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Abstract: Agricultural irrigation depends heavily on freshwater resources. Under the context of
increasingly severe water shortages, studying the relationship among crop water requirements
(ETc), actual crop evapotranspiration (ETa), irrigation water requirements (Ir), yield, and water use
efficiency (WUE) would be beneficial to improve the agricultural application of irrigation water.
Based on the daily data of 26 meteorological stations in Heilongjiang Province from 1960 to 2015,
this study used the calibrated AquaCrop model to calculate the ETc, ETa, Ir, and yield of maize (Zea
mays L.) in different hydrological years (extremely dry years, dry years, normal years, and wet years)
along with WUE to evaluate the mass of yield produced per unit mass of crop evapotranspiration
(ET) under rainfed and irrigated scenarios. The results showed that ETc and ETa decreased first and
then increased from the west to the east during the four types of hydrological years. Ir exhibited
a decreasing trend from the west to the east. Compared with the irrigation scenario, the rainfed
scenario’s average yield only decreased by 2.18, 0.55, 0.03, and 0.05 ton/ha, while the WUE increased
by 0.32, 0.4, 0.33, and 0.21 kg/m3 in the extremely dry years, dry years, normal years, and wet years,
respectively. The results indicated that in the normal and wet years, the WUE was high in the central
regions, and irrigation did not significantly increase yield; further, we determined that irrigation
should not be considered in these two hydrological years in Heilongjiang Province. In the extremely
dry and dry years, irrigation was necessary because it increased the yield, even though the WUE
decreased. This study provides a theoretical basis for studying the regional irrigation schedule in
Heilongjiang Province.

Keywords: maize; AquaCrop model; crop water requirements (ETc); actual crop evapotranspi-
ration (ETa); irrigation water requirements (Ir); yield; water use efficiency (WUE); irrigation and
rainfed scenario

1. Introduction

At present, the shortage of freshwater is regarded as one of the most critical global
problems by scientists, policymakers, and even the general public [1]. According to an
analysis of global water scarcity, two-thirds of the world’s population will be affected
by water scarcity in the next few decades. Water shortages in developing countries are
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also attributable to water distribution, poor management, and the inherent injustices and
inequities of water distribution [2]. Agricultural water accounts for 70–75% of the total
freshwater extracted. The available agricultural resources and the narrowing yield gaps
of all crops play a crucial role in providing sufficient food for the rapidly growing global
population [3]. According to Food and Agriculture Organization (FAO) projections, food
production in irrigated areas will need to be increased by more than 50% by 2050, but
only a 10% increase in water withdrawal for agriculture will be possible [4]. In addition,
the large amount of agricultural irrigation has led to a rapid decline in the groundwater
level over the past 20 years [5]. Some areas have experienced severe land subsidence, salt
intrusion near the coast, degradation of ecosystems, and deterioration of groundwater
quality [5].

Promoting sustainable agriculture, increasing crop productivity, and ensuring the
effective management of limited water resources are indispensable for increasing global
food production [6]. Maize (Zea mays L.) is one of the most important global food sources,
accounting for 30% of the world’s total grain production [7,8]. As the world’s population
continues to grow, by 2050, maize yield needs to increase by 66% to meet global demands [9].
As one of the arid countries, China is also the second-largest maize-producing country.
Arid and semi-arid regions in the north of China make up 30% of the national land area
but have less than 20% of total national available water resources because precipitation
is low and evapotranspiration is high [10–12]. Using precipitation resources reasonably
may become one of the fastest and most effective ways to alleviate water shortages and
reduce unnecessary irrigation [7,13]. Moreover, numerous studies have shown a correlation
between crop yields and water consumption in arid regions, as precipitation and crop
adaptability directly impact the precipitation use efficiency of crops, thereby affecting crop
yields [13–15]. In the north of China, droughts occur in maize growing stages frequently;
in dry years, irrigation alleviates the reduction in maize production, while in wet years,
precipitation meets maize water requirements [16]. Therefore, in order to explore the differ-
ence between maize under rainfed and irrigation scenarios, make full use of precipitation
to reduce irrigation water requirements (Ir), study on maize evapotranspiration (ET) and
yield may provide a basis for the regional balance on irrigation and rainfed.

As a significant component of the regional and global hydrological cycle, crop water
requirements (ETc) play an essential role in evaluating related Ir and crop water stress
in agricultural ecosystems [17]. Exploring the relationship between ETc and Ir will help
maximize the use of rain resources and optimize the allocation of regional water resources.
As precipitation directly affects the ETc, actual crop evapotranspiration (ETa), and Ir values
of different crops, for maize, the precipitation in normal years and wet years can almost
meet the ETa, and irrigation is only required in dry years. However, irrigation significantly
increases the wheat yield in semi-arid areas [18]. Irmak indicated that in maize growing
season, there was an ununiform temporal distribution of precipitation, resulting in greater
ETc or ETa losses. In these circumstances, full irrigation has a higher yield than rainfed [19].
In semi-arid China, irrigation could alleviate crop ETa losses which are caused by the
uneven distribution of precipitation, and in a dry year, irrigation would be more efficient
to crop growth than in a wet year, though irrigation appears valuable in a wet year [20].
The relationship among ETc, ETa, and Ir varies depending on the crop, region, precipitation
amounts, and distribution patterns, especially the changes in effective precipitation that
affect ETa, ETc, and Ir [21].

Water use efficiency (WUE) can be used to assess the relationship between water and
crop yields. Many studies have used WUE to evaluate the practicality of irrigation man-
agement (rainfed, limited, or full irrigation). Crops in the northern Republic of Serbia are
largely grown under rainfed conditions; due to the high variability of regional precipitation,
and low crop yields are closely related to insufficient precipitation [22]. In Vojvodina, WUE
was found to be higher during dry and normal years than during wet years. Moreover,
lower WUE and higher yields were found for fully irrigated treatments compared to rainfed
treatments [23]. In arid areas, to increase crop yields and WUE, irrigation at a fixed time
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is more effective than rainfed irrigation [24]. A previous study showed that crop WUE
increased with an increase in irrigation until the additional irrigation no longer produced
additional yield [25]. Moreover, because of differences in regional environmental condi-
tions and seasonal precipitation fluctuations, irrigation may not improve WUE and yield
continuously [26]. In eastern China, especially during dry years with little precipitation,
rainfed farming provides insufficient water to crops, and irrigation is needed to reduce
yield loss [27]. In the case of seasonal precipitation fluctuations and large inter-annual dif-
ferences in precipitation, WUE provides a theoretical basis for regional water consumption
and changes in the irrigation schedule under different circumstances.

The above factors underscore the need to identify irrigation patterns under rainfed
and irrigated scenarios to maximize the utilization of available resources and improve
productivity. However, due to time, funding, and resource constraints, it is not feasible to
evaluate large combinations of various crop management options under field scenarios
in many different regions and environmental contexts. To solve this issue, AquaCrop,
as a fully tested, calibrated, and validated crop model, can be used to evaluate factors
affecting maize yield and WUE [28]. López-Urrea et al. noted that AquaCrop correctly
simulates the evolution of the harvest index, canopy cover (CC), ETa, ETc, yield, and
aboveground biomass and is a better model than MOPECO for assessing the impact of a
specific irrigation system on crops [29]. Nader Pirmoradian et al. found that AquaCrop
can accurately simulate the Ir of a crop in wet, normal, and dry years [30]. Heng et al.
further concluded that FAO’s AquaCrop is an excellent crop growth model for designing
and evaluating water management plans and studying the soil types and sowing dates of
crops under rainfed or irrigated scenarios. The model was found to correctly simulate ET
and production, and the measured and simulated values of WUE showed a high degree of
fit [27]. However, when this model is implemented for practical purposes, it is necessary to
use field measurements from different climate regions to verify the model under water-
management scenarios to ensure the model’s accuracy, as well as its potential limitation.
Therefore, it is necessary to carefully test, calibrate, and validate the model for specific
locations when simulating crop yields [31].

Heilongjiang Province is one of the main grain-producing areas [32]. As the main
food crop, maize is a widely planted crop, and its planting area is increasing year by
year. As of 2016, the planting area of maize was 7.72 × 106 hm2, accounting for 52.2%
of the province’s crop planting area, and its yield was 3.544 × 107 t, accounting for 56%
of the province’s grain [33]. The East Asian summer monsoon controls precipitation in
Heilongjiang Province, where the ETc and irrigation are different over time and space [34].
Therefore, it is necessary to quantify the ETc and Ir of maize, clarify the temporal and
spatial changes and trends of ETc and Ir, and determine the irrigation management methods
necessary for different places and hydrological years. This assessment will provide essential
information for irrigation strategies and sustainable water management to adapt to climate
change in the region.

The purposes of this study were to (1) quantify the ETc, ETa, Ir, and yield of maize
over four hydrological years in Heilongjiang Province (from 1960 to 2015) using AquaCrop;
(2) clarify the temporal and spatial distribution of ETc and ETa in the growing seasons of
maize; (3) determine the temporal and spatial variations in yield and WUE under irrigation
and rainfed scenarios; and (4) further reveal the effects of rainfed and irrigated scenarios
on the Ir and WUE of maize.

2. Materials and Methods
2.1. Study Area

This paper used the daily meteorological data from 26 stations in Heilongjiang
Province from 1960 to 2015, including the maximum air temperature, minimum air tem-
perature, average relative humidity, average wind speed, sunshine duration, precipitation,
and longitude and latitude information of each station. All the above data were obtained
from the China Meteorological Data Network (http://data.cma.cn, accessed on 22 July

http://data.cma.cn
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2021), and the CO2 data were obtained from the UK Greenhouse Gas Emissions database
(https://www.gov.uk, accessed on 22 July 2021). Figure 1 shows the study area and the
distribution of the site. Due to the different geographical locations of the meteorological sta-
tions in Heilongjiang Province, each station’s division of annual accumulated temperature
is different. According to the Heilongjiang Provincial Agricultural Commission’s reports,
“Heilongjiang Crop Variation Accumulative Temperature Zone” [35] and “Area Layout
Planning of High-quality and High-yield Main Food Crops in Heilongjiang Province in
2015” [36], the sixth accumulative temperature zone is not suitable for maize planting.
Therefore, the sixth temperature accumulation zone was not studied in this paper.
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Figure 1. Map of the study area and distribution of meteorological stations in Heilongjiang Province.

2.2. Sources of Experimental Data

Data from three field experiments investigating maize planted in Heilongjiang Province,
China, were used for the model calibration and verification (Table 1). The first experimental
area was located at the Heilongjiang Province Hydraulic Research Institute, Harbin. The
areas used for the second and third experiments were located at the Institute of Water Re-
sources Science and Agricultural Technology Extension Center, Zhaozhou County, Daqing
city [37–39].

Table 1. Crop management data obtained from three field experiments conducted in Heilongjiang Province, China, and
used in the AquaCrop model calibration and verification.

1st Experiment 2nd Experiment 3rd Experiment

Location (126◦36′35′′ E, 45◦43′09′′ N) (125◦35′10′′ E,
45◦17′31′′ N)

(125◦17′57′′ E,
45◦42′57′′ N)

Year 29 April–27 September
2014

28 April–24 September
2015

28 April–27 September
2014

3 May–27 September
2017

Treatment Irrigation 1 Irrigation 1 Irrigation 2 Rainfed 3

Irrigation period

Seedling stage Seedling stage Tasseling stage
Milk ripening stage

Jointing stage
None

Jointing stage Jointing stage
Tasseling stage Tasseling stage

Milk ripening stage Milk ripening stage

Irrigation limitation (%) 80 FC 4 80 FC none 0

Irrigation ceiling (%) 100 FC 100 FC none 0

https://www.gov.uk
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Table 1. Cont.

1st Experiment 2nd Experiment 3rd Experiment

Irrigation quota (mm) 300~400 300~400 400 0

Data used in AquaCrop Calibration Verification Verification Verification
1 Irrigation: when the maize soil water content reached 80% field capacity, with 100% field capacity achieved by the end of the day. 2

Irrigation: only irrigated three times during the maize growth period. 3 Rainfed: the growth of maize depended on precipitation. 4 FC: field
capacity.

2.3. AquaCrop Model Principle
2.3.1. AquaCrop Model Description

The weather model included precipitation, reference crop evapotranspiration(ET0),
CO2, and maximum air temperature, minimum air temperature, and daily ET0 was calcu-
lated by the Penman–Monteith equation recommended by the FAO [40,41]. The crop model
included crop growth, development, senescence, and yield. The management submodels
included irrigation and field management practices; the soil models included soil and
water balance management. The four main production processes were simulated using a
daily time step and included crop development, transpiration (Tr), aboveground biomass
production, and yield.

First, we used the green canopy cover (CC) in AquaCrop to simulate crop growth,
development, and aging. CC was then used in conjunction with ET0 and the transpiration
coefficient (KcTr) to calculate transpiration. Similarly, soil evaporation was calculated using
the soil evaporation coefficient, CC, and ET0 [31].

2.3.2. From the Ky Approach to the AquaCrop Model

The yield response to water (Ky) is used here to describe the relationship between crop
yield and water stress due to the insufficient water supply by precipitation or irrigation
during the growing period. In FAO.33, an empirical production function is used to assess
the yield response to water [42]:(

1− Y
Yx

)
= Ky

(
1− ET

ETx

)
(1)

where Yx (ton/ha) and Y (ton/ha) are the maximum and actual yield, and (1 − Y/Yx)
is the relative yield decline. ETx (mm) and ET (mm) are the maximum and actual evap-
otranspiration, (1 − ET/ETx) is the relative water stress, and Ky is the proportionality
factor between the relative yield decline and relative reduction in ET. When Ky > 1: crop
response is very sensitive to water deficit with proportional larger yield reductions when
water use is reduced because of stress. When Ky < 1: crop is more tolerant to water deficit
and recovers partially from stress, exhibiting less than proportional reductions in yield
with reduced water use. When Ky = 1: yield reduction is directly proportional to reduced
water use.

2.3.3. Evapotranspiration and Yield

This model estimates transpiration and yield by establishing canopy growth and
senescence models. For our study, ETc was divided into transpiration and evaporation
components to avoid the impact of the unproductive consumption (evaporation) of wa-
ter [43–45]. Under the rainfed scenario, crops may be subjected to water stress, in which
case, the crop evapotranspiration is ETa. The Formulas (2) and (3) in AquaCrop for cal-
culating crop transpiration (Tr, mm/ day), soil evaporation (E, mm/day), and final grain
yield (Y, ton/ha) are as follows [46]:

Tr= KsKsTr

(
KcTr,x

CC∗
)

ET0 (2)

E = Kr(1 − CC∗)KexET0 (3)
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Y = f HI HI0B (4)

where CC* is the actual canopy cover (%) adjusted for micro-advective effects, Ks is the crop
coefficient, and KsTr is temperature stress. KcTr,x is the maximum standard crop transpiration
coefficient (dimensionless), ET0 is the grass-reference evapotranspiration (mm/day), Kr
is the evaporation reduction coefficient used to adjust for the effect of insufficient water
in the topsoil layer, Kex is the maximum soil evaporation coefficient, fHI is the adjustment
factor for water stresses, HI0 is the reference harvest index, and B is the aboveground dry
biomass (ton/ha).

2.4. Scenario Setting and Maize Irrigation Water Requirements

In this study, we developed two scenarios to explore the changes in irrigation water
supply and the requirements and yield of maize in Heilongjiang Province:

1. Rainfed: The distribution of precipitation in Heilongjiang Province was uneven
over the four seasons. Past studies showed that the distribution of precipitation in
Heilongjiang Province has decreased in recent decades and that most of the maize
planting in this region relies on rainfed farming [35]. The rainfed scenario involves
the use of precipitation alone, without irrigation.

2. Irrigation: In this study, irrigation without a water shortage was used to compare the
differences in maize ETa, ETc, Ir, yield, and WUE between the rainfed and irrigated
scenarios. In the AquaCrop model, irrigation management was achieved through
irrigation timing and the number of irrigation events during the crop growing season.
In the irrigation scenario, maize was considered fully irrigated when the soil water
content reached 80% field capacity, with 100% field capacity achieved by the end of
the day to restore root zone moisture.

2.5. AquaCrop Model Data and Evaluation

The AquaCrop model provides default parameters for maize, but these default param-
eters cannot sufficiently reflect ETa, ETc, and yield during maize growing stages when used;
the default parameters need to be verified (Table 2). The calibration procedure followed the
guidelines outlined in the AquaCrop Reference Manual and FAO Irrigation and Drainage
Document No.66, Crop Yield Responses to Water [46]. The experiments used for calibration
and verification are shown in Table 1.

Table 2. Default and calibrated maize parameters for Aquacrop used in this study.

Parameter Default Calibrated

Conservative
Base temperature (◦C) 5.5 5.5

Cut off temperature (◦C) 30 30
Canopy cover per seedling (cm2 plant−1) 6.5 6.5

Crop transpiration (KcTr) 1.10 1.10
Canopy expansion stress coefficient (Pupper) 0.25 0.25
Canopy expansion stress coefficient (Plower) 0.6 0.6

Crop water productivity (WP*) 17 32
Initial canopy cover (CC0) 1.2 0.36

Maximum canopy cover (%) 80 90
Reference harvest index 50 40

Non-conservative
Time from sowing to emergence (day) 5 15

Time from sowing to max canopy cover (day) 70 80
Time from sowing to flowering (day) 87 99

Time from sowing to senescence (day) 120 134
Maximum effective rooting depth (cm) 1.0 1.0

Plant density (plants ha−1) 185,000 56,000
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The output of the AquaCrop model compared to the field measurements was assessed
using both qualitative and quantitative approaches. The qualitative approach involved
the use of graphical interpretations of the results to evaluate the trends in simulated and
measured data. The quantitative approach consisted of using statistical indicators such as
the root mean square error (RMSE), the normalized root mean square error (NRMSE), the
Nash–Sutcliffe model efficiency coefficient (EF), the coefficient of determination (R2), and
Willmott’s index of agreement (d).

The RMSE measures the magnitude of difference between simulated and observed
values and ranges from 0 to positive infinity, with 0 indicating good model performance
and positive infinity indicating poor model performance [47]:

RMSE =

√
∑n

i=1(Si − Mi)
2

n
(5)

NRMSE =
100RMSE

O
(6)

where Mi and Si (i = 1, 2, . . . , n) represent the measured and simulated values, and O is
the average of the measured values. If NRMSE < 10%, the verification is considered to
have a high degree of fit. If the NRMSE is between 10% and 20%, the fit is deemed good.
If the NRMSE is between 20 and 30%, the verification is considered acceptable in terms
of goodness-of-fit. If the value is greater than 30%, the verification fit is assumed to be
poor [48].

The EF (ranging from 1 to negative infinity) determines the relative size of the residual
value and the degree of fit between the observed data and the simulated data. An EF
close to 1 indicates that the residual value is small and that the model offers a reasonable
simulation. R2 is the coefficient of determination (goodness-of-fit). The better the goodness-
of-fit, the higher the independent variable’s explanation for the dependent variable [49].
Here, d ranges from 0 to 1, indicating that the model performance is better when d is close
to 1. The calculation formula is as follows:

EF = 1− ∑n
i=1 (S i − Mi)

2

∑n
i=1 (M i − M

)2 (7)

d= 1 − ∑n
i=1 (S i − Oi)

2

∑n
i=1
(
|Si − Oi|+

∣∣Oi −O
∣∣)2 (8)

where M represents the mean value, and R2 and EF are used to quantify the predictive
ability of the model, while the RMSE represents the model prediction error.

2.6. Division of Hydrological Years

The precipitation during the maize growing season at different sites levels from 1960
to 2015 was arranged in decreasing order of magnitude. Formula (9) was used to calculate
the empirical frequency and draw the logarithmic normal distribution map to obtain the
precipitation, precipitation values at Fa = 95%, 75%, 50%, 25% probability were defined
as extremely dry year, dry year, normal year, and wet year [50] The average precipitation
during the maize growing season in extremely dry, dry, normal, and wet year were 256.1,
333.6, 410.4, 487.9 mm in Heilongjiang Province. The precipitation varies in different
regions, but we strictly follow the formula:

Fa =
100m
n + 1

(9)

where Fa is the empirical frequency of m items in the observation series, m is the sequence
number of the observation series arranged from large to small, and n is the number of years
in the observation series.
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2.7. Water Use Efficiency

Increasing crop WUE is the key to increasing agricultural productivity under limited
water resources. WUE refers to the amount of assimilated matter produced per unit of
water consumed during crop production, reflecting the relationship between the yield and
ET of crops [37]. The calculation method is as follows:

WUE =
Y

ET
(10)

where WUE is expressed in kg/m3 based on units of water volume, ET is evapotranspiration
(mm), and Y is grain yield (ton/ha).

2.8. Data Processing

In this paper, we used the spatial analysis function of ArcMap 10.5 toolbox to interpo-
late the spatial distribution maps of ETc, ETa, Ir, yield, and WUE in different hydrological
years.

3. Results
3.1. Calibration and Verification of the AquaCrop Model
3.1.1. Crop Water Requirement

Figure 2 illustrates a comparison between the measured and simulated values of ETc
at all growth stages, based on a calibration of AquaCrop in Harbin 2014. The corrected
model underestimated the ETc with values 15~30 mm in the late growth period (Figure 2).
However, the model showed a high degree of fit overall, with low RMSE (19.56 mm) and
NRMSE (14.25%) and acceptable EF (0.87) and d (0.67) values.
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Figure 2. Simulated and measured accumulated ETc (E + Tr) during the growing season in Harbin,
2014. ET: soil evaporation, Tr: crop transpiration, same as below.

The measured and simulated values of ETc at different growth stages were compared
and verified by the data for Harbin in 2015 and Zhaozhou in 2014 and 2017 (Figure 3). In
the verification process, AquaCrop was used to simulate the growth trend of maize during
the growth seasons. However, as the model underestimated the ETc with the value of
10~30 mm in the later growth stage, the degree of underestimation was less than that of
the calibration 50~60 mm. Figure 4 illustrates a comparison between all the measured and
simulated values listed in Table 3; these values provided the goodness-of-fit parameters for
model calibration and verification in all years and locations. AquaCrop underestimated the
ETc during calibration, and the results showed an overestimation of ETc though R2 close to
1, during verification, especially for the verified ETa (R2 = 0.68) in Figure 4. In general, the
model provided a high degree of fit between the simulated and measured values.
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Figure 4. Calibration for (a) Harbin (2014) and verification of the measured and simulated ETc for (b) Harbin (2015) and
Zhaozhou (2014); (c) ETa for Zhaozhou (2017) under the irrigation and rainfed scenarios. ETc: crop water requirements, ETa:
actual crop evapotranspiration, same as below.

Table 3. The goodness-of-fit indexes from the growing-season model simulation: yields in 2014, 2015,
and 2017.

Location (Year)
The Goodness-of-Fit Parameters

RMSE (mm) NRMSE (%) EF d

Calibration Harbin (2014) 19.56 14.25 0.87 0.67

Verification
Harbin (2015) 15.79 11.59 0.92 0.94

Zhaozhou (2014) 19.85 24.51 −0.66 0.66
Zhaozhou (2017) 16.70 22.08 0.60 0.64

3.1.2. Yield

The yields of four experiments were used for calibration and verification. The mea-
sured and simulated yields are shown in Figure 5. The model results indicate that the
simulated yield overestimated the actual yield less than 0.6 ton/ha with R2 (0.9) close to
1. The model had low RMSE (0.595 ton/ha) and NRMSE (4.2%) values and acceptable EF
(0.98), d (0.9), and R2 (0.901) values.
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(Zhaozhou (2014), Harbin (2014–2015), and Zhaozhou (2017).

3.2. Comparison of ETc and ETa in Different Hydrological Years

The characteristics of ETa and ETc in the growing season of maize were then deter-
mined. The spatial distribution patterns of ETa and ETc were generally similar over the
four hydrological years—first decreasing and then increasing from west to east. High ETc
and ETa with values greater than 500 and 400 mm were located along the strip extending
from the west to the south (Figure 6). As a whole, the average ETc decreased from the
extremely dry years to wet years, with values of 499, 464, 453, and 423 mm, respectively.
The value of the average ETa increased from the extremely dry years to normal years and
varied weakly from normal years to wet years. The average ETa values were 144, 82, 52,
and 31 mm lower, respectively, than the average ETc values.
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Figure 6. Spatial distribution of ETa and ETc in extremely dry years (a,e), dry years (b,f), normal years (c,g), and wet years
(d,h) under rainfed and irrigation scenarios.

3.3. Spatial Distribution of Ir in Different Hydrological Years

Weak variations in Ir trends were observed between the four hydrologic years in the
different regions, with a decreasing trend from west to east over the four hydrological years
(Figure 7). The average Ir values were 289, 212, 141, and 80 mm, and high values were
mainly distributed in the west, similar to the locations of ETc, greater than 400, 300, 200,
100 mm in the extremely dry years, dry years, normal years, and wet years, respectively.
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irrigation scenario.

3.4. Spatial Distribution of Yield in Different Hydrological Years under Rainfed and Irrigation
Scenarios

The average yields under the rainfed scenario during the extremely dry years, dry
years, normal years, and wet years were 9.59, 11.32, 11.73, and 11.71 ton/ha, respectively.
Irrigation increased maize yield in most areas during the extremely dry and dry years by
2.18 and 0.55 ton/ha, respectively, especially in the regions where ETc and Ir were high.
However, in the normal and wet years, irrigation only increased the yield by 0.03 and 0.05
ton/ha, respectively (Figure 8). The high yield values greater than 13.0 ton/ha were mainly
distributed in the southwest, while the low yield values less than 8.5 ton/ha were primarily
distributed in the eastern regions.
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3.5. Spatial Distribution of WUE in Different Hydrological Years under Rainfed and Irrigation
Scenarios

WUE showed a trend of increasing first and then decreasing from the western to
the eastern regions over the four hydrological years (Figure 9). The average WUE under
the rainfed scenario in the respective extremely dry years, dry years, normal years, and
wet years was 2.70, 3.00, 2.95, and 2.99 kg/m3. The average WUE under the irrigation
scenario was 0.32, 0.4, 0.33, and 0.21 kg/m3 lower than that under the rainfed scenario
in the extremely dry years, dry years, normal years, and wet years. Overall, irrigation
reduced the WUE over the four hydrological years, especially during normal and wet years.
Irrigation did not significantly improve the WUE and yield in most areas; thus, rainfed
farming could be employed as an alternative schedule.
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4. Discussion

The results demonstrated that AquaCrop performed well in simulating ETc and maize
yield (Figures 4 and 5), with acceptable RMSE, NRMSE, EF, and d values (Table 3). However,
AquaCrop underestimated ETc in the final simulation (Figures 3 and 4). Ultimately, the
result for ETc was lower than the actual result. Rupinder indicated that under irrigation
and rainfed scenarios, the AquaCrop model consistently underestimates the trends of
ETc [31]. Thus, the observed bias in simulated values was most likely due to insufficient
parameterization of the crop parameters during later growth stages, as the model was
highly impacted by crop senescence stress coefficients [27,51]. In this study, due to the
limited data, adjustments in the canopy decline may have affected the correction of ETc for
the later growth stages.

Many previous studies indicated that high values of ETc are mainly distributed in
the western regions [52,53], with an average of 401.64 mm, while low values are primarily
distributed in the eastern regions [34]. In [34], the spatial distribution of ETc was the same
as that in this study, but the value of ETc was greater than 401.64 mm, which may have
been caused by the use of different models and methods. The previous study used a single
crop coefficient to calculate ETc. However, the present study used the AquaCrop model
with two crop coefficients (E and Tr) and considered the impact of CO2 on ETc [45]. Studies
have shown that the use of two crop coefficients offers more accuracy than the use of a
single crop coefficient and that predicting ETc using two crop coefficients provides better
performance than predicting ETc using a single crop coefficient [54]. In the present study,
the AquaCrop model was calibrated and verified using experimental data from the field.
The results obtained through this method may be more reliable than those acquired by
calibrating Kc in the CropWAT model using the FAO-56 method. Furthermore, a more
reliable localized AquaCrop model will require more experimental data for calibration and
verification. In future studies, we will further optimize the AquaCrop model to make it
more accurate and applicable to more crop simulations.

The present study demonstrated that, in the west, Ir was high while the yield and
WUE were low. Nie indicated that ETc and Ir in each accumulated temperature zone are
increased with increasing temperature, confirming the spatial distribution trend of ETc and
Ir in this study [51]. Sun showed that precipitation in the maize growing season fluctuates
strongly in the west [55], which may be one reason for the large amount of irrigation in
these regions. Moreover, due to the high accumulated temperature, relatively low air
humidity, strong solar radiation, and high maize ETc, drought frequently occurred in the
west [56]. Past research has shown that the increase in greenhouse gases in Heilongjiang
Province has affected radiation to a certain extent, thereby increasing ET0. However, the
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ET0 in the northeast slightly decreased. This trend reduced the ETc and the potential Ir
for ET [57]. Moreover, research has shown that the water shortage in the west improved
from 1960 to 2015 [34]. Based on this trend, the ET0 will alleviate drought in the west,
which will be beneficial for employing a rainfed schedule during normal and wet years in
Heilongjiang Province.

Under the studied irrigation scenarios, the WUE was lower than that under the rainfed
scenario. In extremely dry and dry years, irrigation alleviated drought and increased maize
yields in most regions. Moreover, the water supply increased as the ET increased, and
the WUE was low, possibly because the additional water supply contributed to biomass
production rather than an increase in the yield [58]. During normal and wet years, irriga-
tion did not significantly increase the yield. The results further demonstrate that excess
irrigation may be lost through deep percolation. Therefore, except for the WUE being lower
under the irrigation scenario, there was no significant difference in the spatial distribution
between the two hydrological years. In the future, based on the water-saving principle,
irrigation should not be considered during normal and wet years. When irrigation is
necessary during extremely dry years and dry years, a water-saving irrigation schedule
(such as drip irrigation under mulch or the use of sprinklers) needs to be implemented
under appropriate agricultural management strategies to improve WUE. These measures
are essential to increase the yields of similar crops under the same climate regions and
provide a basis for optimizing the allocation of water resources and improving the WUE of
maize planted in Heilongjiang Province.

5. Conclusions

In this study, the data from three field experiments on maize were used to calibrate
and validate the AquaCrop model in Heilongjiang Province. The ETc, ETa, Ir, and yield
were correctly simulated under rainfed and irrigation scenarios over four hydrological
years. The results demonstrated that in the west, the ETc, ETa, and Ir were high, but the
yield was low. Moreover, irrigation increased the yield in extremely dry years, while there
were no significant changes during normal and wet years. The WUE under irrigation was
lower than that under the rainfed scenario. Notably, in normal and wet years, irrigation
did not increase yield but instead reduced WUE. Therefore, the planting area may not
require irrigation during normal and wet years, but the drought in the western area of
Heilongjiang Province cannot be ignored.

The results obtained by the localized AquaCrop model may provide a reference for
areas with similar phenology in Heilongjiang Province. Due to limited experimental data
used for calibration and verification in this study, the AquaCrop model still has a deviation.
In the future, we will focus on calibrating the AquaCrop model with more field experiments,
dividing rainfed and irrigation districts, and formulating irrigation schedules for irrigation
districts to guide agricultural irrigation in Heilongjiang Province.
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