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Abstract: Aquaculture has the potential to sustainably meet the growing demand for animal protein.
The availability of water is essential for aquaculture development, but there is no knowledge about
the potential inland water resources of the Rwenzori region of Uganda. Though remote sensing
is popularly utilized during studies involving various aspects of surface water, it has never been
employed in mapping inland water bodies of Uganda. In this study, we assessed the efficiency of
seven remote-sensing derived water index methods to map the available surface water resources in
the Rwenzori region using moderate resolution Sentinel 2A/B imagery. From the four targeted sites,
the Automated Water Extraction Index for urban areas (AWEInsh) and shadow removal (AWEIsh)
were the best at identifying inland water bodies in the region. Both AWEIsh and AWEInsh consistently
had the highest overall accuracy (OA) and kappa (OA > 90%, kappa > 0.8 in sites 1 and 2; OA > 84.9%,
kappa > 0.61 in sites 3 and 4), as well as the lowest omission errors in all sites. AWEI was able to
suppress classification noise from shadows and other non-water dark surfaces. However, none of the
seven water indices used during this study was able to efficiently extract narrow water bodies such
as streams. This was due to a combination of factors like the presence of terrain shadows, a dense
vegetation cover, and the image resolution. Nonetheless, AWEI can efficiently identify other surface
water resources such as crater lakes and rivers/streams that are potentially suitable for aquaculture
from moderate resolution Sentinel 2A/B imagery.

Keywords: water; water index; optimum threshold; omission error; NDWI; MNDWI1; MNDWI2;
AWEIsh; AWEInsh; MuWI_C; MuWI_R; Sentinel-2; aquaculture; Rwenzori region

1. Introduction

Uganda is a landlocked country, with about 16% (37,166 km2) of its land area covered
by surface water bodies and wetlands [1,2]. This presents an opportunity to satisfy the
growing demand for fish through aquaculture, and so contribute to assuring healthy diets
for Uganda’s growing population as aligned to the targets of Sustainable Development
Goal 2 [3]. On the contrary, malnutrition is still a major public health problem in the
country [4]. For example, at least 41% of the children between 6 and 59 months in the
Rwenzori region are undersized [5–7]. Improved aquaculture production could be a reliable
pathway toward meeting the protein, micronutrient, and essential fatty acids needs of
vulnerable populations in this region. The Rwenzori region has an abundance of natural
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water bodies with good water quality [8–10] that can be used for fish farming, yet there are
no specific plans of utilizing them for aquaculture development.

Remote sensing is a proven technique in mapping water bodies [11–19], assess-
ing floods [15,20–25], water quality [15,22–27], and estimating water scarcity [15,22–25].
The Sentinel-2 satellite, launched by the European Space Agency (ESA) in 2015, has played
a key role in providing multispectral images for water body mapping [13]. Sentinel-2 im-
ages have a moderate spatial resolution (10 m, 20 m, and 60 m) suitable for regional water
body mapping, due to their free access coupled with the frequent revisit capabilities [13] of
10 days for the studied region. Compared to the Landsat series, Sentinel-2 delivers images
with higher spatial resolution, more spectral bands, more frequent revisit time, and wider
swath, thus showing great potential in aquatic science studies [15,28–32].

Several other lower spatial resolution sensors such as Terra/Aqua Moderate Resolu-
tion Imaging Spectroradiometer (MODIS), Sentinel-3, TOPEX/Poseidon, Jason-1, Jason-2,
Jason-3, and Envisat also provide open access satellite optical imagery [33–37] but their use
in water body mapping studies is limited to larger inland lakes and reservoirs [37]. Surface
Water and Ocean Topography (SWOT) is another optical sensor due to be launched in
2022 [36] but its application will be limited to wide rivers (100 m or wider) and lakes with
a surface area of at least 250 m × 250 m) [36,37]. Ultra-high spatial resolution sensors such
as Pleiades, IKONOS, QuickBird, WorldView, RapidEye, ZY-3, and GF-1/GF-2 [38–40] do
exist but their data are not open access, which makes their use expensive.

The water index method is the most commonly employed when extracting water
bodies from remotely sensed data [41]. Compared to other common methods such as pixel-
based and object-based classification, index-based methods extract pure and mixed water
pixels better in challenging environments [42]. Water index methods include a variety of
techniques such as Normalized Difference Water Index (NDWI) [12,14,41,43], Modified
Normalized Difference Water Index (MNDWI) [44], and the Automated Water Extraction
Index (AWEI) [16].

NDWI uses the green and near-infrared (NIR) bands to identify water from other land
features though it cannot easily differentiate water from built-up areas such as asphalt
roads and highly reflective house roofs [41,43]. The near-infrared (NIR) band utilized in
NDWI was replaced with the shortwave infrared (SWIR) band by Xu (2006) [44] to derive
the Modified Normalized Difference Water Index (MNDWI). This was done to resolve
the issues of NDWI [43,44]. Nevertheless, MNDWI still possesses a major problem of
misclassifying shadows in mountainous terrains [43].

The Automated Water Extraction Index (AWEI) was proposed by Feyisa et al. (2014) [16].
AWEI improves the precision of surface water mapping by suppressing classification noise
from shadows and other non-water dark surfaces [16]. This water index constitutes two
versions: AWEIsh that removes shadow pixels, and AWEInsh that is recommended for
urban regions [16,43]. The latter was specifically formulated to eliminate non-watery pixels
of dark built-up surfaces in areas with an urban setting, while the former removes shadow
pixels that AWEInsh cannot eradicate [16].

Recently, the new multi-spectral water index (MuWI) which consists of a complete
version (MuWI_C) and the revised one (MuWI_R) [15] has gained prominence. MuWI_C
contains many terms that are considered redundant to water mapping, making it long
and complicated [15]. Therefore, it was refined using four highly weighted terms with
integer coefficients to derive the shorter and simpler MuWI_R [15]. These multi-spectral
water indices combine several normalized differences of bands to produce high resolution
(10 m) water maps without band sharpening, while also ensuring a stable threshold [15].
They use the support vector machine (SVM) machine-learning algorithm [15]. MuWI
increases spatial resolution and lowers the commission as well as omission errors [15].
This is attributed to its efficiency in exploiting the native 10-m Sentinel-2 spectral bands,
plus the significant reductions in shadow and sunglint misclassifications [15].

These water index methods require the implementation of thresholds that enable the
separation of water from environmental noises such as shadows, forests, built-up areas,
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snow, and clouds [43,45]. The considered bands are comprehensively examined [14,46] to
determine the threshold that categorizes water from confusing non-water bodies [14,44].
Thresholding makes the extraction of water bodies simpler and faster [43]. Although
standard thresholds exist, they were inefficient in another challenging environment of
Nepal according to the results of Acharya et al. (2018) [43]. Their study employed a trial
and error method in identifying the optimum threshold [43]. Here we use k-means cluster
analysis to obtain the optimum threshold. This brings the advantages of lessening the
number of calculations as well as eliminating the errors caused by the artificial selection of
empirical values [47,48].

In this study, the efficiency of various water indices (NDWI, MNDWI1, MNDWI2,
AWEIsh, AWEInsh, MuWI_C, and MuWI_R) at mapping the available water resources
(narrow streams, rivers, lakes, swamps) for potential inland freshwater aquaculture in
the Rwenzori region was assessed. This study is the first of its kind in Uganda and the
obtained results will be utilized in further research of identifying potential sites for inland
aquaculture in the Rwenzori region of Uganda.

2. Materials and Methods
2.1. Methodology Workflow

The workflow followed in this study included image acquisition, image pre-processing,
derivation of water indices, k-means cluster analysis, determination of the optimum
threshold, and binary classification of water and non-water (Figure 1). All the processing
was done in QGIS version 3.14.16 “Pi”, SNAP 7.0.0, and R 3.6.1 (The R Foundation, Vienna,
Austria) software packages.
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Figure 1. Workflow of the image classification exercise. The blue rectangle highlights the activities
involved in identifying the optimum thresholds for the various water indices. Index values obtained
from band calculations were grouped using k-means cluster analysis. The cluster centers were
compared for accuracy using a trial and error method The cluster centroid(s) that gave the highest
overall accuracy and kappa was selected as the optimum threshold for that particular water index.
These were then employed in the binary classification of water and non-water.
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2.2. Study Area

The Rwenzori region is estimated to cover an area of 7500 km2 (approximately 3.1%
of the country) that is close to the equator along the border of Uganda and the Democratic
Republic of Congo (DRC) [49]. The region is bounded by the Kazinga channel, Lakes
George and Edward to the south, protected areas to the east, Lake Albert to the north,
and DRC and Rwenzori mountain ranges to the west [49]. Among the nine districts of
the Rwenzori region, the study area in this exercise covered four sites from three districts
(Kasese, Kabarole, and Ntoroko, Figure 2). The rugged terrain of this region is characterized
by the presence of several permanent wetlands, streams/rivers, ponds, and crater lakes of
varying sizes. Site 1 covers portions of both the Ntoroko and Kabarole districts. The area
has an elevation ranging between 1290 and 1579 m above sea level (masl). Site 2 covers a
portion of the southern part of the Kabarole district that has an elevation ranging between
950 and 1579 masl. Both these sites (1 and 2) have several crater lakes, narrow streams,
rivers, and swampy areas. Sites 3 and 4 are both located in Kasese district, which is a
drier region. The elevation of the areas covered by these two sites ranges between 950 and
1579 masl. Site 3 is characterized by River Mobuku and its flood plains, dispersed tiny
urban centers, as well as a large swampy area to its southwest. Site 4 covers a portion of
lake George, swampy-vegetated areas, crater lakes, River Nyamusagani to the North-west,
and several patches of bare ground and urban centers (Figure 2).
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2.3. Image Acquisition and Pre-Processing

A Sentinel-2 Level 2A (L2A) product was downloaded from ESA Sentinel-2 Open Access
Hub (https://scihub.copernicus.eu/ (accessed on 13 April 2020)). L2A products provide a
Bottom of Atmosphere (BOA) reflectance [50]. L2A products are obtained by atmospheri-
cally correcting Sentinel-2 MSI level-1C products using the Sen2Cor method [51,52]. The only
shortfall is that the processor does not consider water surface effects such as sunglint [52].
Surface reflectance (or BOA reflectance) rather than Top of the Atmosphere (or TOA)
reflectance, theoretically delineates surface water more accurately because it removes atmo-
spheric disturbances [15]. The image was obtained by the satellite on 28 January 2019 at 08
12 h over tile 35NRA during a relative orbit of 078. It was processed with the Payload Data
Ground Segment (PDGS) Processing Baseline at 10 55 h. The obtained image had cloud
cover, cloud shadow, and dark features percentages of 1.89, 0.34, and 0.36 respectively,
basing on the basic L2 metadata. To ensure that all the bands had the same resolution
(10 m), resampling with the nearest neighbor method [53] was carried out in SNAP 7.0.0
software using band 2 as the reference band. The various bands required for the derivation
of water indices were subsetted into a single raster stack using SNAP 7.0.0 software. The
sites to be investigated for the presence of surface water resources were cropped from the
stacked raster using R 3.6.1 software. Except for site 2 that was cropped to a size of 1900 by
1750 pixels to cover all the crater lakes in that region of Kabarole district, the other three
scenes (1, 3, and 4) were cropped to a uniform size of 2000 by 1200 pixels. RGB images of
the studied sites are shown in Figure 3.
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Figure 3. Sentinel-2 MSI RGB (4,3,2) 10 m natural-color images of the studied sites. Frames (A–D)
are studied sites 1, 2, 3, and 4, respectively.

2.4. Derivation of Water Indices

Derivation of water indices for binary classification of the water and non-water back-
ground was done using band mathematics equations using R 3.6.1 software (Table 1).

https://scihub.copernicus.eu/
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Table 1. Spectral water indices and their derivative equations. Bi refers to the particular Sentinel-2
band i; ND(i, j) denotes the normalized difference of Sentinel-2 band i and band j.

Index Equation References

NDWI (B3 − B8)/(B3 + B8) [12,14,15,41,43,47]

MNDWI1 (B3 − B11)/(B3 + B11) [13,15,43,44,47]

MNDWI2 (B3 − B12)/(B3 + B12) [16,43]

AWEIsh B2 + 2.5 × B3 − 1.5 × (B8 + B11) − 0.25 × B12 [16,43]

AWEInsh 4 × (B12− B11) − (0.25 × B8 + 2.75 × B11) [16,43]

MuWI_C

−16.4ND(B2, B3) − 6.9ND(B2, B4) − 8.2ND(B2, B8) − 8.8ND(B2,
B11) + 9.6ND(B2, B12) + 10.8ND(B3, B8) + 6.1ND(B3, B11) +

13.6ND(B3, B12) − 0.28ND(B4, B8) − 3.9ND(B4, B11) − 2.1ND(B4,
B12) − 5.3ND(B8, B11) − 5.3ND(B8, B12) − 5.3ND(B11, B12) − 0.33

[15,47]

MuWI_R −4ND(B2, B3) + 2ND(B3, B8) + 2ND(B3,B12) − ND(B3, B11) [15,47]

2.5. Derivation of the Optimum Threshold and Binary Classification

According to the findings of Acharya et al. (2018) [43], the standard thresholds were
found to be inefficient at deriving surface water. Several challenges have been faced
when using standard threshold values to separate water from the non-water background in
regions that are characterized by hills, shades, forests, and urban areas [42,43,54]. Therefore,
the standard thresholds were not utilized during the water extraction exercises in this study
because the Rwenzori region has a majorly forested rugged terrain with sparse built-up
areas. Rather, k-means clustering analysis [55] was employed to obtain the optimum
threshold for each index. The k-means method is a commonly utilized algorithm for
geometric clustering, which is also known as Lloyd’s algorithm [56].

After deriving a particular water index for a given scene using band mathematics
equations (Table 1), the index values were clustered into groups using k-means cluster
analysis. The selected initial clusters (k) were 10. These were computed from a maximum
of 500 iterations. The cluster-centers were compared for accuracy using a trial and error
method [43]. The cluster centroids that gave the highest overall accuracy and kappa were
selected as the optimum threshold for that water index. These procedures were carried out
in R 3.6.1 software package.

The returned k cluster-centers for AWEI are illustrated in Table 2. The returned k
cluster-centers for all the indices are shown in Table S5 of the Supplementary Materials.

Table 2. The returned k cluster centers for AWEI as derived from k-means clustering analysis.
The highlighted cluster centroid values fell in the color range of water on each index plot and had
the highest overall accuracy as well as kappa, and thus selected as the optimum thresholds of the
respective water indices for that site.

AWEIsh AWEInsh

Site 1 Site 2 Site 3 Site 4 Site 1 Site 2 Site 3 Site 4

−5926.58 −2928.46 −2665.28 −127.87 −16,209.74 −11,783.30 −16,286.55 −6280.94

−3166.10 −5199.38 −5022.17 −1936.92 −11,294.86 −270.36 −18,559.13 −953.94

−4349.30 −6411.62 −4593.32 −4496.02 −12,176.02 −8336.82 −12,848.25 −12,050.34

−5493.35 −4740.54 −5394.81 −4835.96 −8619.31 −13,910.72 −13,819.54 −15,416.24

−5000.62 −5596.51 881.26 1525.60 −14,344.24 −10,132.42 −9000.94 −14,205.73

−6839.84 276.99 −6182.35 −5178.02 −13,159.25 −7201.59 876.09 −9030.85

73.44 −5986.37 −7837.49 −4069.98 −7050.44 −12,700.91 −10,494.63 −17,050.71

−8286.82 −4140.40 −5761.15 −6299.19 −9596.69 −10,951.91 −11,801.94 −13,076.04

−6359.41 −7658.28 −3949.14 −5562.80 −10,458.41 −15,888.88 −14,897.65 −10,825.84

−7410.16 −6929.70 −6758.48 −3141.01 −444.37 −9276.21 −7571.75 2183.85
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2.6. Accuracy Assessment

A confusion matrix-based approach [43,57] was used for assessing the accuracy of the
binary classified water maps. A total of 800 reference points in each of the studied sites
were used for this procedure (Figure S6). First, 500 random points were generated over each
site area using the stratified random sampling method [58,59] in R 3.6.1 (The R Foundation,
Vienna, Austria) software packages. These were manually labeled as water and non-water
using high-resolution images (3 m) available from Google Earth ProTM (Google Inc., Menlo
Park, CA, USA) in QGIS version 3.14.16 “Pi”. To these, 300 additional points that comprised
a combination of confusing water and noisy non-water points (asphalt, built-up areas,
dense vegetation, and bare ground) were added. These were based on authentication from
the field and expert’s knowledge of the area for small water bodies, as well as narrow river
points. The procedures followed were similar to what was described by Acharya et al.
(2018) [43].

During the comparisons of the binary classified water maps with reference datasets,
the outcomes were four types of pixels:

• True-positive (TP): Number of correctly extracted water pixels.
• False-negative (FN): Number of undetected water pixels.
• False-positive (FP): Number of incorrectly extracted water pixels.
• True-negative (TN): Number of correctly rejected non-water pixels.
• Total (T): The total number of pixels in the accuracy assessment.

The outcomes of the confusion matrix were used to calculate the producer’s accuracy (PA),
user’s accuracy (UA), overall accuracy (OA), kappa, omission (OE), and commission errors
(CE) [12,15,43]. These were used to assess the accuracy of the produced maps from different
water indices using R 3.6.1 (The R Foundation, Vienna, Austria) software packages.

3. Results

Results on the performance of the various water indices for the surface water extrac-
tion of four sites were assessed. From the equations illustrated in Table 1, index maps for
each of the scenes were derived through binary classification using the optimum threshold.
Quantitative accuracy assessment (Table 3) was carried out by comparing with high resolu-
tion (3 m) Google Earth images for reference. Confusion matrices for the whole study area
are as shown in Table S7.

3.1. Qualitative Analysis

The produced water maps of the four sites after applying the optimum thresholds
(highlighted values in Table 2 and Table S5) were visually assessed. Though the em-
ployed water index methods showed varying degrees of capability at extracting the crater
lakes, lakes, and rivers/streams from all the studied sites, none of them was found to be
completely efficient in this exercise.

NDWI, MNDWI1, and MNDWI2 misclassified built-up areas, dense vegetation, shad-
ows of the terrain, bare ground, clouds, and clouds shadows as water (Figures S1–S4 of
the Supplementary Materials). These water indices omitted whole or big portions of some
water bodies and narrow streams/rivers. MuWI also misclassified shadows and vegetated
areas as water. Visual analysis of the water maps produced using this index showed that
even large portions of quite wide water bodies were omitted (Figure 4). This was most
prevalent near the shorelines of these water bodies. On the contrary, MuWI indices did not
misclassify high albedo surfaces to be water.
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Table 3. Accuracy assessment of water maps for sites 1, 2, 3, and 4 of the different water indices
based on the reference datasets. The OA and kappa of the best-performing indices for each site
are highlighted.

Site 1

NDWI MNDWI1 MNDWI2 AWEIsh AWEInsh MuWI_C MuWI_R

PA (%) 44.00 61.30 61.30 84.20 84.20 59.80 69.90
UA (%) 95.90 92.10 93.10 94.90 93.70 99.40 97.40
OA (%) 80.80 85.40 85.60 93.20 92.90 86.50 89.40
OE (%) 56.02 38.72 38.72 15.79 15.79 40.23 30.08
CE (%) 4.10 7.91 6.86 5.08 6.28 0.63 2.62
Kappa 0.50 0.64 0.65 0.84 0.84 0.66 0.74

Site 2

NDWI MNDWI1 MNDWI2 AWEISH AWEInSH MuWI_C MuWI_R

PA (%) 30.50 42.00 53.20 78.10 81.40 53.90 57.00
UA (%) 91.10 98.30 87.20 95.50 98.60 99.30 98.70
OA (%) 75.40 80.10 81.50 91.30 93.30 84.20 85.40
OE (%) 69.52 57.99 46.84 21.93 18.59 46.10 42.38
CE (%) 8.89 1.74 12.80 4.55 1.35 0.68 1.27
Kappa 0.35 0.48 0.54 0.80 0.84 0.60 0.64

Site 3

NDWI MNDWI1 MNDWI2 AWEIsh AWEInsh MuWI_C MuWI_R

PA (%) 73.90 43.70 41.70 70.50 72.20 38.60 38.60
UA (%) 65.10 73.70 74.10 92.90 84.50 73.10 69.90
OA (%) 75.80 73.50 73.10 87.00 84.90 72.10 71.20
OE (%) 26.10 56.27 58.31 29.49 27.80 61.36 61.36
CE (%) 34.93 26.29 25.90 7.14 15.48 26.92 30.06
Kappa 0.49 0.38 0.36 0.71 0.66 0.34 0.32

Site 4

NDWI MNDWI1 MNDWI2 AWEIsh AWEInsh MuWI_C MuWI_R

PA (%) 22.40 36.80 35.10 54.60 67.20 52.30 54.00
UA (%) 53.40 86.50 85.90 87.20 75.50 78.40 85.50
OA (%) 78.90 85.00 84.60 88.40 88.10 86.50 88.00
OE (%) 77.59 63.22 64.94 45.40 32.76 47.70 45.98
CE (%) 46.58 13.51 14.08 12.84 24.52 21.55 14.55
Kappa 0.21 0.44 0.43 0.61 0.64 0.55 0.59

Note: The omission error was higher than the commission error, irrespective of water index and site.

On the other hand, AWEI was more effective than all other indices at extracting water
bodies from all the studied sites. AWEIsh and AWEInsh extracted discontinuous portions
of narrow rivers in sites 2, 3, and 4 (Figures S2–S4) and were more efficient at outlining
the boundaries of lakes including narrow craters (approximate areas ranging between
0.06–59.33 ha in scene 2, Table S8) that have densely vegetated slopes (Figures 4 and 5).
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Figure 4. Comparing cases of crater lake extraction from site 2. Frame (A) is Sentinel-2 MSI RGB (4,3,2) 10 m natural-color 
image, Frame (B) is Sentinel-2 MSI RGB (8,4,3) false-color composite. In frames (C–F), green is water while grey is non-
water. Frame (C) shows results of NDWI where some crater lakes were omitted (red rectangle) and background noise is 
misclassified as water, (D) is MuWI_R which misclassified two crater lakes (red rectangles) but effectively eliminated the 
background noise, (E,F) are AWEIsh and AWEInsh, respectively which effectively extracted the crater lakes and elimi-
nated non-water background noise. 

Figure 4. Comparing cases of crater lake extraction from site 2. Frame (A) is Sentinel-2 MSI RGB (4,3,2) 10 m natural-color
image, Frame (B) is Sentinel-2 MSI RGB (8,4,3) false-color composite. In frames (C–F), green is water while grey is non-
water. Frame (C) shows results of NDWI where some crater lakes were omitted (red rectangle) and background noise is
misclassified as water, (D) is MuWI_R which misclassified two crater lakes (red rectangles) but effectively eliminated the
background noise, (E,F) are AWEIsh and AWEInsh, respectively which effectively extracted the crater lakes and eliminated
non-water background noise.

In general, the best visual results of surface water bodies extraction in this study as
compared to high-resolution images (3 m) available from Google Earth ProTM and expert’s
knowledge, were given by AWEI as illustrated in Figure 6. Detailed illustrations of the
qualitative analysis for all the water indices in this study are shown in Figures S1–S4 of the
Supplementary Materials.
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compared to high-resolution images (3 m) available from Google Earth ProTM and ex-
pert’s knowledge, were given by AWEI as illustrated in Figure 6. Detailed illustrations of 
the qualitative analysis for all the water indices in this study are shown in Figures S1–S4 
of the Supplementary Materials. 

Figure 5. Comparing a case of lake extraction in site 1. Frame (A) is Sentinel-2 MSI RGB (4,3,2) 10 m
natural-color image, Frame (B) is Sentinel-2 MSI RGB (8,4,3) false-color composite. Frame (C) shows
MNDWI1 extraction of Lake Saka with omitted portions (red rectangles), while Frame (D) is a more
efficient extraction of the same lake using AWEIsh.

3.2. Quantitative Assessment

Using the validation points (Figure S6), accuracy assessment was derived following
the procedures described in Section 2.6. The confusion matrices for all water indices and
sites are in Table S7 of the Supplemental Materials.

Generally, the PA was lower than UA with the only exception being observed in the
results of NDWI (site 3), where PA (73.90%) was higher than UA (65.10%). Apart from
the observations in site 3 where NDWI (73.90%) had the highest PA, AWEI consistently
showed the highest PA in all the other sites. UA was higher than 90% for all water indices
in site 1. While in site 2, only MNDWI2 had UA (87.20%) which was less than 90%.

In site 3, AWEIsh and AWEInsh had the highest UA of 92.90% and 84.50% respectively,
while the remaining water indices had UA less than 80.00%. On the other hand, NDWI
had the lowest UA (53.40%) in site 4, while all the other water indices had UA greater than
75.50% (observed in the results of AWEInsh, Table 3).

AWEI consistently showed the highest OA as compared to all the other water indices,
irrespective of the site. OA was greater than 90.00% for AWEI in sites 1 and 2, while it was
higher than 87.00% for sites 3 and 4 with the only exception being observed in the results
of site 4 of AWEInsh (OA = 84.90%, Table 3).
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Figure 6. Water maps as classified by AWEI for the various sites (Blue is water while white is non-water). The red highlights
show rivers or streams. Comparisons follow rows where the Sentinel-2 MSI RGB (8,4,3) false-color composite image of
a particular site is on the (left), followed by the AWEIsh binary classified image (middle), and then the AWEInsh binary
classified image (right). Further illustrations of water maps are in Figures S1–S4.

The highest kappa was also observed in AWEI, irrespective of the site. The kappa was
greater than 0.80 for AWEI in sites 1 and 2, while it was less than 0.80 for all the other five
water indices in the same sites. In site 3, AWEIsh and AWEInsh had kappa of 0.71 and 0.66
respectively, while the remaining water indices had less than 0.49 (observed in the results
of NDWI). AWEIsh and AWEInsh had kappa of 0.61 and 0.66 respectively in site 4, while the
remaining water indices had less than 0.59 (observed in the results of MuWI_R, Table 3).

CE was generally less than the OE irrespective of the water index, for all the studied
sites. In sites 1, 2, and 4, NDWI showed the highest OE of 56.02%, 69.52%, and 77.59%,
respectively, while MuWI_C and MuWI_R had the highest OE (61.36%) in site 3. AWEI
consistently showed the lowest OE in all the studied sites (Table 3).

In sites 1 and 2, MuWI_C showed the lowest CE (0.63% and 0.68%, respectively).
On the other hand, AWEIsh showed the lowest CE in sites 3 and 4 of 7.14% and 12.84%,
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respectively. The trend observed in the results presented in Table 3 shows that extraction of
water using these water indices was more accurate in sites 1 and 2 as compared to sites 3 and 4.

4. Discussion

Water resources are vital in the process of eradicating poverty and socio-economic
development [1]. Though a lot of information is available about the major lakes and rivers
of Uganda [1,60], understanding the minor water bodies that play a pivotal role in the
survival of most rural communities of the country is not prioritized. Despite being strategically
located in two of the most important drainage sub-basins of Lake Edward and Lake Albert [1], the
Rwenzori region exhibits high malnutrition levels among its population [5–7]. Aquaculture could
be a sustainable remedy to this problem through the provision of protein, micronutrients,
and essential fatty acids [61,62] to the vulnerable populations in this region. Availability of
adequate, year-round surface water bodies is one of the most important requirements for
aquaculture development [63,64]. Therefore, this study focused on assessing the efficiency
of various water indices to map the available inland water resources (streams, rivers,
crater lakes, and lakes) for potential inland freshwater aquaculture in the Rwenzori region.
Results of seven water indices (NDWI, MNDWI1, MNDWI2, AWEIsh, AWEInsh, MuWI_C,
and MuWI_R) over four sites were compared.

AWEIsh and AWEInsh were the most efficient indices at extracting mixed water pixels
and produced more visually clear water maps since they eliminated most classification
errors of hilly shadows and other non-water surfaces similar to what was observed by
Acharya et al. (2018) [43]. Though AWEInsh is meant for areas that are not affected by
shadows [16], it was still efficient at extracting surface water in all the studied sites. This
was because the region possesses several dispersed built-up areas as background noise
which this water index effectively eliminated as discussed by Feyisa et al. (2014) [16]. Its
other variant AWEIsh also successfully removed the shadows that AWEInsh could not
eliminate as discussed by Feyisa et al. (2014) [16]. The topographic characteristics of the
Rwenzori region could have contributed to AWEI performing the best in all incidences
(OA > 90%, kappa > 0.8 in sites 1 and 2; OA > 84.9%, kappa > 0.61 in sites 3 and 4, Table 3)
because it has previously been commended for its effectiveness at extracting water with
high accuracy in mountainous regions where deep shadows of the terrain cause error [16].
On the other hand, NDWI could not eliminate noise from built-up areas (Figures S1–S4)
because the reflectance pattern of built-up land in the green and NIR bands is similar to
that of water [44]. This water index had the highest omission errors in scenes 1, 2, and
4 where many mixed pixels of narrow and small water bodies were left out, concurring
with the observations of Acharya et al. (2018) [43]. Similar to the findings of Acharya et al.
(2018) [43], the commission errors of NDWI resulted from misclassifying hilly shadows
as water. Acharya et al. (2018) [43] further observed that subzero optimum thresholds of
NDWI like the ones obtained in this study resulted in the wrong classification of shadows
as water. This observation is further supported by the findings of Wang et al. (2018) [15],
who noted that NDWI was greatly affected by commission errors despite using two native
10-m bands on Sentinel-2.

MNDWI replaced the NIR band in NDWI with SWIR to reduce commission errors
from built-up areas and bare-soil [15,43] but both versions of this index were still prone
to misclassifications of such a kind in all the studied sites just as it was observed in the
results of Fisher et al. (2015) [65]. Even MuWI that combines more bands with adequate
formations that have the potential of improving shadow detection [15] still exhibited high
commission errors (>14%) in sites 3 and 4 (Table 3). MuWI also omitted portions or whole
crater lakes and other water bodies (Figure 4 and Figures S1–S4). This could be attributed
to the different water properties of the various water bodies of this region. Though the
variants of this index have been commended for reducing misclassifications resulting from
sunglint due to their efficient exploitation of the native 10-m Sentinel-2 spectral bands [15],
they still performed worse than AWEI in all sites.
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Except for AWEI (AWEIsh and AWEInsh), all other water indices extracted the crater
lakes and water bodies less efficiently when visually examined (Figures 4 and 5, and
Figures S1–S4). This could be attributed to the fact that classifying water from remotely
sensed images is affected by the inconsistency in reflectance spectra of water bodies that
have different properties such as color, turbidity, depth, steepness of topography, dissolved
organic matter, organic particulates, sediment, and/or plankton concentration [65], which
is a sure case for Rwenzori region as illustrated in the discussions of Nankabirwa et al.
(2019) [66].

The higher user’s accuracy than producer’s accuracy for all water indices in this study,
irrespective of either water index or scene (Table 3), solidifies the fact that there was far
less misclassification of non-water pixels as water than the misclassification of water pixels
as non-water. Therefore, the quantitative results of this study, just like what was obtained
by Fisher et al. (2015) [65] and Feyisa et al. (2014) [16], showed that the omission error
was higher than the commission error. The high omission error resulted from the fact that
many mixed water pixels and narrow water bodies could not be effectively extracted from
Sentinel-2 L2A imagery. Most water bodies (streams, and craters) in the Rwenzori region
are characterized by being narrow and having densely vegetated (forested) banks. Such
characteristics, coupled with the rugged terrain of the region (characterized by high and
steep slopes) led to the high omission errors. Lara et al. (2013) [49] noted that the streams
draining the Rwenzori mountains are generally small and of low stream order. This is the
reason why they could not be mapped using Sentinel-2 imagery.

Though the omitted streams are narrow, the majority are permanent due to being fed
by the very high rainfall levels experienced in this region [1,60,67] and the melting glaciers
of the Rwenzori mountains [67]. Several recent studies have indicated that most of the
streams and rivers of this region have good to excellent water quality [8–10], which is a
white flag to their high potential for use in aquaculture production. Streams and rivers
are in general a highlighted major source of water for aquaculture [68,69], which is also
the case for Uganda where they have been identified as vital to pond fish farming [70–72].
Results from a previous study [71] showed that the majority of the active fish farmers in the
Rwenzori region used streams as their main source of water for their fish ponds. Therefore,
the failure of water indices to extract narrow streams from Sentinel-2 L2A satellite imagery
leads to a severe underestimation of the potential water resources for aquaculture using
remote sensing.

On the contrary, several freshwater crater lakes in the region were successfully ex-
tracted by AWEI (Figure 6). For example, 39 successfully identified crater lakes with
surface area ranging between 0.06 and 59.33 ha were extracted by these indices in site 2
(Table S8). Lake Saka (surface area = 56.90 ha; maximum depth = 11.9 m [66]) was also one
of the lakes extracted from site 1 (Figure 5). This lake possesses an active artisanal fishery
(A. Ssekyanzi, personal observation) which is proof that it could potentially be used for
aquaculture production. The importance of such water resources to the survival of the
rural communities of the Rwenzori region has been mentioned in previous studies [49,66].

Crater lakes are being utilized for aquaculture production in various parts of the
world [73,74]. A previous limnological study [66] showed that some of the crater lakes that
were identified in this exercise have good water quality parameters for aquaculture devel-
opment such as depth, temperature, turbidity, dissolved oxygen, pH, total phosphorus,
total nitrogen, and primary productivity. Therefore, these could be potential sites for cage
and/or pen culture, which is not yet popular in this region of Uganda.

5. Conclusions

Of the water indices compared in this study, AWEI showed the highest accuracy (OA
and kappa) in mapping water bodies from the studied sites. The findings of this study
showed that the Rwenzori region possesses surface water resources such as crater lakes,
lakes, and rivers/streams that could potentially support aquaculture development.
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However, the high omission errors observed are an indication that the majority of
the lower order streams that characterize the water resources of the region could not be
identified by applying water indices on moderate resolution Sentinel-2a/b images. Since
spatial analysis alone cannot unravel the dynamics and seasonal variations of these water
resources, it is necessary to carry out a spatial-temporal analysis of the surface water
resources over a given period.

The results of this paper are a contribution toward the unearthing of the aquaculture
potential of the Rwenzori region.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/w13192657/s1. Figure S1: RGB images and the corresponding water maps of scene 1.
Figure S2: RGB images and the corresponding water maps of scene 2. Figure S3: RGB images, and
the corresponding water maps of scene 3. Figure S4: RGB images and the corresponding water maps
of scene 4. Figure S6: RGB images of the studied scenes (1, 2, 3, and 4) with the reference points (red)
used for the accuracy analysis. Table S5: K-means cluster centers, where the optimum threshold (the
center that gave the highest OA and kappa) is highlighted. Table S7: Confusion matrices of the water
indices under the respective studied scenes of the Rwenzori region. Table S8: 39 extracted crater
lakes by AWEI in scene 2 with their approximate area (m2/ha).
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