
water

Article

Simulation of the Riprap Movement Using the
Continuous-Time Random Walking Method

Maomei Wang 1,2, Longcang Shu 1, Gang Zhao 2, Yuzhu Lin 1, Zhipeng Li 3, Hongguang Sun 3,*
and Chengpeng Lu 1,*

����������
�������

Citation: Wang, M.; Shu, L.; Zhao, G.;

Lin, Y.; Li, Z.; Sun, H.; Lu, C.

Simulation of the Riprap Movement

Using the Continuous-Time Random

Walking Method. Water 2021, 13, 2669.

https://doi.org/10.3390/w13192669

Academic Editors: Piotr Szymczak

and Dominic E. Reeve

Received: 17 August 2021

Accepted: 24 September 2021

Published: 27 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China;
wangmaomei@163.com (M.W.); lcshu@hhu.edu.cn (L.S.); annlin@163.com (Y.L.)

2 Hydraulic Science and Research Institute of Jiangsu Province, Nanjing 210017, China; 18936006590@163.com
3 College of Mechanics and Materials, Hohai University, Nanjing 210098, China; zhipeng@hhu.edu.cn
* Correspondence: shg@hhu.edu.cn (H.S.); luchengpeng@hhu.edu.cn (C.L.)

Abstract: During the implementation of the riprap project, the underwater migration process of the
stones is quite uncertain because of its difficulty to observe. The process of stone transportation is
discrete, which makes it unsuitable to be described by a continuous differential equation. Therefore,
considering the distribution of stone jumping and waiting, a continuous-time random walk (CTRW)
model is established. Based on the actual engineering data, five schemes simulate the one-dimensional
motion of riprap underwater and further discuss the spatial distribution and particle size of the
riprap. The results show that the CTRW model can effectively predict the riverbed elevation change
behavior caused by the riprap project. The suitability of the model for the prediction of riprap
movement decreases first and then increases with the increase in the selected width. This indicates
that the randomness of the motion of the riprap causes the width of the observation zone to have a
significant effect on the overall behavior of riprap movement. When the width is large enough, the
influence of the randomness of the motion can be reduced by the average movement behavior within
the observation zone. While the observation time of riprap movement is from a short to long time
scale, the transport behavior changes from subdiffusion to normal diffusion behavior.

Keywords: random walking theory; riprap revetment; riprap movement simulation

1. Introduction

Riprap is one of the most common materials used to protect the stability of riverbeds
and revetments, bridge abutments and pier foundations from scouring [1]. The transport
of riprap is similar to the bedload in the broad sense. In the condition of an underlying
water surface, these methods used for riverbanks are no longer applicable [2]. The stability
evaluation of riprap adopts Monte Carlo simulation, inertia analysis, the Faroson blue
point estimation method and others to calculate the riprap under the flow conditions [3,4].
Numerical simulation methods are usually used to simulate the changes in water flow,
wind, waves and riverbed morphology caused by the implementation of stone dumping
projects. The existing software is generally used for two-dimensional or three-dimensional
simulation, and PFC software is commonly used [5,6], namely River2D [7,8], or the dis-
crete element method is used to simulate the conditions and hydrodynamic methods to
establish aggregation models, such as the DEM-SHP model [9], DEM-CFD model [10]
and CFD-CSM model [11]. Existing research focuses on the impact of stone dumping on
the mass and the migration status of the stone. The complex process of riprap transport
underwater can be approximated as the transport process of bedload in the river [12], and
the bedload transport model is often used to study the riprap movement. Therefore, the
actual demand of river management and development has promoted the development of
sediment discipline, and the development of the related disciplines has repaid the progress
of river management and development of engineering practices. The important indicator
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of the development of particle flow is the improvement of the basic theoretical research
level of river sediment. The study of particle movement in rivers originated from geo-
morphology and gradually evolved into a branch of hydraulics. Therefore, the traditional
theory retains the traces of geomorphology to a certain extent. In addition, the traditional
theory also draws heavily on the research results of fluid mechanics. However, according
to the existing research results, it was found that the movement of sediment and riprap
particles is a complex process that is cross-scale, highly random and coupled with multiple
physical processes [13]. Traditional research methods cannot accurately describe the motion
characteristics of the complex process of riprap and sediment movement and its physical
mechanism. Considering the above problems, new methods to study the movement of
particles such as riprap are needed. The probability statistical method theory based on the
particle velocity distribution function and its evolution equation can not only reflect the
individuality of particle movement but also reflect the common characteristics of particle
movement [14]. Because of its cross-scale research advantages, it reflects the probability
change process of particles appearing in velocity space and geometric space, as well as the
extremely strong coupling ability of the motion characteristics of individual particles and
the statistical characteristics of particle clusters. Recently, stochastic dynamics theory has
been widely used in the field of gas molecular motion and particle flow [15,16].

The most basic stochastic transport process in science and engineering is the diffusion
process. The classic model of the diffusion process is Brownian motion, which has been
widely used in the scientific fields of physics, chemistry, biology, finance and others [17,18].
However, in recent decades, with the improvement of the level of research, more studies
are concerned with systems with small scales and complicated conditions. These systems
present features that deviate from Brownian motion and result from non-standard statistical
physics. Therefore, they cannot be simulated well using the model with Brownian motion
and standard statistical distributions [19,20]. All these non-Brownian diffusion processes
are collectively referred to as “anomalous diffusion”. Due to the heterogeneity of the
riverbed environment, the transport of riprap particles often deviates from conventional
statistical physical results and exhibits anomalous transport. The application of random
walk and random process theory is a novel and feasible research idea. The most important
feature of the probability statistical theory of particle flow is the ability to reconstruct the
missing links of microscopic motion characteristics and macroscopic statistical laws.

The riprap movement in the riverbed is similar to bedload sediment, which is an
inherently stochastic process. Since Einstein proposed a statistical description of sediment
transport, he modeled the sediment transport as a series of alternating step lengths and
resting periods [10,21]. The probabilistic framework to characterize particle transport
attracted substantial attention from scientists in the past two decades, especially the CTRW
model [19,22–24]. The CTRW model has been successfully applied to predict the time-
dependent kinetics of tracers in strongly inhomogeneous media and constant velocity
experiments [25–28].

The movement of the riprap is controlled by the two aspects of necessity and chance [29].
On one hand, for certain riprap particles, the movement is inevitably affected by the
condition of the bottom flow rate, which is in accordance with the laws of mechanics. On
the other hand, the particle size, the bottom flow rate, the position of the particles on the
bed surface and the structural components of the riverbed are all random variables, and
their changes conform to the laws of probability theory. In the operation of the riprap
project, it is difficult to accurately capture and predict the difference between the transport
behavior in different environments and the transformation of the transport process at
different scales. Many parameters of the traditional model use empirical formulas or
parameters that make them impossible to be directly applied in some specific engineering
projects. The actual observations and theoretical calculations often have great deviations.
Therefore, it is a practical and feasible direction to use statistics to study the transport of
the riprap. The statistics of macroscopic data dismantle the deterministic nature of the
transport properties of riprap in random behavior. The statistical results have made great
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progress under the rapid development of computer theory in recent years. In addition to
the increase in computing speed, the statistical method has become one of the main research
methods in different research directions through the big data analysis of macro data and the
development of artificial intelligence. This study uses a combination of stochastic theory
and engineering practice to determine the appropriate statistical distribution, establish
a mechanical model for analyzing and simulating the anomalous transport of riprap in
the river and quantify the relationship between the model parameters and the internal
structure of the riverbed.

The random walking model is the most intuitive model to study the particle diffusion
problem by using various statistical methods. It mainly analyzes the statistical law of the
anomalous diffusion process and builds a random walking model by means of unconven-
tional statistical methods. In the study of statistical methods for anomalous diffusion, the
Lévy distribution is used the most and has been applied successfully to the analysis of
anomalous diffusion phenomena in turbulent, aquifer, biological fluid, semiconductor and
other media [30]. Extended Gaussian distribution in porous media with a fractal structure
demonstrates its advantages in the anomalous diffusion process. Mittag-Leffler distribution
has also achieved breakthrough results in anomalous diffusion and signal processing and
other fields. The theory of random walking was first proposed by Einstein [29] when he
studied molecular motion in fluids. Two fixed variables, such as fixed waiting time and a
certain jump step, were proposed to study the Brownian motion behavior of equilibrium
fluids. The random walking framework treats the particles as tracers, which will experi-
ence two states in the movement (i.e., rest and jump). The jump step is the distance of a
single jump, and the waiting time is the elapsed time between two successive jumps. In
the original theory, the behavior of random walking did not consider the distribution of
jumps and waits but only fixed steps and time as considerations. On this basis, Montroll
and Weiss [31] established the continuous-time random walking method (CTRW). In a
CTRW framework, a successful walk is decomposed into two parts: a random spatial
jump interval and the waiting time between two successful jumps. The distributions of the
two parts are dominated by their respective probability density distributions. Scher and
Montroll [32] first developed the CTRW model with a long-tailed distribution of waiting
times to describe the motion of charged particles in amorphous semiconductors.

In this study, the long-tail waiting time and jump step distribution are used to simulate
the anomalous transport behavior of the riprap movement in the river, and the field
observation data further validated the effectiveness of the CTRW model in predicting the
transport of riprap. We also discuss the spatial distribution of riprap particles with different
hydraulic conditions and different particle sizes.

2. Materials and Methods
2.1. Random Walk Theory

The continuous-time random walking theory (CTRW) extends the assumption of a
fixed step size and fixed waiting time to the jump step size and a waiting time dominated
by probability density distribution on the basis of the random walking theory. In the
continuous-time random walking theory, the particle jumping process is composed of the
space jumping distance and the waiting time between two successful jumps. The two
parameters are determined by the common joint probability density distribution. In actual
research, it is found that the jumping step length and waiting time are often irrelevant.
This assumption that the jump distance and the stay time are independent is adopted in
this study. Then, the jump step distance and waiting time are determined by their own
respective distribution densities. In the study, λ(x), ω(t) are used to denote the probability
density functions of the jump step and the waiting time, respectively. The generalized main
equations of the CTRW process are obtained by the joint probability density function as
follows [30]:

η(x, t) =
∫ +∞

−∞
dx′

∫ t

0
η
(
x′, t′

)
ψ(x− x′, t− t′) + δ(t)P0(x) (1)
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where η(x, t) is the probability density function for a tracer to just arrive at position x at
time t, the initial distribution of particles is P0(x) and ψ(x, t) represents the joint probability
density function of the jump step and waiting time.

The probability density function P(x, t) of the particle satisfies the following equation:

P(x, t) =
∫ t

0
η
(
x, t− t′

)
Ψ
(
t′
)
dt′ (2)

where Ψ(t) = 1−
∫ t

0 ω(t′)dt′ is the survival probability, indicating the probability that the
particles will never move.

By substituting the generalized main Equation (1) into Equation (2), the probability
density equation of continuous-time random walking is finally obtained:

P(x, t) =
∫ +∞

−∞
dx′

∫ t

0
ψ
(
x− x′, t− t′

)
P
(
x′, t′

)
dt′ + P0(x)ψ(t) (3)

In the CTRW framework, both space and time are defined as continuous variables, so
Equation (3) can consider the equations satisfied in the phase space. Then, a Fourier-Laplace
transformation can be applied to Equation (3):

ˆ̃P(k, u) =
1− ω̃(u)

u
· P̂0(k)

1− ˆ̃ψ(k, u)
(4)

Equation (4) in the Fourier-Laplace domain is called the Montroll–Weiss equation. In
this equation, the probability density distribution properties of the jump step and waiting
time can distinguish different transmission operations as the probability of the jump step.
When the second-order moment of the distribution diverges and the first-order moment
of the probability distribution of the waiting time converges, the transport operation is
defined as super-diffusion transport. When the second-order moment of the probability
distribution of the jump step converges and the first-order moment of the probability
distribution of the waiting time diverges, the operation defines this as diffusion transport.
Both are divergent with both the super-diffusion transport operation and this diffusion
transport operation, both of which converge to the normal transport state.

2.2. Monte Carlo Modelling for the Riprap Movement

The Monte Carlo method, also known as the stochastic simulation method, is widely
used in the context of the greatly improved computing power of today’s electronic comput-
ers [33]. This method is based on statistical theory and uses repeated random sampling
methods to obtain the numerical characteristics of statistics. When the number of repeti-
tions is sufficient, the numerical solution obtained by the Monte Carlo method can infinitely
converge to the real solution. Due to the complexity of the distribution used in this study,
Equation (4) in the Fourier-Laplace domain has great difficulty in converting to the time
domain. Here, we use the Monte Carlo method to obtain its numerical results. At the same
time, this method has great advantages in tracking the trajectory of particles and analyzing
the anomalous movement of particles.

The classic advection–diffusion equation (ADE) characterizes the law of fluid mass
transport. By solving the ADE, the distribution of particles under the central limit theorem
can be obtained. However, in actual observations, it has been found that the central limit
theorem will be broken in many cases. For example, the heterogeneity of the aquifer and
the non-uniformity of the riverbed structure will cause the equations that conform to the
central limit theorem to fail to accurately describe the actual transport behavior. This type
of transport that breaks the central limit theorem is called “anomalous transport”. The
continuous-time random walking theory describes the “anomalous transport” behavior by
defining jump steps and wait times for more of a “wide” probability density distribution.
When the probability density distribution returns to satisfy the central limit theorem, the
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jump step distribution is normal distribution, the waiting time distribution is exponential,
Equation (4) will return to the normal form of the advection–diffusion equation. In this
study, in order to reflect the “anomalous transport” behavior of the riprap caused by the
heterogeneity of the riverbed’s structure, the α stable distribution is used as the jump step
distribution, and the Mittag-Leffler distribution is used as the waiting time distribution.

In this study, we divided the motion of the riprap into the direction of flow and
perpendicular to the direction of flow and used independent and identically distributed
random numbers to simulate the movement process of the whole riprap process.

The waiting time of the exercise process is determined by the following formula:

tn+1 = tn + τβ

t0 = 0
(5)

The displacement in the direction of the water flow is composed of the displacement
caused by the collision of the particles and the displacement caused by carrying the water
flow, which is determined by the following formula:

xl
n+1 = xl

n + ξα1 + v·(tn+1 − tn)

xl
0 = 0

(6)

The displacement perpendicular to the direction of the water flow is only caused by
the mutual collision of the particles, which is determined by the following formula:

xr
n+1 = xr

n + ξα2
xr

0 = 0
(7)

where τβ is a random number that satisfies the Mittag-Leffler distribution and ξα1 and ξα2
are random numbers that satisfy the α stable distribution. Random number generation in
the study was generated by the following formula.

Among them, the α stable distribution random number that meets the jump step is
generated using Equation (8):

ξα = γx(
−In(u1) cos θ

cos((1− α)θ)
)

1−1/α sin(αθ)

cos θ
(8)

Random numbers satisfying the Mittag-Leffler distribution are generated using Equa-
tion (9):

τβ = −γt In(u1)(
sin(βπ)

tan(u2βπ)
− cos(βπ))1/β (9)

where u1, u2 ∈ (0, 1) are uniformly distributed random numbers and γx, γt is the scale
factor generated by the random numbers.

In the actual simulation, we used Equations (5)–(7) as the calculation of the movement
displacement of the riprap along the flow direction and perpendicular to the flow direction.
The random numbers of the waiting time and jumping step in the formula were determined
by Equations (8) and (9), respectively. When the parameter α was larger, the distribution
of the jump step was more concentrated (otherwise, it was more dispersed), and when
α = 2.0, the distribution of the jump step returned to the normal distribution. When the
parameter β was larger, the waiting time distribution had the greater decay rate. When
β = 1.0, the waiting time distribution returned to the exponential distribution. A more
dispersed jump step distribution means that the riprap particles have a greater probability
of performing long-distance movement in a short time. While the waiting time distribution
decay is slower, the probability of the riprap particles staying in the riverbed is greater. In
the following research, we will analyze the transport behavior of the riprap in the riverbed
based on this property. In the simulation, three parameters need to be determined: α is the
parameter of α stable distribution which controls the strength of the super-diffusion, β is
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the parameter of the Mittag-Leffler distribution which controls the strength of subdiffusion,
and v is the mean velocity of all the riprap particles. The boundary condition upstream is a
Dirichlet condition, and the boundary condition downstream is natural.

2.3. Field Investigation of Riprap Projects

The old sea dam node comprehensive improvement project in Zhangjiagang, which
is located in the Chengtong section of the lower Yangtze River, was selected as the study
area. The channel is 2 km wide, and the water level during the simulation period was from
−0.3 m to about 2.7 m (all based on the 1985 Chinese national elevation datum). The study
area belongs to the tidal river section. Under the dual effects of runoff and tide, the flow
velocity changes periodically (0.3–1.6 m/s). The river regime changes drastically, with
siltation on the left bank and scouring on the right bank. The elevation of the riverbed
presented is from −16 to about −5 m on the left bank and from −36 to about −50 m on
the right bank. There are many thorough scour pits from −30 m to about −50 m, and the
monthly variation of the scouring and silting thickness in individual locations is more than
10 m [34]. Figure 1 shows the specific locations of the study area.

The stone dumping methods used in river improvement work are divided into two
types: stone dumping on the outer slope of the embankment and stone dumping in
the deep-water area out in front of the wharf. The anti-collapsing layer (particle size:
0.16~0.4 m) is first thrown along the slope foot and then thrown along the bank slope.
There are large stones (particle size: 0.5 m~0.65 m), the designed riprap width is 40~120 m,
and the total riprap volume reaches 2.442 million m2 [35].

For further verification of the applicability and spatial suitability of the continuous-
time random walking model in the transport of the riprap, we used the biharmonic
spline interpolation method to interpolate the data collected in the field test at intervals of
0.05 m and performed simulation analysis. The data acquisition used the R2SONIC 2024
multibeam bathymetry system, which uses multiple arrays and wide-angle transmission
and reception and has the advantages of measurement accuracy and wide coverage. The
horizontal accuracy was ±0.03 m, the sounding accuracy was ±0.05 m, and the range
resolution was 0.0125 m. Here, we conducted on-site monitoring of the changes in riverbed
elevation at different periods after the riprap projects. Six elevation datasets were obtained
on 22 May 2015, 21 July 2015, 18 December 2015, 11 March 2016, 22 May 2016 and 4 July 2016.
Among them, there was no riprap project after July 2015. Therefore, the change in riverbed
elevation after July 2015 was mainly caused by the transport of the riprap in the river. In
order to accurately predict the riprap movement and apply the data to the continuous-time
random walking model, we first needed to understand the initial riverbed state before the
simulation time and analyze the riverbed elevation data obtained by examining each time.
We selected the riverbed elevation data captured for the second instance (21 July 2015) as
the initial elevation state of the riverbed. The data measured on 22 May 2015 was not used
as the initial state because the difference was too obvious compared with the subsequent
data and the elevation distribution for 22 May 2015 was very uneven. This was caused
relatively from the fact that the riprap project was still in progress during this period, which
had a great impact on the river elevation. Using it as the initial data during the simulation
would cause the simulation results to distort and not truly reflect the impact state of
the riprap project after the implementation of the riprap project. In order to accurately
characterize the degree of change of the riverbed at different times, several sets of data
with uniform changes were selected for analysis, namely 20150721, 20151218, 20160311 and
20160522. Due to the difference in the amount of data collected at each time, the riverbed
elevation of the uncollected part was subjected to a second interpolation calculation to keep
the amount of data consistent. By analyzing the topographic characteristics of the study
area and the construction conditions of the rubble project, it was found that the riverbed
had a large elevation drop in the direction of the vertical river, and the riprap project
was also implemented perpendicular to the riverbank. The change of two characteristics
in the vertical riverbank direction was consistent, while the characteristics in each cross
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section were similar. Therefore, the problem of stone migration in the direction of the
vertical riverbank could be generalized into a one-dimensional model for simulation. The
simulation path selected by the linear scheme was the most representative feature location
in the range, and the location was slightly different in different sessions. For details, refer
to the location represented by the linear scheme in the riverbed topography distribution
map of different simulation periods in Figure 1.
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In order to verify the spatial suitability and spatial scale of continuous-time random
walking in the simulation of the riprap movement, the region selection in the study shown
in Figure 1 adopted a linear scheme, strip scheme and regional overall scheme. In the
linear scheme, the calculated path of the riverbed elevation was the path shown in the
“linear scheme”. In each strip scheme, the calculation range was the area between the
two straight lines indicated by the double arrow in Figure 1 (different colors represent
different stripping schemes), and the overall scheme was calculated in the entire space. The
elevation of the calculation path of the stripping scheme, and the overall scheme was the
mean value of the elevation along the stripping width direction (calculating the average
height along the X axis).

3. Results
3.1. Numerical Simulation Based on the Field Investigation Varied by Different Widths of
Observation Strips

The simulation transport results for five different schemes are shown in Figure 2,
and the best fitted parameters are listed in Table 1. In the simulation, we normalized the
measured elevation (i.e., divided the elevation of each location by the maximum elevation).
Note that there is a clear deep groove near the right side in each graph of Figure 2. This was
due to the non-stationary terrain of the riverbed, which CTRW is still not a good model
for at this point. However, other terrains could be simulated precisely by adjusting the
parameters. By comparing the results in Figure 2, it can be found that with the increasing
width of the selected strip, the elevation change of the riverbed gradually tended to be
gentle, which was due to the transport of the riprap. The behavior was extremely random.
When the strip width was too small, the riverbed elevation exhibited strong randomness.
This was because there may have been a large number of particles located outside the area.
However, when the selected area gradually increased, this randomness further decreased,
which is consistent with the theorem of large numbers in statistical theory. When the
number of samples that are sampled is large enough, the mean of the samples is extremely
close to the overall mean.

Table 1. Parameters of the CTRW model under various schemes.

Field Observation
Group Scheme Type Parameter

α
Parameter

β

Diffusion
Coefficient

D
(

mα/Dayβ
) Convection Speed

V (m/Day)

20151218

Linear 1.98 0.98 5.0 0.1346
Stripping 1 2.0 0.90 5.0 0.1346
Stripping 2 2.0 0.78 7.0 0.1346
Stripping 3 2.0 0.78 7.0 0.1346

Overall Regional 2.0 0.90 5.5 0.1346

20160311

Linear 1.95 0.95 3.5 0.1610
Stripping 1 2.0 1.00 4.5 0.1610
Stripping 2 2.0 1.00 4.5 0.1610
Stripping 3 2.0 1.00 4.5 0.1610

Overall Regional 2.0 0.90 6.5 0.1610

20160522

Linear 1.95 0.95 3.5 0.1391
Striping1 2.0 1.00 4.5 0.1391
Striping 2 2.0 0.95 4.5 0.1391
Striping 3 2.0 0.95 5.0 0.1391

Overall Regional 2.0 0.95 7.5 0.1391
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Figure 2. The prediction results of the continuous-time random walking model of the three sets of
observation data under each scheme. (a–c) The prediction results of the linear scheme. (d–f) The
prediction results of stripping scheme 1. (g–i) The prediction results of stripping scheme 2. (j–l) The
prediction results of stripping scheme 3. (m–o) The prediction results of the overall regional scheme.

The above simulation results of the field observation data at different spatial scales
show that the continuous-time random walking model could effectively predict the
riverbed elevation change behavior caused by the stone throwing project. In order to
further examine the spatial suitability of the continuous-time random walking model at
different spatial scales, the parameters of the continuous-time random walking model
under different schemes were analyzed, considering that the convection-induced velocity
and diffusion coefficient of the particles in the CTRW theory were not the reasons for the
anomalous transport of the riprap and parameters α and β of the jump step length and
waiting time distribution reflected the super-diffusion and subdiffusion transport behav-
iors, respectively. Here, we analyze and consider the changing behavior of parameters
α and β at different spatial scales and further obtain the spatial suitability of the CTRW
in the actual prediction of the riprap transport behavior. Figure 3 shows the changes of
parameters α and β at different spatial scales.
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Figure 3 shows that the parameter α had small amplitude fluctuations under the
linear scheme. In other cases, the parameter α = 2 remained unchanged, which means that
the jumping step of the riprap was close to the normal distribution and a long distance
occurred in a short time. The probability of jumping was small. Meanwhile, the change in
the range of parameter β was larger in the strip scheme, and the change in the range of
parameter β was smaller in the linear scheme and the regional overall scheme. The results
show that parameter β was less than one many times, indicating power law decay behavior
rather than exponential decay behavior in the distribution of the waiting time in each state
of the riprap, which means that the riprap movement was subdiffused at each spatial scale.
When the strip width was small, the particle transport behavior changed from subdiffusion
to normal diffusion behavior after a long time. Moreover, the riprap particles moving
intermittently on the heterogeneous bed surface could therefore experience a bi-modal
transport such that fine particles may experience a sudden release, which corresponds
with a small α value, and the large particles may experience a long waiting time, which
corresponds with a small β value.

When analyzing the variation of parameters α and β, it was found that when CTRW
was used to simulate the riprap transport, the parameters were basically not affected by
the selected spatial scale, indicating that under any state, it is difficult for the transport to
be super-diffused. The variation was the smallest in the overall area, which means that
when the spatial area was large enough, the particle transport was stable in the statistics.
Therefore, the spatial suitability of CTRW gradually decreased first and then increased as
the selected strip width increased.

3.2. Spatial Distribution of the Riprap under Different Flow Conditions

The pattern of riprap movement in rivers is mainly reflected in super-diffusion trans-
port, subdiffusion transport, normal diffusion transport and the simultaneous existence
of super-diffusion and subdiffusion transport [36,37]. The mechanism of super-diffusion
and subdiffusion is determined mainly by the heterogeneity of the transport space. When
the riprap particles are easy to capture and difficult to release (caused by the riverbed
structure), the subdiffusion transport behavior will dominate the riprap movement. The
super-diffusion transport of the riprap is caused by the fact that the riverbed often also
produces channels in the form of fissures so that the riprap particles are apt to enter it
and move quickly downstream. The super-diffusion behavior is reflected in the jump step
distribution of the CTRW model ( α < 2.0), and the subdiffusion transport behavior is domi-
nated by the waiting time distribution (β < 1.0). The following simulation results show the
prediction results of the spatial distribution of the riprap with various diffusion behaviors.
In the simulation, the conditions of the riprap particles were set as follows: Dx = 0.05,
Dy = 0.4 and v = 0.2, and all parameters were dimensionless. The transport behavior of the
riprap particles could be judged by the mean square displacement of the riprap particles



Water 2021, 13, 2669 11 of 17

(i.e., x2 ∝ tγ (γ = 2 + β− α)), with γ > 1 when the super-diffusion behavior appears, γ < 1
when the subdiffusion behavior appears and γ = 1 when it returns to normal diffusion
behavior.

Figure 4 shows the spatial distribution of the riprap particles at different times under
different conditions after the riprap particles are released from the origin. Figure 4a shows
the state where super-diffusion and subdiffusion coexist. Figure 4b–d shows the transport
behavior of the riprap in the super-diffusion, subdiffusion and normal diffusion states,
respectively. The results show that the particles could reach the other side of the river and
downstream more quickly under the super-diffusion operation. The subdiffusion operation
illustrates that there was still a considerable part of the riprap particles under the long-term
erosion of particles staying near the initial riprap point, and the spatial distribution was
further dispersed. Compared with the actual observations and the simulation results in
Figure 2, we found that in actual rivers, the movement of the riprap after the implemen-
tation of the riprap project was dominated by subdiffusion transport, and the behavior
of super-diffusion was insignificant. This phenomenon is consistent with the previous
study in that the parameters α and β were sensitive to particle size. The sediment with a
larger size showed enhanced subdiffusion in the transport process [15,38,39]. This may
be due to the fact that the particle size of a riprap is generally larger than the sediment
particles of the riverbed, resulting in increasing difficult for the riprap particles to enter
the fast path. Even if a small amount of riprap particles enters the channel of the fast path
and is divided by the entire domain, the super-diffusion behavior is covered by the whole
sub-diffusion behavior.
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the diffusion coefficient and mean velocity of particles are set as D = γx

α/γt
β = 0.4 and v = 0.2. In the simulation, we paid

attention to the influence of parameters α and β on the spatial distribution of riprap particles, so the other parameters D, v, t
and x were dimensionless here. (a) α = 1.5, β = 0.5 for the existence of both subdiffusion and super-diffusion behaviors;
(b) α = 1.4, β = 1.0 for super-diffusion behavior; (c) α = 2.0, β = 0.8 for subdiffusion behavior; (d) α = 2.0, β = 1.0 for normal
diffusion behavior.
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3.3. Riprap Distribution Affected by Its Size

In the riprap project, the particle size of the released riprap needed to meet the needs
of the project as a whole. However, in actual operation, the riprap can meet the engineering
needs but also have obvious differences in the particle size. The riprap will have different
transport behaviors in the river, which will also have a certain impact on the effect of
the riprap project. The actual observation found that during the implementation of the
riprap project, the large-grained riprap were deposited easily at the bottom of the riverbed,
eroded gradually and moved downstream. While the transport of small-grained riprap
particles in the river and suspended particles have similar patterns of movement, they
can move quickly downstream along with the streamflow and will not even touch the
riverbed for quite a while. According to the above observation behavior, in the simulation,
we released three kinds of riprap at the same time and gave all the riprap of the same
size to the subdiffusion transport and the super-diffusion transport at the same time. The
subdiffusion transport was dominant, the small-sized riprap was dominated by super-
diffused transport, and the medium-sized riprap behaved as both super-diffusion and
subdiffusion.

Figure 5 shows the spatial distribution of various sizes of the riprap particles after the
time T = 30 (dimensionless time). Position 0 is the location where the riprap was released.
The thickness here represents the size (diameter) of the riprap particle size, corresponding
to the field test data in this article. The coarse particle size was 0.5~0.65 m, the medium
particle size was 0.4~0.5 m, and the fine particle size was 0.16~0.4 m. The results show that
the large- and medium-sized riprap particles partially remained after a period of erosion.
The small-sized particles moved rapidly downstream, and the spatial distribution of the
medium-sized riprap was more disperse. The large-sized particles were concentrated in
the upstream of the river, and the small particles were concentrated in the downstream of
the water flow.
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medium particle: 0.4–0.5 m; and fine particle: 0.16–0.4 m.

4. Discussion

Usually, after a period of implementation of the riprap project, there is no upstream
supply of riprap particles, and the status of the riprap in the river is basically stable. At
this time, the movement of the riprap is very similar to the transport of bedload in the
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river. This is due to the erosion of streamflow and the exchange with the riverbed. In
order to analyze the transport situation of the riprap in this state, we mainly considered
the following Markov birth–death system [40]. The specific description of the system is as
follows:

The unit window is taken in the system, and the number N of stone throwing move-
ments in the window is counted. The change of the number N is affected by the following
four assumptions:

1. The static particles in the riverbed enter the window, which will increase N, and the
activation rate is c1;

2. The particles in the window will be redeposited as part of the riverbed, resulting in a
decrease in N, and the deposition rate is c2;

3. The moving particles are washed out of the window, resulting in a decrease in N, and
the window exit rate is c3;

4. The particles flushed into the window upstream will increase the amount of N, and
the window entry rate is c4.

Figure 6 is a schematic diagram of the Markov birth–death system and the correspond-
ing reaction chain. N in the reaction chain represents the number of riprap particles in the
window, and X represents the number of particles in the riverbed and outside the window.
In this system, the number of X is unlimited (due to the amount of gravel contained in
the riverbed itself being greater than the amount of gravel that was washed away under
natural conditions). This system can be well described by Equation (10), but the steady state
solution of Equation (10) is not unique, mainly because particles often occur in integers
in the exchange, so continuous equations are solving discrete problems. There will be a
certain conflict in the physical sense of time. In order to visualize the state of the Markov
birth–death system, we used the Monte Carlo method for simulation. Intuitively, in order
to obtain the distribution of waiting times related to the continuous-time random walking
model, we defined the waiting time of the particle as the interval between two consecutive
events where the particle moved out of the window as the waiting time:

N/dt = (c1 + c4)X·N − (c2 + c3)·N2 (10)
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Figure 7 is a graph showing the change trend of the number of particles in the window
in two groups, and the number of initial particles in each group was quite different with
the stabilized state. Through the simulation results, we found that in the Markov birth–
death system, the moving particles of the riprap gradually stabilized after a long time,
and the change in the number of particles was related to the initial number of moving
particles. When the initial number of particles was smaller than the number of particles in
the steady state, the overall number of moving particles increased. These results indicate
that the probability that the riprap particles restarted in the riverbed was greater than the
probability of the deposition of moving particles under these conditions. However, when
the number of initial particles was greater than the steady state particles, the number of
overall moving particles decreased, which indicates that the deposition probability of the
moving particles in this state was greater than the restart probability of the particles.
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Figure 7. Time-varying movement of riprap particles in a river channel with different parameters
and different numbers of initial moving particles.

The number of moving particles in the steady state was determined by the selected
parameters c1, c2, c3 and c4, and the steady state value was (c1 + c4)X/(c2 + c3). When the
deposition rate and the window exit rate increased, the number of particles moving in the
window in the steady state decreased. When c2 + c3 tended toward infinity, this meant that
almost all particles entering the window were deposited or moved out of the window, so
there was no moving particle in the window in the steady state, which was consistent with
the actual conjecture.

Figure 8 shows the distribution of the waiting time of the riprap particles under
different parameter conditions. By comparing the decay behavior of the waiting time of
each figure in Figure 8, it can be found that after the riprap movement was stable, the
distribution of the waiting time was an exponential distribution. The increase of parameters
c2 and c3 made the distribution of waiting times decay more slowly, which means that
the increase of the deposition rate and the windowing rate would lead to an increase in
the probability of a long waiting time. Although it is not a power law decay, the relative
probability particles stayed in the window. The distribution of waiting times exhibited
more sensitivity to the deposition rate. In addition, the increase of parameters c1 and c4
would make the waiting time distribution decay faster, and its sensitivity to the waiting
time distribution was basically the same. The above conclusions indicate that the transport
of the riprap particles in the steady state behaved as a normal transport state rather than as
a secondary diffusion transportation state after the implementation of the riprap project.
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5. Summary and Conclusions

The process of rappel movement in water is affected by multi-physical processes and
has strong randomness, and traditional research methods cannot accurately describe this
complex process. In this paper, a continuous-time random walking model and Markov
birth–death system were established and combined with actual engineering data to study
the transportation behavior of ripraps, and the following conclusions were obtained:

1. The transport of riprap in rivers is extremely random. This randomness makes
conventional deterministic equations unable to accurately capture the transport of
riprap. CTRW models based on statistical theory can model its behavior well.

2. Riprap transport is discrete at the variable level. This is due to the physical size of the
particles. It is impossible for the movement of non-integer particles to occur during
transport. This discreteness is therefore not described by continuous differential
equations. Appropriately, it can be approximated only in a certain situation, and the
Markov birth–death system can accurately describe this behavior through the Monte
Carlo method.

3. The results of the CTRW model show that the model’s suitability for the prediction
of riprap decreases first and then increases with the increase of the width of the
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observation strip. This is because the randomness of the riprap movement causes the
width of the observation strip to be significant for the overall movement of the riprap
movement. When the strip is wide enough, the randomness of the riprap movement
is reduced by the overall behavior.

4. The CTRW model shows that for a considerable period after the riprap project, the
transport of riprap is dominated mainly by the subdiffusion state and does not
exhibit super-diffusion behavior. The behavior of a normal transport state, such as
the number of moving particles, is closely related to the hydraulic conditions. In
summation, during the observation from the short to long time scales, the transport
operation changes from subdiffusion to normal diffusion behavior.
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