. The results returned by the PMAXTP model are values of maximum
precipitation with a specified duration τ (min) ∈ {5, 10, 15, 30, 45, 60, 90, 120, 180, 360, 720,
1080, 1440, 2160, 2880, 4320} and a given probability of exceedance p (%) ∈ {99.9, 99.5, 99,
98.5, 98, 95, 90, 80, 70, 60, 50, 40, 30, 20, 10, 5, 3, 2, 1, 0.5, 0.3, 0.2, 0.1, 0.05, 0.03, 0.02, 0.01}.

Figure 1. Overall scheme of the PMAXTP model.
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An analysis of the homogeneity of the random variables of series of maximum pre-
cipitation with different durations was performed by genetic (physical) methods and by
statistical methods [35,36]. The identification of the trend of the analyzed random vari-
ables and evaluation of the form of the trend function were carried out by correlation
and regression analysis, where the dependent variable is the maximum precipitation se-
lected by the AMP or POT method, and the independent variable is the time (τ). The
correlation was analyzed using the nonparametric Spearman rank correlation test [37] and
the parametric Pearson linear correlation coefficient test [38]. In regression analysis, the
global Fisher-Snedecor F-test [39] tests three equivalent null hypotheses: the significance of
the slope, the significance of the coefficient of determination, and the significance of the
linear relationship between the analyzed variables. Verification is performed for the null
hypothesis that the independent variable (time τ) has no effect on the analyzed dependent
variable, which here is the maximum precipitation (PAMP

τ and PPOT
τ ). An evaluation of

the form of the trend function is performed using scatter plots of the analyzed random
variables with respect to time (τ). These provide a visual assessment and an evaluation of
the form of the trend function: linear, power, exponential, etc.

The internal correlation of the analyzed random variable was checked using the
Anderson autocorrelation coefficient test [40]. This analysis identifies the occurrence of
periodic fluctuations and their effect on the variation of the analyzed variables. The
results are presented numerically and graphically for a specified lag, with an indication of
the autocorrelation coefficients and an evaluation of white noise (standard error) for the
confidence level assumed (α).

The computation of the maximum precipitation with a specified probability of ex-
ceedance is performed using probabilistic models of the properties of the random variables
PAMP

τ and PPOT
τ . An analysis of the properties of random maximum precipitations served

as the basis for the acceptance of potential probability distribution models: e.g., G, GA, LN,
log-gamma (LGA), and WE. The first four models are three-parameter distributions with
the following parameters: α (α > 0), λ (λ > 0) or µ (µ > 0), and ε (ε ≤ x ≤ + ∞), representing,
respectively, the parameters of scale, shape, and position, i.e., the lower (left-hand) limit of
the probability distribution (see details in Appendix A).

The PMAXTP model assumes that each type of distribution is represented by a family
of functions fi(x), shifted with respect to each other, each of which has a certain fixed lower
limit (εi) satisfying 0 ≤ εi < min

1≤j≤n

(
xj
)
, where n is the size of the random sample. The

value of εi may take values ranging from 0 up to the minimum value of the variable (X)
in the random sample (x1, x2, · · · , xn). Hence, the lower limit (εi) of the ith specific
function in the family of a selected type of distributions is the discriminant of that function
within the family, and is not subject to estimation. In the G distribution, described by
Equations (A9) and (A10) in Appendix A, only two parameters appear: the scale α and the
shape µ.

The parameters of probability density functions were estimated by the MLM using
dedicated software [41]. The procedure was as follows:

(i) Estimation of parameters of four types of functions belonging to the probability
distribution families GA, WE, LGA, and LN for a fixed value and range of variation
of the distribution lower limit εi for the ith function belonging to the family of the
selected probability distribution. In the case of the G distribution, the parameters are
estimated for a single function; there is no distribution lower limit (ε).

(ii) Obtainment of i sets of estimated values of parameters for each selected probability
distribution function by the solution of systems of equations according to explicit
formulas, or the determination of a set of parameter values using Brent’s or Newton’s
numerical methods [42].

(iii) Check of the goodness of fit of the selected theoretical distribution with the empirical
distribution using Pearson’s χ2 test [43] at a significance level α = 0.05.

(iv) Formation of a set of noncontradictory probability distribution functions from all
probability distribution functions for which the hypothesis of goodness of fit was not
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rejected. Sets of noncontradictory functions are formed separately for each selected
probability distribution function type: GA, WE, LGA, and LN.

(v) Selection of the best-fitting function within each distribution type. For each theoret-
ical distribution type used, there may exist many noncontradictory functions with
different lower limit values εi. A single function is selected for each distribution type
(GA, WE, LGA, LN) according to the criterion of minimum Kolmogorov distance,
min(Dmax) [35,44]. The probability distribution function for which, within a given
distribution type, the Kolmogorov distance Dmax attains its minimum value is called
the best-fitting function in the sense of the Kolmogorov distance criterion. These
single functions, identified for each of the distribution types used, form the set of
best-fitting functions.

(vi) Selection of the most credible probability distribution function from the set of best-
fitting functions of particular types (GA, WE, LGA, LN, G), performed by computing
the value of the Akaike information criterion (AIC) [45] for each of those functions.
The most credible function is taken to be the function with the smallest AIC value.

(vii) Verification of the most credible distribution of maximum precipitation values, PAMP
τ

and PPOT
τ , was based on nonparametric tests used to analyze the goodness-of-fit

of a theoretical mathematical model to an empirical model. The verification of the
distributions was concentrated on their tail part. The tails of the distributions are
significant in terms of the occurrence of extreme values of the random variable,
that is, values with a very low probability of exceedance. Thus, to evaluate the
goodness-of-fit of the distributions, the following single-dimensional statistical tests
were used: the Kolmogorov-Smirnov test (DK-S) [46,47], the Anderson-Darling test
(DA-D) [48], the Liao-Shimokawa test (DL-S) [49], and Kuiper’s test (DK) [50]. (For
details, see Appendix B.) The DK-S test may be used for the verification of large
deviations of a theoretical cumulative probability distribution from the empirical
distribution. The DA-D test is sensitive to deviations in the tail part, while the DL-S test
represents a weighted mean distance between the theoretical and empirical probability
distributions in the whole range of the analyzed random variable, and is regarded as
the most suitable for verification of the Gumbel and Weibull distributions [49]. The
DK test was used to verify the goodness-of-fit of the distribution in its central part, as
well as in the lower and upper parts of the tail of the distribution.

(viii) Selection of a probabilistic model, performed by comparing the estimated quantile
errors resulting from the randomness of the sample of maximum precipitations with
a specified duration τ selected by the AMP and POT methods (PAMP

τ and PPOT
τ ).

3. Study Area and Data

The PMAXTP model was tested on data from two meteorological stations located in
Poland: Chojnice and Bialystok (Figure 2, black hexagons). The choice of stations was based
on the availability of long series of historical data and current meteorological observations.

Data were drawn from the Rain-Brain database, created under the Development and
Implementation of a Polish Atlas of Rainfall Intensities (PANDa) project [51] carried out in
2016 and 2017 by Poland’s Institute of Meteorology and Water Management—National Re-
search Institute (IMGW—PIB). Under the PANDa project, a series of depths of precipitation
having specific durations were subjected to qualitative assessment, including a comparison
of digital records with analog data (from Hellmann rain gauges), and information was
drawn from a system of ground-based radars operating in the measurement and obser-
vation network of the IMGW—PIB. The observations were verified with respect to the
occurrence of meteorological configurations which might cause rainfall of a given quantity
in specified pressure conditions, characteristic of the analyzed region.

The study was based on the 30 highest precipitation depth values for 16 specified
durations, τ = {5, 10, 15, 30, 45, 60, 90, 120, 180, 360, 720, 1080, 1440, 2160, 2880, 4320}
(minutes) for the two precipitation stations mentioned above.
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Figure 2. Location of the Chojnice and Bialystok meteorological stations in Poland.

Two methods were used to select maximum precipitation values: AMP [1,2,52] and
POT [53]. Under the AMP method, a single maximum precipitation value was selected
for the year, independent of its duration. A defect of the AMP method is that it fails to
take into account all the high precipitation depth values occurring in a given year. In
the POT method, it is possible to take into account all high precipitation depth values in
a given year, i.e., the method selects these values that exceed a threshold determined a
priori. The analyses were based on events with values not less than PPOT

min,τ = 3.5τ0.275 [51].
Thus, threshold values PMAX

τ (mm) were set for precipitation with specified durations (τ),
as given in Table 1 [51]. The subsequent analyses used 30-element series of maximum
precipitation data, selected by both methods.

Table 1. Minimum quantity of precipitation PPOT
min,τ (mm) taken as a threshold in the POT method.

τ
(min) 5 10 15 30 45 60 90 120 180 360 720 1080 1440 2160 2880 4320

PPOT
min,τ

(mm)
5.4 6.6 7.4 8.9 10.0 10.8 12.1 13.1 14.6 17.7 21.4 23.9 25.9 28.9 31.3 35.0

4. Results and Discussion
4.1. Results of Analysis of Homogeneity for the PMAXTP Model

An analysis was made of the genetic, time, and measurement homogeneity of the pre-
cipitation series from the stations in Chojnice and Bialystok. Based on a visual assessment
of the measurement series and information contained in IMGW—PIB reports (Meteoro-
logical Yearbooks and Precipitation Yearbooks Report [51]), no significant factors were
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found that might have an impact on the genetic homogeneity of the series of maximum
precipitation values observed in the years 1986–2015.

An analysis was made of the statistical properties of the series of precipitation mea-
surements from Chojnice and Bialystok using nonparametric significance tests [35,36]. The
results are presented in Tables 2–6. Tables 2 and 3 contain the results of outlier detection
using the Grubbs-Beck test [54,55], checking for the independence of the analyzed random
variable using the Wald-Wolfowitz test (Test of Series) and Anderson serial autocorrelation
coefficient test [40,55,56], and checking the stationarity of the analyzed random variable
using the Kruskal-Wallis test and Spearman rank correlation coefficient test for the trends
of mean and variance [57,58]. The final column of Tables 2 and 3 indicates genetically and
statistically homogeneous series of maximum precipitation data selected by the AMP and
POT methods.

In the case of PAMP
τ , the Grubbs-Beck test detected outliers for precipitation with the

duration τ = 360 and τ = 720 min, at both the Chojnice station (Table 2) and the Bialystok sta-
tion (Table 3). In Tables 2 and 3, for a positive test result (+), the number of the outlier in the
chronological sequence and the quantity of precipitation are also given. For the PPOT

τ series
at Chojnice (Table 2), outliers were detected for τ ∈ {15, 30} and τ ∈ {120, . . . , 4320} min,
while at Bialystok (Table 3), outliers were detected for τ ∈ {5, . . . , 15}, τ ∈ {60, . . . , 360}
and τ ∈ {2160, . . . , 4320} min. Based on the theorem developed by Neyman and Scott [59]
stating that the families of LN, G, and WE distributions—these being the distributions
assumed as potential models describing the maximum precipitation values—are entirely
susceptible to the occurrence of outliers in a random sample, it was concluded that the
occurrence of the detected outliers should be considered entirely natural, and such elements
were not removed from the measurement series.

Table 2. Results of nonhomogeneity analysis of AMP and POT precipitation series from Chojnice meteorological station;
(−)/(+) denotes, respectively, negative and positive test results;

√
—denotes homogenous series.

τ
(min)

Grubbs-Beck Test
±Outliers (mm) Test of Series Kruskal-Wallis

Test

Spearman Rank Correlation Test Homogeneity
of Precipitation

PMAX
τ

for Trend
of Mean

for Trend
of Variance

AMP POT AMP POT AMP POT AMP POT AMP POT AMP POT

5 (−) (−) (−) (−) (−) (−) (−) (−) (−) (−)
√ √

10 (−) (−) (−) (−) (−) (−) (−) (−) (−) (−)

15 (−) (+) [5] = 24.5 (−) (−) (+) (−) (+) (−) (+) (−)
√

30 (−) (+) [4] = 33.7 (−) (−) (+) (−) (+) (−) (+) (−)
√

45 (−) (−) (−) (−) (+) (−) (+) (−) (+) (+)

60 (−) (−) (−) (−) (+) (−) (+) (−) (−) (+)

90 (−) (−) (−) (−) (+) (−) (+) (−) (−) (−)
√

120 (−) (+) [19] = 42.9 (−) (−) (+) (−) (+) (−) (−) (−)
√

180 (−) (+) [19] = 48.4 (−) (−) (+) (−) (+) (−) (+) (−)
√

360 (+) [25] = 60.3 (+) [24] = 60.3 (−) (−) (+) (−) (+) (−) (+) (−)
√

720 (+) [4] = 11.8
[25] = 67.7 (+) [24] = 67.6 (−) (−) (−) (−) (−) (−) (−) (−)

√ √

1080 (+) [4] = 11.8 (+) [24] = 71.9 (−) (−) (−) (−) (−) (−) (−) (−)
√ √

1440 (−) (+) [25] = 71.9 (−) (−) (−) (−) (−) (−) (−) (−)
√ √

2160 (−) (+) [20] = 80.5 (−) (−) (−) (−) (−) (−) (−) (−)
√ √

2880 (−) (+) [22] = 87.2 (−) (−) (−) (−) (−) (−) (−) (−)
√ √

4320 (−) (+) [21] = 87.9 (−) (−) (−) (−) (−) (−) (−) (−)
√ √
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Table 3. Results of nonhomogeneity analysis of AMP and POT precipitation series from Bialystok meteorological station;
(−)/(+) denotes, respectively, negative and positive test results;

√
—denotes homogenous series.

τ
(min)

Grubbs-Beck Test
±Outliers (mm) Test of Series Kruskal-Wallis

Test

Spearman Rank Correlation Test Homogeneity
of Precipitation

PMAX
τ

for Trend of
Mean

for Trend
of Variance

AMP POT AMP POT AMP POT AMP POT AMP POT AMP POT

5 (−) (+) [15] = 15.5 (−) (−) (+) (−) (+) (−) (−) (−)
√

10 (−) (+) [15] = 22.3 (−) (−) (+) (−) (+) (−) (−) (−)
√

15 (−) (+) [17] = 24.6 (−) (−) (+) (+) (+) (−) (−) (+)

30 (−) (−) (−) (−) (+) (+) (+) (−) (−) (+)

45 (−) (−) (−) (−) (+) (−) (+) (−) (−) (−)
√

60 (−) (−) (−) (−) (+) (−) (+) (−) (−) (−)
√

90 (−) (+) [22] = 42.0 (−) (−) (+) (−) (+) (−) (−) (−)
√

120 (−) (+) [23] = 47.7 (−) (−) (+) (−) (+) (−) (−) (+)

180 (−) (+) [23] = 52.2 (−) (−) (+) (−) (+) (−) (−) (−)
√

360 (+) [4] = 10.89
[25] = 67.70 (+) [23] = 67.7 (−) (−) (+) (+) (+) (+) (−) (−)

720 (+) [25] = 73.90 (+) [21] = 73.9 (−) (−) (+) (−) (+) (−) (−) (−)
√

1080 (−) (+) [20] = 79.6 (−) (−) (+) (−) (+) (−) (−) (−)
√

1440 (−) (+) [23] = 84.50 (−) (−) (+) (+) (+) (+) (−) (−)

2160 (−) (+) [21] = 101.30 (−) (−) (+) (−) (+) (−) (−) (−)
√

2880 (−) (+) [20] = 106.20 (−) (−) (+) (−) (+) (−) (−) (−)
√

4320 (−) (−) (−) (−) (+) (−) (+) (−) (−) (−)
√

For all observed values of maximum precipitation PAMP
τ and PPOT

τ (Tables 2 and 3),
the Wald-Wolfowitz test (Test of Series) and the Anderson serial correlation coefficient test
showed that the analyzed measurement series were random and formed a simple sample,
i.e., the random variables were independent variables. The significance level α = 0.05 used
in the test took account of the size of the random sample, n = 30. For series of length
greater than 30, a lower value may be taken as the test significance level (e.g., α = 0.01). For
the detection of outliers with the Grubbs-Beck test, the higher value α = 0.10 was used,
on the assumption that series of measurements of meteorological phenomena may be
characterized by greater anthropogenic impact.

The stationarity of the measurement series was checked using the Kruskal-Wallis
test and Spearman rank correlation test for the trends of the mean and variance. Ac-
cording to the Kruskal-Wallis test, in the PAMP

τ series from both Chojnice and Bialystok,
jumps in the mean were detected, with the exception of the observations for τ = 5 and
τ ∈ {720, . . . , 4320} min at Chojnice. In the case of the PPOT

τ precipitation values, most of
the observations were stationary, with the exception of τ = 5 at Chojnice and τ ∈ {15, 30}
and τ = 1440 min at Bialystok.

The Spearman’s rank correlation test for the trends of mean and variance revealed
nonstationarity mainly for the PAMP

τ precipitation values. In the case of PPOT
τ , nonsta-

tionary observations were the exception. For example, in the observations from Chojnice
for τ = 10 min and τ ∈ {45, 60} min, a trend was detected in the mean and variance,
respectively, while for the Bialystok data, such trends were detected, respectively, for
τ ∈ {360, 1440} and τ = 120 min.

The results of correlation testing and the identification of the trend of maximum
precipitation for the AMP and POT series are given in Tables 4–6. The identification of the
trend of the analyzed random variables was performed using the nonparametric Spearman
rank correlation test [37] and the parametric Pearson linear correlation coefficient test [38].
An analysis was made of the correlation between the studied random variables (PAMP

τ and
PPOT
τ ) and the time variable τ (Table 4). Positive and negative values indicate upward and
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downward trends, respectively. Spearman’s coefficient also indicates the strength of the
trend. The closer the values are to 1.0, the stronger is the relationship between the analyzed
random variable and the time variable τ. Pearson’s coefficient indicates proportionality,
that is, linear dependence between variables, while Spearman’s coefficient indicates any
monotonic relationship, even if nonlinear. Figures shown in bold type in Table 4 indicate
significant correlations, with the probability p ≤ 0.05. Strong dependences between the
observed maximum precipitation values and the independent variable τ were recorded in
the case of PAMP

τ at both Chojnice and Bialystok.

Table 4. Correlations between the maximum precipitation variables and time τ for the Chojnice and Bialystok stations.
Bold values of Spearman’s rank correlation and Pearson’s linear correlation coefficients are significant at p < 0.05 for n = 30,
where n is the size of the sample.

τ
(min) 5 10 15 30 45 60 90 120 180 360 720 1080 1440 2160 2880 4320

Nonparametric Spearman rank correlation coefficient test for CHOJNICE station

PAMP
τ 0.277 0.309 0.396 0.481 0.452 0.472 0.439 0.495 0.516 0.458 0.198 0.100 0.136 0.112 0.206 0.220

PPOT
τ 0.175 −0.449 −0.181 −0.270 −0.019 −0.169 −0.129 −0.046 −0.319 0.036 −0.201 −0.203 −0.226 −0.326 −0.285 −0.340

Parametric Pearson linear correlation coefficient test for CHOJNICE station

PAMP
τ 0.267 0.297 0.290 0.292 0.303 0.335 0.388 0.434 0.425 0.387 0.299 0.186 0.159 0.101 0.189 0.210

PPOT
τ 0.209 −0.299 −0.255 −0.331 −0.124 −0.235 −0.142 −0.068 −0.222 0.090 0.046 −0.045 −0.114 −0.205 −0.145 −0.193

Nonparametric Spearman rank correlation coefficient test for BIAŁYSTOK station

PAMP
τ 0.584 0.552 0.553 0.524 0.471 0.477 0.482 0.458 0.482 0.454 0.470 0.415 0.458 0.433 0.417 0.366

PPOT
τ 0.181 0.007 0.222 0.227 0.042 0.056 0.137 0.271 0.194 0.434 0.315 0.236 0.407 0.251 0.067 0.353

Parametric Pearson linear correlation coefficient test for BIAŁYSTOK station

PAMP
τ 0.448 0.490 0.489 0.427 0.399 0.396 0.428 0.411 0.466 0.468 0.486 0.457 0.456 0.451 0.434 0.423

PPOT
τ 0.131 0.054 0.174 0.115 0.018 0.006 0.102 0.168 0.195 0.375 0.368 0.304 0.371 0.228 0.129 0.364

The form of the trend function was assessed using regression analysis (Tables 5 and 6),
where the dependent variable is the maximum precipitation and the independent variable
is the time τ. Tables 5 and 6 give the results of the regression analysis, including the
following indicators: Pearson’s correlation coefficient r, the coefficient of determination r2,
the Fisher-Snedecor global F-test [60], the test probability p resulting from the latter test,
the size of the random sample n, and the standard error of estimation S(E). Statistically
significant regression coefficients for the analyzed variables are identified according to the
criterion for statistical significance adopted in the model, with α = 0.05. This means that
the regression coefficients are significant for a test probability p ≤ 0.05.

The global F-test tests three equivalent null hypotheses: H0: β1 = 0 (significance of
the slope); H0: r2 = 0 (significance of the coefficient of determination); and H0: y = β1x+ β0
(significance of the linear relationship between the analyzed variables), where β1 is the
slope; β0 is a free term; and x and y denote the independent and dependent variables,
respectively. Verification is made of the null hypothesis that the independent variable x
(in Tables 5 and 6, the independent variable is time, τ) does not influence the analyzed
dependent variable y (in Tables 5 and 6, the dependent variables are PAMP

5 , . . . , PAMP
4320

and PPOT
5 , . . . , PPOT

4320 ). If, in the course of verification, the null hypothesis is rejected, the
regression coefficient is assessed as significant, meaning that τ has a significant influence
on the analyzed dependent variable. Examples of random variables with no trend and
showing a trend are given in Tables 5 and 6, respectively, for observations from Chojnice
and Bialystok.
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Table 5. Results of simple regression analysis for the Chojnice station, where the dependent variables are PAMP
τ and PPOT

τ ,
and the independent variable is time (τ), for n = 30, where r is Pearson’s correlation coefficient; r2 is the coefficient of
determination; F(1,n) is the Fisher-Snedecor test; S(E) is the standard error of estimation; and p (p-value) is the value of the
test probability. Bold type indicates significance of regression parameters, namely the existence (for p ≤ 0.05) of a significant
linear trend coefficient.

τ
PAMP

τ —CHOJNICE PPOT
τ —CHOJNICE

r r2 F(1,n = 28) S(E) p r r2 F(1,n = 28) S(E) p

5 0.266 0.071 2.142 2.278 0.154 0.208 0.043 1.274 1.374 0.268
10 0.297 0.088 2.718 3.780 0.110 0.299 0.089 2.751 2.641 0.108
15 0.296 0.087 2.691 4.872 0.112 0.255 0.065 1.949 3.754 0.173
30 0.292 0.085 2.609 6.916 0.117 0.331 0.109 3.447 5.396 0.073
45 0.302 0.092 2.824 7.244 0.103 0.124 0.015 0.440 5.757 0.512
60 0.335 0.112 3.545 7.244 0.070 0.234 0.055 1.634 5.596 0.211
90 0.388 0.151 4.967 7.399 0.034 0.142 0.020 0.577 5.762 0.453

120 0.434 0.188 6.513 7.623 0.016 0.067 0.004 0.128 5.983 0.722
180 0.425 0.181 6.181 8.089 0.019 0.221 0.049 1.447 6.489 0.238
360 0.386 0.149 4.926 9.047 0.034 0.090 0.008 0.229 7.484 0.635
720 0.298 0.089 2.744 9.857 0.108 0.046 0.002 0.059 7.524 0.808
1080 0.185 0.034 0.998 12.241 0.326 0.045 0.002 0.056 9.465 0.813
1440 0.158 0.025 0.726 13.263 0.401 0.113 0.012 0.366 10.337 0.550
2160 0.101 0.010 0.289 15.139 0.594 0.204 0.042 1.226 11.338 0.277
2880 0.188 0.035 1.035 15.589 0.317 0.145 0.021 0.604 11.986 0.443
4320 0.209 0.043 1.287 16.387 0.266 0.193 0.037 1.086 12.190 0.306

Table 6. Results of simple regression analysis for the Bialystok station, where the dependent variables are PAMP
τ and PPOT

τ ,
and the independent variable is time (τ), for n = 30, where r is Pearson’s correlation coefficient; r2 is the coefficient of
determination; F(1,n) is the Fisher-Snedecor test; S(E) is the standard error of estimation; and p (p-value) is the value of the
test probability. Bold type indicates significance of regression parameters, namely the existence (for p ≤ 0.05) of a significant
influence of the variable τ on the analyzed dependent variable.

τ
PAMP

τ —BIALYSTOK PPOT
τ —BIALYSTOK

r r2 F(1,n = 28) S(E) p r r2 F(1,n = 28) S(E) p

5 0.489 0.240 8.846 2.407 0.006 0.253 0.064 1.915 1.840 0.177
10 0.4901 0.240 8.879 3.352 0.006 0.083 0.007 0.197 2.979 0.660
15 0.489 0.239 8.826 4.147 0.006 0.197 0.039 1.137 3.454 0.295
30 0.425 0.181 6.232 5.768 0.019 0.061 0.004 0.104 4.854 0.749
45 0.399 0.159 5.309 6.816 0.028 0.106 0.011 0.323 5.407 0.574
60 0.397 0.157 5.248 6.825 0.029 −0.017 0.0003 0.008 5.124 0.928
90 0.427 0.183 6.269 7.513 0.018 0.113 0.012 0.363 5.866 0.551

120 0.409 0.167 5.628 8.285 0.024 0.142 0.020 0.576 6.456 0.454
180 0.465 0.216 7.729 8.195 0.009 0.145 0.021 0.605 6.837 0.443
360 0.466 0.217 7.773 9.875 0.009 0.301 0.091 2.801 8.684 0.105
720 0.487 0.237 8.708 10.828 0.006 0.368 0.135 4.390 10.032 0.045
1080 0.459 0.212 7.513 12.186 0.010 0.376 0.142 4.624 11.615 0.040
1440 0.458 0.210 7.465 13.717 0.011 0.367 0.134 4.350 12.633 0.046
2160 0.454 0.206 7.267 16.796 0.012 0.287 0.083 2.531 15.312 0.123
2880 0.436 0.191 6.600 18.190 0.016 0.193 0.037 1.088 16.566 0.306
4320 0.426 0.182 6.217 21.715 0.018 0.359 0.129 4.152 19.319 0.515

Values shown in bold type in Tables 5 and 6 indicate the presence of a significant in-
fluence of time τ on the analyzed random variable. In these cases, the estimated regression
slope coefficients β1 are significantly different from zero. At Chojnice, the observations
of maximum precipitation showed a trend only in the case of PAMP

τ for the durations
τ ∈ {90, . . . , 360} min. At Bialystok, however, in all of the analyzed observations of maxi-
mum precipitation PAMP

τ and in three cases of PPOT
τ (τ ∈ {720, . . . , 1440} min), an upward
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trend was detected. The test probability p determined for the computed regression coeffi-
cients was below the assumed significance level α = 0.05.

An assessment of the form of the trend function (linear, power, exponential, etc.) was
made using scatter plots of the analyzed random variables with respect to time τ (Figure 3).
The scatter plots of PAMP

10 , PAMP
30 , and PAMO

60 showed a clear linear upward trend, while those
for the variables PPOT

10 , PPOT
30 , and PPOT

60 showed, respectively, small upward and downward
trends. In this case, the slope β1 was close to 0, and the test probabilities (PPOT

10 : p = 0.660;
PPOT

30 : p = 0.749; PPOT
60 : p = 0.928) were substantially higher than the significance level

α = 0.05 used in the analysis. In the annual data, seasonal (monthly or daily) fluctuations
were not analyzed. If the analyzed series of values of PAMP

τ or PPOT
τ contain a trend or

periodic fluctuations, they cannot be used as an input in the computational procedures of
the PMAXTP method.

Figure 3. Scatter plots of dependent random variables observed at the Bialystok station: PPOT
10 , PPOT

ao , PPOT
60 and PAMP

10 , PAMP
30 ,

PAMP
60 with respect to the independent variable time (τ), with indication of the simple regression equation, coefficient of deter-

mination (r2), linear correlation coefficient (r), and test probability (p) compared with the assumed significance level α < 0.05.

An analysis was made of the internal correlation of the series of random variables
PAMP
τ and PPOT

τ using Anderson’s test [40]. An autocorrelation analysis was performed
for lags up to 25 (Figure 4). The greatest autocorrelation coefficients were detected for
PAMP

1080 with lag = 1 (ρ = 0.358) and for PPOT
90 with lag = 4 (ρ = 0.417). Other autocorrelation

values were not large and lay within the confidence interval for the assumed significance
level α = 0.05. This is a sufficient condition to conclude a lack of correlation; that is, that
the analyzed random variables are independent. An analysis of the autocorrelation plots
(Figure 4) also showed an absence of periodic fluctuations.

Nonhomogeneity analysis, performed using genetic and statistical methods, showed
that most of the observations of maximum precipitation selected by the POT method satisfied
the homogeneity requirements, except for the observations for duration τ = {10, 45, 60} min at
Chojnice and τ = {15, 30, 120, 1440} min at Bialystok (Tables 2 and 3). Most of the maximum
precipitation observations selected by the AMP method are nonhomogeneous; exceptions are
the PAMP

τ observations from Chojnice with duration τ = 5 and τ = {720, . . . , 4320} min.
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Figure 4. Autocorrelation function of random variables observed at Bialystok: PPOT
10 , PPOT

30 , and PPOT
60 for lags of up to 25 elements

in a series, with indication of autocorrelation coefficients, calculated white noise (standard error), and confidence level α.

4.2. Computation of Maximum Precipitation with Specified Probability of Exceedance Using the
PMAXTP Method

Parameters of the probability distributions of the analyzed random variables were
estimated for the two adopted methods of selection of maximum precipitations, PAMP

τ

and PPOT
τ (for details, see Section 2). The most credible distribution was selected for the

analyzed random variable by minimizing the value of the Akaike information criterion
(AIC) [45]. Calculations were performed for three-parameter (α, λ or µ, ε; Equations (A1),
(A3), (A5) and (A7) in Appendix A) probability distributions GA, WE, LGA, and LN, and
for the two-parameter (α, µ; Equation (A9) in Appendix A) G distribution. Sample results
obtained at each stage of the procedure are given in Table 7. The most credible theoretical
probability distribution for precipitation PAMP

5 at the Chojnice station was found to be
GA, while for PPOT

5 , it was found to be WE. At the Bialystok station, the most credible
theoretical distribution for PPOT

5 was determined to be LGA.
Verification of the distributions of maximum precipitation identified as most credible

at the meteorological stations in Chojnice and Bialystok was performed by means of
nonparametric tests of goodness of fit: DK−S, DA−D, DL−S, and DK (defined by Equations
(A11)–(A14) in Appendix B). For purposes of inference, a significance level of α = 0.05
was arbitrarily selected. This is a consequence of the fact that the value of the significance
level of a test is closely related to the size (length) of the random sample on whose basis
the parameters of the theoretical distributions are estimated. In the present analysis,
the series contained n = 30 elements, which means that the significance level can be
taken to be at most α = 0.05. Verification was performed for the most credible theoretical
probability distributions, which are shown in Table 8 for maximum precipitation with
specified duration τ, together with the results obtained in single-dimensional statistical tests
and the critical values, respectively for PAMP

τ and PPOT
τ at the Chojnice station and PPOT

τ at
Bialystok. All of the tests failed to reject the null hypothesis on the goodness of fit of the
theoretical distribution with the empirical distribution, for the analyzed variables PAMP

τ and
PPOT

τ , with the exception of the DA−D test in relation to the maximum precipitation PPOT
90 at

Chojnice (value shown in bold type in Table 8). The least of the maximum distances between
values of the theoretical and empirical cumulative probability distributions, particularly in
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the tail part, was situated decidedly below the critical value of the DA−D test defined at a
significance level of α = 0.05, which signifies rejection of the hypothesis of the goodness of
fit of the theoretical and empirical distributions.

Table 7. Sample results of the procedure to select probability distributions for maximum precipitation values PAMP
τ and PPOT

τ

for τ = 5 min. GA—gamma distribution; WE—Weibull; LN—log-normal; LGA—log-gamma; G—Gumbel; χ2—Pearson’s
χ2 goodness-of-fit test; min(Dmax)—Kolmogorov’s minimum distance criterion. Bold values represent the most credible
distributions according to the Akaike information criterion (AIC).

Precipitation

Probability Distribution

Type
Parameters χ2

χ2
(αkr=0.05) = 7.815 min(Dmax) AIC

α λ µ ε

C
H

O
JN

IC
E

PAMP
5

GA 1.321 3.642 - 0.1 0.831 0.500 138.738
WE 4.534 1.678 - 2.4 0.569 0.496 139.551
LN 0.379 - 1.806 0.1 1.090 0.514 139.268

LGA 0.036 113.463 - 0.1 1.182 0.552 140.164
G 2.009 - 5.394 - 0.977 0.499 139.215

PPOT
5

GA 0.732 3.356 - 5.2 5.292 0.579 100.323
WE 2.172 1.481 - 5.7 5.751 0.549 98.064
LN 0.360 - 1.231 4.0 5.268 0.601 101.625

LGA 0.048 12.131 - 4.2 5.194 0.603 101.709
G 1.022 - 7.031 - 6.013 0.667 102.049

BI
A

ŁY
ST

O
K

PPOT
5

GA 1.224 1.683 - 5.8 5.293 0.500 103.137
WE 2.087 1.188 - 5.9 5.751 0.553 102.860
LN 0.805 - 0.566 0.1 5.269 0.479 103.267

LGA 0.107 2.967 - 5.6 5.194 0.473 102.737
G 1.079 - 7.153 - 6.014 0.643 107.837

Table 8. Results of tests of fit of the theoretical probability distributions for PAMP
τ and PPOT

τ , where
τ = {5, 10, 15, 30, 45, 60, 90, 120, 180, 360, 720, 1080, 1440, 2160, 2880, 4320} (min). DK−S—Kolmogorov-Smirnov test, DA−D—
Anderson-Darling test, DL−S—Liao-Shimokawa test, DK—Kuiper’s test, significance level α = 0.05. The value in bold type
indicates rejection of the hypothesis of goodness of fit to the empirical distribution according to the statistic DA−D at α = 0.05.

τ
CHOJNICE BIALYSTOK

AMP DK−S DA−D DL−S DK POT DK−S DA−D DL−S DK POT DK−S DA−D DL−S DK

5 GA 0.091 0.332 0.714 0.160 WE 0.100 0.472 0.819 0.195 LGA 0.086 0.323 0.764 0.168
10 - - LN 0.084 0.245 0.691 0.158
15 - WE 0.117 0.268 0.668 0.206 -
30 - WE 0.108 0.285 0.678 0.185 -
45 - - WE 0.078 0.259 0.647 0.155
60 - - WE 0.080 0.194 0.621 0.157
90 - GA 0.150 1.098 1.199 0.278 WE 0.085 0.186 0.607 0.163
120 - GA 0.062 0.119 0.516 0.123 -
180 - LGA 0.087 0.155 0.537 0.155 GA 0.103 0.253 0.666 0.195
360 - LGA 0.071 0.184 0.613 0.133 -
720 GA 0.183 0.749 1.016 0.308 LGA 0.088 0.324 0.771 0.173 WE 0.093 0.265 0.655 0.186

1080 G 0.124 0.485 0.836 0.245 WE 0.105 0.423 0.819 0.189 WE 0.091 0.263 0.677 0.161
1440 G 0.125 0.443 0.825 0.229 WE 0.109 0.286 0.676 0.172 -
2160 G 0.080 0.118 0.514 0.124 GA 0.078 0.257 0.662 0.153 WE 0.071 0.164 0.591 0.136
2880 WE 0.079 0.209 0.650 0.157 GA 0.103 0.470 0.831 0.204 WE 0.087 0.217 0.616 0.166
4320 WE 0.072 0.166 0.575 0.145 GA 0.107 0.401 0.762 0.211 WE 0.107 0.276 0.680 0.192

αcr. = 0.05 for: DK−Scr. = 0.242; DA−Dcr. = 0.795; DL−Scr. = 1.505; DKcr. = 0.317.

The results obtained from the PMAXTP model for the values of maximum precipita-
tion with a specified probability of exceedance were compared with the results from the
Bogdanowicz-Stachý model [1,2]. In the latter model, the procedure for computing the
values of maximum precipitation with a specified probability of exceedance p consisted of:
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(i) regionalization of maximum precipitation;
(ii) estimation of parameters of the probability distribution function depending on the

identified region and selected duration.

The procedure of the Bogdanowicz-Stachý model conforms to the recommendations
of the World Meteorological Organization [61]. The input data originated from 20 me-
teorological stations situated in latitudinal strips running along the coast, lake districts,
lowland parts, and southern upland parts of Poland. Mountain areas were omitted, due to
the absence of stations monitoring precipitation at all altitudes. The maximum quantity
of precipitation with a specified duration and specified probability of exceedance was
determined using the formula (A16) in Appendix C, taking account of the regionalization
of the meteorological stations in Chojnice and Bialystok.

Quantile values determined using the PMAXTP and Bogdanowicz-Stachý models
were compared using statistical and graphical measures. According to the regionalization
carried out by Bogdanowicz and Stachý, the Chojnice meteorological station belongs to
the north-west region for precipitation with durations in the range <5, >60 min, to the
central region for durations in the range <60, >720 min, and to the southern/coastal region
for durations in the range <720, >4320 min. The Bialystok station, located in the north-
east of Poland, belongs to the central region irrespective of the duration of precipitation
being considered.

For a comparison of the results given by the two models, i.e., PMAXTP and Bogdanowicz-
Stachý, various statistical measures can be used [62]. In our study, we used the standard error
of fit S(E), which is shown in Table 9. The error is given by the following formula [63]:

S(E) =

√√√√√ i=m
∑

i=1

(
PMAX

τi
− P̂MAX

τi

)
m− l

(1)

where PMAX
τ,i is the observed maximum precipitation selected by the AMP or POT method

for a specified duration (τ); P̂MAX
τ,i is the estimated maximum precipitation from the

PMAXTP or Bogdanowicz-Stachý model; m = 30 is the size of the random sample formed
from empirical quantiles for m = 30 selected probabilities p ∈ {96.8, 93.6, 90.3, 87.1, 83.9,
80.7, 77.4, 74.2, 70.9, 67.7, 64.5, 61.3, 58.1, 54.8, 51.6, 48.4, 45.2, 41.9, 38.7, 35.5, 32.3, 29.0,
25.8, 22.6, 19.4, 16.1, 12.9, 9.7, 6.5, 3.2} % and the corresponding theoretical distributions
computed using the PMAXTP and Bogdanowicz-Stachý methods. Finally, l is the number
of parameters of the theoretical probability distribution according to the density function
(Equations (A1), (A3), (A5), (A7) and (A9) in Appendix A).

Computations of the error S(E) were performed separately for specified durations τ of
maximum precipitation. The value of the standard error of fit increased with increasing
values of τ for both models. The smallest errors were obtained for the quantiles determined
from the maximum precipitation values selected using the POT method and the PMAXTP
model. An exception was the quantiles determined for the AMP values at the Chojnice
station for duration τ equal to 720 and 4320 min. The errors of fit of the theoretical to the
empirical distributions in the Bogdanowicz-Stachý model for precipitation values selected
by the AMP method were on average 210% greater than those obtained with the PMAXTP
model, and for the POT precipitation values, the errors were 300% greater. The most
frequently selected most credible theoretical probability distribution for random samples
of both AMP and POT maximum precipitation values, and for both the Bialystok and the
Chojnice stations, was the WE distribution.

Figures 5–10 show a comparison of the functions for the probability of exceedance
of maximum precipitations PAMP

τ or PPOT
τ determined using the models, for Chojnice

(Figures 5–7) and Bialystok (Figures 8–10). The plots contain density functions of probabil-
ity distributions computed only for homogeneous observations of precipitation selected by
the AMP and POT methods, in accordance with the results shown in Tables 2, 3 and 8. The
diagrams show comparisons of: (i) the most credible probability functions for maximum
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precipitation determined by the PMAXTP model for the AMP observation series (orange
solid line) and for maximum precipitation selected by the POT method (blue solid line);
(ii) upper limits of confidence intervals (orange and blue dotted lines); (iii) observations of
AMP and POT maximum precipitation (orange and blue squares); and (iv) the probability
function determined using the probabilistic Bogdanowicz-Stachý model (red solid line).

Table 9. Comparison of the PMAXTP and Bogdanowicz-Stachý methods for PAMP
τ and PPOT

τ , where τ = {5, 10, 15, 30, 45,
60, 90, 120, 180, 360, 720, 1080, 1440, 2160, 2880, 4320} (min), using the standard error of fit S(E). The comparison refers to
the maximum precipitation values computed for the meteorological station in Chojnice (PAMP

τ and PPOT
τ ) and in Bialystok

(PPOT
τ ). Values in bold type are the smallest errors S(E) obtained separately for the Chojnice and Bialystok stations.

τ

CHOJNICE BIAŁYSTOK
PMAXTP B&S PMAXTP B&S

AMP POT AMP POT POT POT
Distrib. S(E) Distrib. S(E) Distrib. S(E) Distrib. S(E) Distrib. S(E) Distrib. S(E)

5 GA 0.484 WE 0.263 WE 0.801 WE 1.380 LGA 0.780 WE 2.139
10 LN 0.639 WE 2.613
15 WE 0.742 WE 2.135
30 WE 1.418 WE 2.654
45 WE 0.778 WE 3.037
60 WE 0.737 WE 3.902
90 GA 1.992 WE 4.761 WE 1.133 WE 4.424

120 GA 1.325 WE 5.469
180 LGA 1.558 WE 5.557 GA 1.999 WE 5.209
360 LGA 2.902 WE 6.095
720 GA 4.113 LGA 4.236 WE 7.246 WE 7.713 WE 2.869 WE 5.854
1080 G 3.341 WE 3.287 WE 8.441 WE 7.814 WE 2.610 WE 6.280
1440 G 3.359 WE 2.847 WE 10.430 WE 8.588
2160 G 2.924 GA 2.383 WE 11.139 WE 8.866 WE 3.543 WE 7.704
2880 WE 3.083 GA 2.761 WE 12.845 WE 10.442 WE 3.646 WE 8.593
4320 WE 2.720 GA 2.738 WE 14.218 WE 11.486 WE 4.648 WE 11.634

At the Chojnice station, for practically all of the analyzed durations of maximum
precipitation, the quantile values from the Bogdanowicz-Stachý model are markedly higher
than the observed precipitations and values of corresponding quantiles from the PMAXTP
model, in relation to the maximum precipitations selected both by the AMP method
(orange squares and solid line) and by the POT method (blue squares and solid line). The
differences between the quantiles are particularly visible in the central region and in the
region of the upper tails of the probability distributions. Similar maximum quantile values
were obtained for precipitation with duration τ = {15, 30, 180, 1080} min. At Chojnice, the
AMP values were described by the models GA and WE, while for description of the POT
maximum precipitation values, the WE distribution was selected for short durations τ, and
GA and LGA for medium and long durations.

At the Bialystok station, in the case of maximum precipitations with duration
τ = {5, 45, 60, 90, 180} min (Figures 8 and 9), the quantile values determined using the
Bogdanowicz-Stachý model (red solid line) are markedly higher than the corresponding
quantiles obtained using the PMAXTP model for the maximum precipitations determined
by the POT method (blue squares and solid line). Differences between quantiles are partic-
ularly visible in the central region and in the region of the upper tails of the probability
distributions. The closest results for quantiles of POT maximum precipitations calculated
using the PMAXTP method and from the Bogdanowicz-Stachý model were obtained for
precipitation with duration τ = {720, 1080} min (Figure 9). For maximum precipitation with
such durations, the most credible theoretical distribution was WE, while for short durations,
τ = {5, 10} min, the respective distributions were LGA and GA. For maximum precipitation
selected by the POT method with duration τ = {2160, . . . , 4320} min, the Bogdanowicz-
Stachý model returned markedly lower quantile values than the PMAXTP method.
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Figure 5. Plots of functions of probability of exceedance for the random variables PAMP
τ and/or PPOT

τ ,
where τ = {5, 15, 30, 120} min, for the most credible probability distributions, with indicated upper limits of quantile
confidence intervals according to the PMAXTP method, compared with the model of Bogdanowicz and Stachý, for the
Chojnice meteorological station.

Figure 6. Plots of functions of probability of exceedance for the random variables PAMP
τ and/or PPOT

τ , where
τ = {180, 360, 720, 1080} min, for the most credible probability distributions, with indication of upper limits of quantile confi-
dence intervals according to the PMAXTP method, compared with the model of Bogdanowicz and Stachý, for the Chojnice
meteorological station.
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Figure 7. Plots of functions of probability of exceedance for the random variables PAMP
τ and PPOT

τ , where τ = {1440, 2160,
2880, 4320} min, for the most credible probability distributions, with indication of upper limits of quantile confidence
intervals according to the PMAXTP method, compared with the model of Bogdanowicz and Stachý, for the Chojnice
meteorological station.

Figure 8. Plots of functions of probability of exceedance for the random variables PPOT
τ where τ = {5, 10, 45, 60} min, for the

most credible probability distributions, with indication of upper limits of quantile confidence intervals according to the
PMAXTP method, compared with the model of Bogdanowicz and Stachý, for the Bialystok meteorological station.
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Figure 9. Plots of functions of probability of exceedance for the random variables PPOT
τ where τ = {90, 180, 720, 1080} min,

for the most credible probability distributions, with indication of upper limits of quantile confidence intervals according to
the PMAXTP method, compared with the model of Bogdanowicz and Stachý, for the Bialystok meteorological station.

Figure 10. Plots of functions of probability of exceedance for the random variables PPOT
τ where τ = {2160, 2880, 4320} min,

for the most credible probability distributions, with indication of upper limits of quantile confidence intervals according to
the PMAXTP method, compared with the model of Bogdanowicz and Stachý, for the Bialystok meteorological station.
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The final element of the verification of maximum precipitation values was a com-
parison of the estimated quantile error resulting from the randomness of the sample of
maximum precipitations computed using the PMAXTP model for the random variables
PAMP

τ and PPOT
τ at the meteorological station in Chojnice (Figures 11–13) and for PPOT

τ at
the meteorological station in Bialystok (Figures 14–16).

The largest errors for values of maximum precipitation with high probabilities, such
as 99.0 and 99.9, at the Chojnice station were observed for maximum precipitations selected
using the AMP method (Figure 11 for τ = 5, Figure 12 for τ = {720, 1080}, Figure 13
for τ = {1440, . . . , 2160} min)—markedly higher errors for the AMP series than for the
POT series at Chojnice. The largest errors for values of maximum precipitation with low
probabilities, such as 0.01 and 0.001, were recorded for the Chojnice station (Figure 12
for τ = {720, 1080} and Figure 13 for τ = {1440, . . . , 2160} min) for POT precipitations
(markedly higher errors for the POT series than for the AMP series at Chojnice). The
smallest differences in the quantile error in the entire range of theoretical occurrence of
maximum precipitation were observed at Chojnice (Figure 13 for τ = {2880, 4320} min).

Calculations were made for 100 total rainfall measuring sites in Poland (Figure 17).
Calculated characteristics of maximum rainfall totals, i.e., quantile values for p(%) ∈ {99.9,
99.5, 99, 98.5, 98, 95, 90, 80, 70, 60, 50, 40, 30, 20, 10, 5, 3, 2, 1, 0.5, 0.3, 0.2, 0.1, 0.05, 0.03,
0.02, 0.01} of a specified duration, τ(min) ∈ {5, 10, 15, 30, 45, 60, 90, 120, 180, 360, 720, 1080,
1440, 2160, 2880, 4320}, upper limits of the confidence interval and quantile errors were
interpolated by the Thiessen Polygons (TP) method, which allowed for the assignment of
certain areas for which measuring sites are representative as well as for the proportional
division and distribution of sites within Poland. Higher resolution calculations can be
achieved using Gaussian geostatistical simulation models [64] that accept any simple
kriging model [65] or residual kriging model [66].

Figure 11. Comparison of estimated values of quantile error resulting from the randomness of the sample of max-
imum precipitations computed using the PMAXTP model for the random variables PAMP

τ and PPOT
τ with durations

τ = {5, 15, 30, 120} min, for the Chojnice meteorological station.
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Figure 12. Comparison of estimated values of quantile error resulting from the randomness of the sample of maxi-
mum precipitations computed using the PMAXTP method for the random variables PAMP

τ and PPOT
τ with durations

τ = {180, 360, 720, 1080} min, for the Chojnice meteorological station.

Figure 13. Comparison of estimated values of quantile error resulting from the randomness of the sample of maxi-
mum precipitations computed using the PMAXTP method for the random variables PAMP

τ and PPOT
τ with durations

τ = {1440, 2160, 2880, 4320} min, for the Chojnice meteorological station.
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Figure 14. Comparison of estimated values of quantile error resulting from the randomness of the sample of maximum
precipitations computed using the PMAXTP model for the random variable PPOT

τ with durations τ = {5, 10, 45, 60} min, for
the Bialystok meteorological station.

Figure 15. Comparison of estimated values of quantile error resulting from the randomness of the sample of maximum
precipitations computed using the PMAXTP model for the random variable PPOT

τ with durations τ = {90, 180, 720, 1080} min,
for the Bialystok meteorological station.
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Figure 16. Comparison of estimated values of quantile error resulting from the randomness of the sample of maximum
precipitations computed using the PMAXTP model for the random variable PPOT

τ with durations τ = {2160, 2880, 4320} min,
for the Bialystok meteorological station.

Interpolation also can be performed using the Inverse Distance Weighted (IDW)
method, which uses a linearly weighted set of sampling points to determine mesh node
values by using reverse weighted distance values. The weight is a function of the inverse
distance, and the interpolated surface should be a variable surface depending on the
position of the point [67]. An example of interpolating the maximum precipitation value
PAMP

τ with a duration of τ = 30 min with a probability p = 1% calculated using the IDW
method is shown in Figure 18 (left part).

The IDW is a deterministic interpolation method because it is directly based on
surrounding measured values. Another example is the set of geostatistical methods, such
as the Kriging methods (right part of Figure 18), which include autocorrelation, which
represents the statistical relationship between the measured points, thus providing a certain
measure of reliability or accuracy of the forecast. The Kriging method is most suitable
when one knows that there is spatial distance correlation or directional deviation in the
data being analyzed.

Figure 17. Thiessen Polygons based on precipitation measurement sites in Poland.
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Figure 18. Interpolation of maximum precipitations computed using the PMAXTP model for the random variable PAMP
τ

with durations τ = 30 min with probability of exceedance p = 1% using IDW method (left part) and kriging method
(right part) for the Bialystok and Chojnice meteorological stations.

5. Conclusions

This paper described the PMAXTP model for a frequency analysis of maximum precip-
itation with a specified duration. It consists of two modules: statistical and computational.
The first step selects values of maximum precipitation of a specified duration, which is
conducted using two different methods: Annual Maximum Precipitation (AMP) and Peaks-
Over-Threshold (POT). The advantage of the POT method is that it selects a larger number
of observations of precipitation with the highest values in a given year, which leads to a
better estimation of the characteristics of maximum precipitation with a specified duration
and probability of exceedance. This is a significant issue in the design of drainage struc-
tures, particularly when they are at high risk of damage. The statistical module enables
an analysis of the homogeneity of the series of measurements of maximum precipitation
that serve as the input to the computational module, in which the mathematical models
used for parameter estimation require a simple random sample, that is, one that satisfies
the assumptions of independence and stationarity.

The computational module enables the selection of the best (the most credible) theoret-
ical probability distribution by means of: (i) estimation of the parameters of four types of
distributions belonging to the families gamma (GA), Weibull (WE), log-gamma (LGA), log-
normal (LN), and Gumbel function (G); (ii) test of the hypothesis of goodness of fit of the
theoretical probability distribution function with the empirical distribution using Pearson’s
χ2 test; (iii) selection of the best-fitting function in each distribution type according to the
criterion of minimum Kolmogorov distance; (iv) selection of the most credible distribution
function from the set of best-fitting functions of various types; and (v) verification of the
most credible distributions of precipitations PAMP

τ and PPOT
τ using the single-dimensional

tests DK−S, DA−D, DL−S, and DK.
The PMAXTP model was tested on data from two meteorological stations in Poland

(Chojnice and Bialystok) representing two regions characterized by different spatial vari-
ability of maximum precipitation. The results were compared with those given by the
Bogdanowicz-Stachý model—which to date has frequently been used in engineering
practice in Poland—based on estimated values of the quantile error resulting from the ran-
domness of the sample of maximum precipitation values computed for the tested stations.

In general, the errors of fit for the theoretical to the empirical distribution for the
PMAXTP model were lower than the errors for the Bogdanowicz-Stachý model. The
smallest errors were obtained for the quantiles determined on the basis of maximum
precipitation POT using the PMAXTP model for both analyzed stations.

The following detailed conclusions may be drawn from the results:
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• Most of the observations of maximum precipitation selected by the POT method
satisfied the requirement of homogeneity, with the exception of the observations with
durations τ = {10, 45, 60} min at Chojnice and τ = {15, 30, 120, 1440} min at Bialystok.

• Most of the observations selected by the AMP method did not satisfy the requirement
of homogeneity, with the exception of the observations with durations τ = 5 min and
τ = {720, . . . , 4320} min at Chojnice.

• Errors of fit of the theoretical to the empirical distributions for the Bogdanowicz-Stachý
model were on average 210% higher than the errors for the PMAXTP model in the
case of the precipitation PAMP

τ , and 300% higher in the case of PPOT
τ .

• The smallest errors were obtained for the quantiles determined on the basis of obser-
vations of maximum precipitation PPOT

τ obtained using the PMAXTP model.
• For the meteorological station in Chojnice, practically all of the quantile values

determined by the Bogdanowicz-Stachý model were markedly higher than those
obtained by the PMAXTP model and the quantiles of the empirical precipitations
PAMP

τ and PPOT
τ , while for the station in Bialystok, the Bogdanowicz-Stachý model

gave higher quantile values for τ = {5, . . . , 180} min and markedly lower values for
τ = {2160, . . . , 4320} min.

• The greatest errors for the low quantiles, i.e., the values of maximum precipitation
that are exceeded with high probability, were observed for the precipitation values for
PAMP

τ , and the greatest errors for high quantiles, i.e., the values of maximum precipita-
tion that are exceeded with low probability, were observed for the precipitation values
for PPOT

τ .
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Appendix A. The Density Function f (x) and the Quantile Function xp

The density function f (x) and the quantile function xp of the three-parameter GA
distribution are written as [68]:

f (x) =
(x− ε)λ−1

αλΓ(λ)
exp

(
− x− ε

α

)
(A1)

xp = ε + αtp(λ) (A2)

where Γ(λ) =
∫ ∞

0 tλ−1 exp(−t)dt is Euler’s gamma function; x is an observation of the
random variable X; xp is a quantile of the theoretical GA distribution; and tp(λ) is a quantile
of the standardized gamma distribution, with probability of exceedance p.
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The WE distribution is defined as [68]:

f (x) =
λ

α

(
x− ε

α

)λ−1
exp

[
−
(

x− ε

α

)λ
]

(A3)

xp = α[− ln(1− (1− p))]
1
λ + ε (A4)

The LGA distribution [69] is represented by the equations:

f (x) =
(ln x− ln ε)λ−1

αλΓ(λ)x
exp

(
− ln x− ln ε

α

)
(A5)

xp = ε exp
[
αtp(λ)

]
(A6)

The log-normal distribution (LN) [70] is represented as:

f (x) =
1

(x− ε)α
√

2π
exp

[
−1

2

(
ln(x− ε)− µ

α

)2
]

(A7)

xp = exp

[
µ +

α
√

2
erf(2(1− p)− 1)

]
+ ε (A8)

where: erf( . . . ) is the Gauss error function, and other symbols have the same meanings as
above, except that xp denotes a quantile of the theoretical WE, LGA, and LN distributions,
respectively.

The Gumbel distribution [71] is written as:

f (x) =
1
α

exp
[
− x− µ

α
− exp

(
− x− µ

α

)]
(A9)

xp = −α ln[− ln(1− p)] + µ (A10)

where xp is a quantile of the theoretical G distribution.

Appendix B. The Goodness-of-Fit Tests

The following are nonparametric goodness-of-fit tests used to test the goodness of fit of
a mathematical model (theoretical distribution) with observations (empirical distribution).

The Kolmogorov-Smirnov statistic DK−S [46]:

DK−S = max
1<i≤n

(
δ̂i
)
, gdzie :δ̂i = max

[
i
n
− F0

(
xi; θ̂

)
, F0

(
xi; θ̂

)
− i− 1

n

]
(A11)

where n is the size of the random sample, and F0
(

xi; θ̂
)

is the distribution function of the
theoretical probability distribution for the estimated parameter vector θ̂.

The Anderson-Darling statistic DA−D [48]:

DA−D = −n− 1
n

n

∑
i=1

{
(2i− 1)lnF0

(
xi; θ̂

)
+ (2n + 1− 2i)ln

(
1− F0

(
xn+1−i; θ̂

))}
(A12)

The Liao-Shimokawa statistic DL−S [49]:

DL−S =
1√
n

n

∑
i=1

max
[

i
n − F0

(
xi; θ̂

)
, F0
(
xi; θ̂

)
− i−1

n

]
√

F0
(
xi; θ̂

)[
1− F0

(
xi; θ̂

)] (A13)
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The Kuiper statistic DK [50]:

DK = max
1<i≤n

(
δ̂+i
)
+ max

1<i≤n

(
δ̂−i
)

(A14)

where δ̂+i = max
[

i
n − F0

(
xi; θ̂

)]
; δ̂−i = max

[
F0
(

xi; θ̂
)
− i−1

n

]
.

Appendix C. Formulas Used in the Probabilistic Model of Maximum Precipitation of
Bogdanowicz and Stachý Model

The Weibull probability distribution (extreme value type 3, EV3), f (x), and quantile of
maximum precipitation xp are given as follows [1,2]:

f (x) =
λ

θ − ε

[
x− ε

θ − ε

]λ−1
exp

{
−
[

x− ε

θ − ε

]λ
}

(A15)

xp = ε + α(− ln p)
1
λ (A16)

where ε is the lowest bound; ε(τ) = 1.42τ0.33; θ is the quantile with probability of exceedance
1/e = 0.367 . . . ; λ is a shape parameter; and α = θ − ε is a scale parameter.
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