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Abstract: Assessing the fairness of water resource allocation and structural water shortage risks is an
urgent problem that needs to be solved for the optimal allocation of water resources. In this study,
we established a new multi-objective optimization model of water resources based on structural
water shortage risks and fairness. We propose an improved NSGA-III based on the reference point
selection strategy (ARNSGA-III) to solve the optimization model. The superiority of this method was
proven by comparing it with three other methods, namely, NSGA-III, MOSPO, and MOEA/D. The
model was applied to optimize the allocation of water resources in Wusu City in China. The results
show that the new multi-objective optimization model provides reasonable and feasible solutions
for solving water conflicts. The convergence and stability of ARNSGA-III are better than those of
the other three algorithms. Allocation schemes of water resources for Wusu City in normal years,
dry years, and extremely dry years are proposed. In normal years, the structural water shortage
risk index is reduced by 50.1%, economic benefits increased by 0.2%, and fairness is reduced by
60.5%. This study can provide new ideas for solving the multi-objective optimization of regional
water resources.

Keywords: water resource allocation; multi-objective optimization; fairness; water shortage risk; NSGA-III

1. Introduction

Water shortage is a major socioeconomic and global sustainability issue that imperils
human survival and regional development [1]. The overuse and poor management of
scarce water resources are exacerbating the impacts of current droughts [2]. Shrinking water
resources, the increasing trend of droughts, and their severe damages play a significant role
in intensifying the water crisis [3]. The fair and reasonable allocation of water resources
is essential to eradicate regional poverty and maintain regional peace and stability [4].
Therefore, determining how to reasonably allocate water resources is a problem that
urgently needs to be solved.

Fairness is an important indicator of the optimal allocation of water resources [5].
At present, research on the fairness of water distribution is shifting from qualitative to
quantitative analysis. Cullis et al. [6] suggested the Gini coefficient as a temporary method
to calculate the fair allocation of water resources. Yang et al. [7] used the Gini coefficient as a
constraint to study the fairness of water resource allocation in irrigation areas. Hu et al. [8]
used the Gini coefficient to study the relationship between equity and economic benefits in
regional water resource allocation. Hu et al. [1] used the Gini coefficient to study the rela-
tionship between fairness and economic benefit loss risk in the allocation of water resources
in a river basin. Therefore, the fairness of water resource allocation is a current research
hotspot. The influence of climate, human activities, etc., increases the uncertainty of the
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water resource allocation system, which also increases its risk [9]. Previous studies have
seldom considered risks in the process of water resource allocation, and they have ignored
the risks of unreasonable water use structure. Therefore, Ma [10] proposed a structural
water shortage risk index to guide water resource allocation. Wang et al. [11] used the risk
of water shortage to establish an optimization model based on distributed simulation to
guide agricultural water management. Gao et al. [12] established an uncertainty-based
water shortage risk assessment model (UWSRAM), which is used to analyze the degree
of water shortage under uncertain conditions, and it is a convenient method to guide the
allocation of water resources. In previous studies, only the fairness of water allocation or
structural water shortage risks were considered, which may lead to unfairness or water
shortage risks in the results of water resource allocation. However, taking both factors as
optimization objectives can help to effectively avoid the above-mentioned problems and
make the results of water resource allocation more comprehensive.

The multi-objective optimization allocation model of water resources focuses on
solving water resource conflicts from the perspective of optimization objectives to improve
the results of water resource allocation [13]. In recent years, with the rapid development
of computer technology, a large number of evolutionary algorithms have been proposed.
Because of their ability to perform large-scale and complex calculations and because they
have the advantage of high versatility, they have been widely used to obtain solutions of
water resource optimization models. Such methods include the genetic algorithm [14],
particle swarm algorithm [15], non-dominated sorting genetic algorithm [16], and their
modified versions [17]. The most popular among them is an evolutionary algorithm using
a reference-point-based non-dominated sorting approach (NSGA-III) [18], because it has
better convergence and strong practicability when dealing with three or more objectives.
However, in the actual problem-solving process, we found that NSGA-III is associated with
difficulties in determining the reference point division and poor adaptation to the Pareto
frontier of the actual problem. Therefore, we improved NSGA-III by using a quadrant of the
population in the decision space. We propose an improved NSGA-III based on the reference
point selection strategy (ARNSGA-III), in which information on differential distribution
characteristics discriminates the evolution stage of the population, and reference points are
selected based on the distribution characteristics of the population in the target space.

The main purpose of this study is to include fairness and the risk of water shortage as
factors when determining the allocation of water resources. Wusu City, a typical water-
scarce area in China, was selected to explore the best allocation method of water resources.
First, a new multi-objective optimization model of regional water resources was established,
and then an improved NSGA-III (ARNSGA-III) method was used to solve the optimization
model. Finally, water resource allocation schemes for Wusu City in normal years, dry
years, and extremely dry years were proposed. This study can provide new ideas for the
multi-objective optimization of regional water resources.

2. Materials and Methods
2.1. Optimization Model

Multi-objective optimization of water resources is a complex, large-scale system
optimization problem. First, the objectives and decision variables for optimal allocation
are determined, and then reasonable objective functions and constraints are constructed,
which are then solved by the algorithm.

2.1.1. Objective Function

In the process of water resource allocation, we must not only pay attention to economic
benefits, but also consider the regional water shortage risk caused by the unfairness of
water distribution and the unbalanced water structure of various sectors. Therefore, we
took the minimum structural water shortage risk index, the maximum economic benefit,
and the maximum fairness as the objective function.

(1) Structural water shortage risk
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Structural water shortage risk is a risk indicator for the balance of regional water
shortage and water use structure. It reflects changes in water shortage and water structure.
It is obtained by multiplying the water shortage index and the information entropy of
the water use structure. The smaller the value, the safer the water structure and water
consumption in the area [10]. The risk is understood as a combination of the probability
level of a threat activation and the level of its effects.

min f1 = Wce−S =
I
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where f1 is the structural water shortage risk index, i is the regional coefficient, and j is
the water sector coefficient. Wc is the comparative water scarcity index in historical years.
S is the information entropy of water use structure. Pj is the water use structure of each
water sector in the area. Wij is the water consumption of sector j in region i, m3. Wmini is
the minimum value of water consumption in area i in historical years, m3. Wmaxi is the
maximum water consumption of area i in historical years, m3.

The purpose of measuring the risk of changes in the water use structure is to show
these changes in the year of observation. Equations (2) and (3) show that in the expression
of the information entropy of the water use structure, the actual water consumption of
each water sector is used as the random variable Wij, and the proportion of water used by
each sector (water use structure) represents the probability Pj corresponding to the random
variable. The more balanced the water use structure, the greater the information entropy
of the water use structure; the more concentrated the proportion of water use in a certain
water sector, the lower the information entropy of the water use structure, indicating that
water consumption is more evenly distributed among the sectors. Equation (4) shows
that the water shortage index uses the maximum and minimum water consumption in
historical years to reflect the degree of change in water use during this time. The larger the
water shortage index, the greater the water consumption in the area, and the more likely it
is to cause regional water shortages.

(2) Economic benefits
Water resources are an important factor affecting agricultural irrigation, industrial

production, and people’s lives. Under the premise that the minimum water consumption of
each sector is guaranteed, the water allocation of each sector is determined by the economic
benefits that it produces. Therefore, the goal is to maximize the direct economic benefits of
each user in the development and utilization of regional water resources.

max f2 =
I

∑
i=1

J

∑
j=1

Wij
(
bij − cij

)
(5)

where f2 is economic benefits, bij is the benefit coefficient of sector j in area i, and cij is the
cost coefficient of sector j in area i.
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(3) Fairness
Optimizing the fairness of intersectoral water distribution is the main way to resolve

intersectoral water use conflicts. The Gini coefficient is used as an indicator to measure
the fairness of intersectoral water distribution, and the goal is to obtain the smallest Gini
coefficient. The smaller the value, the better the fairness of the area [19].

min f3 = Giniagr + Giniind + Ginidom (6)
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where f3 is fairness, Giniagr is the Gini coefficient of the agricultural sector, Giniind is the
Gini coefficient of the industrial sector, and Ginidom is the Gini coefficient of the domestic
sector. i1 and i2 are the same water sector in different regions. Wagr

i1
is water consumption

of the agricultural sector in region i1, m3; ARi1 is irrigation area in region i1, hm2. Wagr
i2

is water consumption of the agricultural sector in region i2, m3; ARi2 is irrigation area in
region i2, hm2. Wind

i1
is water consumption of the industrial sector in region i1, m3; ECi1 is

the economic output value of the industry in region i1, yuan; Wind
i2

is water consumption
of the industrial sector in region i2, m3. ECi2 is the economic output value of the industry
in region i2, yuan. Wdom

i1
is the water consumption of the domestic sector in region i1, m3;

PEi1 is the number of people in region i1; Wdom
i2

is the water consumption of the domestic
sector in region i2, m3; PEi2 is the number of people in region i2. The Gini coefficient ranges
from 0 to 1, where 0 means absolutely fair and 1 means absolutely unfair. The closer its
value is to 0, the fairer the result of water resource allocation. Usually, 0.2–0.3 is regarded
as absolute fairness, 0.2–0.3 is regarded as relatively fair, 0.3–0.4 is regarded as relatively
fair, 0.4–0.5 is regarded as a large gap, and 0.5 or more is regarded as a large gap [20].

2.1.2. Constraints

(1) Sector water consumption constraints
In order to ensure the normal operation of various water-using sectors, the water dis-

tribution of each sector should be greater than the minimum water consumption required
to maintain normal activity, and the maximum value should be less than the amount of
water available in the sector under total water consumption control.

Wmin
ij ≤Wij ≤Wmax

ij (10)

where Wmin
ij is the minimum water consumption of sector j in region i necessary to maintain

normal operation, m3. Wmax
ij is the available water volume of sector j in region i under the

constraints of the “three red lines”, m3.
(2) Eco-environmental water consumption constraints
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Ecological water use is an important factor to ensure the sustainable development
of the ecological environment. Therefore, ecological water use should be greater than the
minimum regional ecological water demand.

WEmin ≤WE (11)

where WEmin is the minimum water requirement of the ecological environment, m3, and
WE is ecological water consumption, m3.

(3) Total water volume constraints
In order to ensure the sustainable development of the region, the total water consump-

tion of all regions and sectors should be less than the available water volume of the region
under total water consumption control.

WE +
n

∑
i=1

m

∑
j=1

Wij ≤W (12)

where W is the available water volume in the region under the constraints of the “three red
lines”, m3.

(4) Water shortage risk constraints
In order to prevent the risk of regional water shortage due to changes in water use

structure, the structural water shortage risk index is 0–1.

0 < f1 < 1 (13)

2.2. Optimization Algorithm

In order to overcome the shortcomings of the traditional nonlinear programming
method, i.e., that the solution speed is slow and that it easily falls into the local optimum,
we used the evolutionary algorithm to solve the optimization model.

2.2.1. NSGA-III

Deb et al. [18] proposed an evolutionary algorithm called NSGA-III, which is an
improvement of NSGA-II. The reference point mechanism is introduced on the basis of
NSGA-II. The calculation formula for the number of reference points is as follows.

H(M, p) =
(M + p− 1)!
p! (M− 1)!

(14)

where H is the number of reference points, M is dimension, and p is the number of divisions
of each dimension target.

The uniformly distributed reference points constructed in NSGA-III are effective in
solving the problem of the uniform Pareto front surface. However, in actual problems,
the Pareto front surface is not all uniformly and continuously distributed, resulting in
poor calculation results of the algorithm. The number of reference points in NSGA-III
determines the running time of the algorithm, and the two are positively correlated. The
final evolution of the algorithm will not improve with the increase in reference points. Too
many or too few reference points are not conducive to critical non-dominance, and for
different problems, the importance of each reference point to individual choice is different.
It can be seen that the selection of the reference point has an important impact on the
performance of the algorithm.

2.2.2. ARNSGA-III

In order to solve the problems associated with NSGA-III, that is, the difficulty de-
termining the reference point division and the poor Pareto frontier adaptability to actual
problems, we proposed an improved NSGA-III based on the reference point selection strat-
egy (ARNSGA-III). Information on the quartile distribution characteristics of the population
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in the decision space was used to distinguish the evolution stage of the population, and
the reference point was selected based on the distribution characteristics of the population
in the target space.

(1) Evolutionary stage decision strategy based on decision space
In the process of population evolution, the population changes from disorder to order

and gradually converges, which is a process of entropy reduction. We used the difference
between the entropy of two adjacent generations to describe the evolutionary stage of the
population [21]. The entropy value et was calculated from the standardized quartile in fi of
the population and the standardized median ∆midt.

et = −
H

∑
h=1

in filgin fi −
H

∑
h=1

∆midt
i lg∆midt

t (15)

∆et =
∣∣∣et − et−1

∣∣∣ (16)

When the population is updated, et magnifies the change in the population in the
decision space. The larger the value of ∆et, the greater the change in individuals in the
population, indicating that the population is actively exploring the unknown potential
solution space. Conversely, the smaller the value of ∆et, the more stable the population,
indicating that the population is converging. Therefore, ∆et can be used to determine the
evolutionary state of the population St. In the following, t is the current evolution time of
the population, and µ is the threshold.

If
∣∣∆et

∣∣ > ∆µ, then the algorithm is in the “exploration” stage, and the population is
exploring the solution space. If

∣∣∆et
∣∣ < µ, then the algorithm enters the “polymerization”

stage, and the population may begin to converge.
The judgment basis of St in the evolution stage is the threshold µ. The basis for setting

the threshold µ in this paper is that for any dimensional finite interval E, the ideal situation
is that N individuals in the population are evenly distributed in this interval, and the
shortest distance between an individual in the population and the neighboring individual
is |E|/N, which is 1/N after normalization. The formula for calculating the standardized
interquartile range when individuals are uniformly distributed is as follows.

in f =
0.75E− 0.25E

E
=

1
2

(17)

When the change in in f is less than 1/N and the population does not shift ∆mid ≈ 0,
Equation (16) is used to obtain |∆e| as the threshold µ, and, as a reference, we further
consider the linear space existing between the threshold µ and the dimension of the
decision space.

µ = −Din f lgin f − D
(

in f +
1
N

)
lg
(

in f +
1
N

)
(18)

(2) Reference point selection strategy based on target space
In the proposed reference point strategy, the number of reference points is adaptive to

the population size N, and the more important reference points are dynamically selected
according to the evolution stage of the population in the target space. This strategy does
not require the user to set the parameter p. To ensure the screening effect, the number of
eliminated reference points should be greater than or equal to 20%N. The steps for selecting
reference points are as follows.

1. According to the population size N, select the reference point set Z divided into p in each
dimension; the number of reference points is Hp, and p satisfies Hp ≥ 1.2, Hp−1 < 1.2N.

2. Determine the evolution stage of the population according to the plan in step 1.
3. When the population is in the “exploration” stage, statistical reference point set Z is

the sum of the number of associated individuals in each generation Zsum.
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4. When the population just enters the “polymerization” stage, the N reference points
with the largest number of associations in Z are retained according to Zsum to form a
new reference point set Zn.

(3) ARNSGA-III flowchart
Combining the above two strategies, the calculation process of ARNSGA-III is shown

in Figure 1.
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2.3. HV Algorithm Test Indicators

In order to verify the advantages and disadvantages of ARNSGA-III in solving the
multi-objective optimization model, three multi-objective evolutionary algorithms were
selected for comparison, namely, NSGA-III [18], MOSPO [22], and MOEA/D [23]. We
used four multi-objective evolutionary algorithms to solve the multi-objective optimization
model of water resources established in this paper. In order to ensure fairness, real number
coding was used for each algorithm. The settings are as follows: population size N = 100,
maximum evolution algebra Gmax = 1000. The computing platform is PlatEMO3.0 [24], and
the software is Matlab2020a. The specific source code: https://github.com/1209805090
/AR-NSGA-III accessed on 19 March 2021.

https://github.com/1209805090/AR-NSGA-III
https://github.com/1209805090/AR-NSGA-III
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In order to evaluate the effectiveness of the algorithm, Hyper Volume (HV), which
can simultaneously reflect the convergence and distribution of the algorithm, was used
as the algorithm performance evaluation index. The calculation of the HV index does not
need to test the real non-inferior solution frontier of the problem. This approach is suitable
for evaluating the performance of algorithms in practical problems [25]. HV represents the
volume of the hypercube enclosed by Pareto and the reference point in the target space.
The larger the HV value, the better the overall performance of the algorithm.

The calculation method of HV is as follows.

1. Taking (C1, C2, C3) as the reference point in the HV evaluation index, (F1j, F2j, F3j) as
each Pareto solution obtained in a certain run of an algorithm, and (C1, C2, C3) and
(F1j, F2j, F3j) as the diagonal of the rectangle, the area of the rectangle enclosed by each
solution and the reference point is calculated.

2. Taking the union of all the rectangles calculated in step 1, the area of the figure formed
is the HV value.

3. Case Study
3.1. Study Area

Wusu City is located in the northwestern part of the Xinjiang Uygur Autonomous
Region of China, on the southwestern edge of the Junggar Basin and on the northern slope
of the Tianshan Mountains (83◦~86◦ E, 43◦~46◦ N), which is a typical arid area. The annual
average rainfall is 162.61 mm, and the annual average evaporation is 1208.31 mm. In 2018,
the structural water shortage risk index of Wusu City was 1.060, and the fairness was
0.780. There are serious water equity and water structure conflicts among regions and
industries. Under the condition of limited available water resources, an unreasonable water
use structure among sectors exacerbates the waste of water resources and easily increases
the risk of water shortage. Unreasonable distribution of water resources among the same
sector in different regions is not conducive to the sustainable development of society and
the economy. Therefore, the water use structure of the study area is optimized to realize
the fair and sustainable development of the region. Wusu City is mainly composed of
four parts, namely, Kuitunhe Area, Sikeshu Area, Chepaizi Area, and Giltui Area. The
geographical location and division of Wusu City are shown in Figure 2.

3.2. Data

The data on the permanent population, irrigated area, and economic benefits of Wusu
City come from the “Ili Kazakh Autonomous Prefecture Statistical Yearbook 2015–2018”.
The total economic benefit is 1.10 × 1010 yuan. The agricultural irrigated area, industrial
output value, and population of each district are shown in Table 1. The water efficiency
coefficient bij refers to the Local Standards of Xinjiang Uygur Autonomous Region (DB
65/3611-2018), and the water efficiency coefficients for agriculture, industry, and life are
1.77, 330, and 427 yuan/m3, respectively. The cost coefficient cij was determined by the
water fee collection standard in Wusu City in 2018, and the cost coefficients for agriculture,
industry, and living are 0.22, 4.69, and 2.35 yuan/m3, respectively. A frequency analysis of
water volume in Wusu City over the years identified three different typical years, namely,
normal years, dry years, and extremely dry years. The water volume in normal years is
5.32 × 108 m3, the water volume in dry years is 5.12 × 108 m3, and the water volume in
extremely dry years is 4.96 × 108 m3. Table 2 shows the minimum and maximum water
resource usage in Wusu City in historical years.
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Table 1. Irrigated area, industrial output value, and population in Wusu City in 2018.

Category Irrigation Area (hm2)
Industrial Output Value

(108 Yuan) Population (104)

Kuitunhe Area 4.78 47.81 14.71
Sikeshu Area 6.03 11.92 7.45
Chepaizi Area 1.73 - 1.67
Jiertuhe Area 1.27 - 1.22

Total 13.81 59.73 25.05
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Table 2. The minimum and maximum water demand of each sector in Wusu City in 2018.

Category
Agricultural (104 m3) Industrial (104 m3) Domestic (104 m3)

Minimum Maximum Minimum Maximum Minimum Maximum

Kuitunhe Area 16,116 17,895 1303 1789 670 827
Sikeshu Area 20,031 21,681 180 422 284 310
Chepaizi Area 5636 6735 - - 56 73
Jiertuhe Area. 4146 4904 - - 35 52

Minimum expresses the minimum water resources usage in Wusu City in historical years; Maximum expresses
the maximum water resources usage in Wusu City in historical years.

4. Results and Discussion
4.1. ARNSGA-III Instance Test

Using ARNSGA-III, NSGA-III, MOSPO, and MOEA/D to solve the multi-objective
optimization model of water resources established in this paper, the Pareto solution set
calculated by each algorithm was put into the HV index calculation formula. By adjusting
the reference points (C1, C2, C3), the calculation results of each algorithm in the HV index
were obtained. When the result of each algorithm was greater than 0 at the same time, the
size of the reference point was determined [26]. After repeated tests, the reference points
(C1, C2, C3) of this analysis were finally determined to be (1, −9.45 × 108, 1).

As can be seen from Table 3, ARNSGA-III has the largest average value and the
smallest standard deviation, followed by NSGA-III, indicating that ARNSGA-III has better
performance than NSGA-III in solving the multi-objective optimization model established
in this paper. Among the other two algorithms, the effect of MOPSO is intermediate, and
that of MOEA/D is the worst.

Table 3. HV index value test of ARNSGA-III, NSGA-III, MOMOP, and MOEA/D.

Algorithm N D Average Value of HV Standard Deviation of HV

ARNSGAIII 3 12 44.10 0.33
NSGAIII 3 12 43.97 0.39
MOPSO 3 12 35.13 0.78

MOEA/D 3 12 25.56 1.02

As can be seen from Figure 3, the Pareto solution sets of ARNSGA-III and NSGA-III are
evenly distributed, and a wider range of solutions are searched in each objective function.
The values of the objective functions are quite different among the methods, and the Pareto
solution set of ARNSGA-III has the most uniform distribution. The Pareto solution sets of
MOPSO and MOEA/D are relatively densely distributed; there are discrete points, and the
values of the objective functions are not very different. Taking MOEA/D as an example, the
structural water shortage risk index is mainly concentrated in 0.687320–0.689321, economic
benefits are mainly concentrated in 1.138180–1.138181, and fairness is mainly concentrated
in 0.350414–0.350415. The algorithm has poor convergence and easily falls into the local
optimum. In the calculated results, the values of the decision variables of each group are
relatively close to the value of the objective function, and the decision space provided to
the decision maker is small, which cannot meet the needs of actual practice. In terms of
the Pareto solution search, in order to ensure fairness, the number of populations of each
algorithm was set to 100. From the analysis of the actual results obtained, ARNSGA-III and
MOPSO both achieved 100 Pareto solutions, while NSGA-III and MOEA/D only obtained
91 Pareto solutions. This shows that ARNSGA-III and MOPSO were better than the other
two algorithms in the Pareto solution search. In summary, we used ARNSGA-III as the
solution algorithm for the optimization model in this paper.
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4.2. Typical Year Analysis

In order to reduce the impact of extreme weather [27], based on the inflow of water in
Wusu City in normal years, dry years, and extremely dry years, and by taking the smallest
structural water shortage risk index, the largest economic benefit, and the largest fairness
as the objective function, a multi-objective optimization model of regional water resources
was established, and we used ARNSGA-III to solve it. The Pareto solution sets of normal
years, dry years, and extremely dry years are shown in Figure 4.

As can be seen from Figure 4, the fairness of water distribution in the three different
typical years is less than 0.5. Among them, there are schemes with fairness less than
0.3 in normal years and dry years, indicating that the distribution of water resources is
fair [28]. The range of the structural water shortage risk index is 0.45–0.65 in normal
years and 0.66–0.78 in drought years. The main reason for this difference is the decrease
in water and precipitation during the drought years, which lead to an increase in water
demand in various regions, increased competition for water resources, and changes in the
structure of water use in various regions. In normal years and extremely dry years, the
economic benefits change slightly. Both fairness and the structural water shortage risk
index changed significantly. The fairness in normal years ranges from 0.25 to 0.40, and the
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fairness in extreme drought years ranges from 0.28 to 0.44. The main reason for the fairness
change is that the amount of water in extremely dry years is small. In order to ensure
regional economic development, areas with higher economic output value will receive
more water, reducing the distribution of water in areas with lower economic output value,
and a chain reaction will lead to changes in the regional structure of water use and will
increase the structural water shortage risk index. In summary, considering the optimization
of water resources in different typical years will have a positive impact on maintaining
regional economic development, adjusting the structure of regional industrial water use,
and improving the equity of regional water use. It is also a necessary means to ensure
regional sustainable development.
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Figure 5b shows the relationship between the structural water shortage risk index
and economic benefits when fairness takes different values. When fairness is fixed, as the
structural water scarcity risk index increases, economic benefits also increase. When the
fairness value increases, the numerical value of the structural water shortage risk index
and the economic benefit shift to the left, showing a trend, in which the structural water
shortage risk index decreases and the economic benefit increases. Figure 5c shows the



Water 2021, 13, 2648 13 of 18

relationship between the structural water shortage risk index and fairness when economic
benefits take different values. When the structural water shortage risk index increases,
fairness shows a decreasing trend. Figure 5d shows the relationship between fairness and
economic benefits when the structural water shortage risk index takes different values.
When the structural water shortage risk index is fixed, fairness increases with the increase in
economic benefits. When the water scarcity risk index increases, the values of fairness and
economic benefits move to the left, showing a trend of increasing fairness and decreasing
economic benefits. Compared with Figure 5c,d, the relationship between target pairs in
Figure 5b is more distinct, and the intensity of change in Figure 5b is greater than that in
Figure 5c,d.
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It can be seen from Figure 5 that there is a competitive, restrictive relationship between
the three goals. Among them, the structural water shortage risk index has a strong negative
relationship with economic benefits. In contrast, the negative relationships between struc-
tural water shortage risk index and fairness and between fairness and economic benefits are
weaker. This is because, under the condition of a certain amount of water supply, regional
development depends on economic benefits. In order to improve economic benefits by
adjusting the water use structure of various industries, water resources are allocated to
industries with greater economic benefits, and the water available for other industries is
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reduced. This leads to increased conflicts between economic benefits and water use struc-
ture, and it strengthens the negative relationship between the structural water shortage
risk index and economic benefits.

4.3. Water Resource Allocation

In order to analyze the impact of a single goal on other goals when it reaches its
optimum potential in normal years, dry years, and extremely dry years, nine groups
of different objective function values, with the smallest structural water shortage risk
index f 1, the largest economic benefit f 2, and the largest fairness f 3, were selected for
comparative analysis.

As can be seen from Table 4, when an objective function value is optimal, other
objective function values change. Taking a normal year as an example, in the scheme with
the smallest structural water shortage risk index, the structural water shortage risk index is
0.47, the economic benefit is 1.09, and the fairness is 0.34. In the scheme with the largest
fairness value, the structural water shortage risk index is 0.61, the economic benefit is 1.12,
and the fairness is 0.25. In the two different target schemes, the rate of change of each target
value is as follows: the structural water shortage risk index increases by 30%, the economic
benefit increases by 3%, and the fairness decreases by 24%. The results showed that when
choosing two different goal schemes, one of the goals was the best, which had a greater
impact on the other goal, which may have had the worst value as a result. In summary,
analyzing the relationship between optimal values among different objective functions
can reduce the subjective preferences of decision makers and have a positive impact on
ensuring local sustainable development.

Table 4. The optimal value of each objective function in different typical years.

Category
Normal Years Dry Years Extremely Dry Years

f 1 f 2 f 3 f 1 f 2 f 3 f 1 f 2 f 3

Min f 1 0.47 1.09 0.34 0.65 1.10 0.35 0.80 1.10 0.34
Max f 2 0.62 1.14 0.33 0.77 1.13 0.37 0.89 1.13 0.33
Max f 3 0.61 1.12 0.25 0.71 1.11 0.29 0.84 1.11 0.30

f 1 is structural water shortage risk index; f 2 is economic benefit; f 3 is fairness; Min f 1 is the minimum value of
structural water shortage risk index; Max f 2 is the maximum value of economic benefits; Max f 3 is the minimum
value of fairness.

In order to select a water resource allocation plan suitable for local development, we
adopted the ideal point method. According to the ideal point method of multi-objective
planning, the non-inferior solution with the smallest Euclidean distance from the ideal
point in the Pareto solution set is the best water resource allocation plan [29]. We con-
sulted experts and local decision makers to consider the fairness of local water resource
distribution and the greater risk of water shortage in the water structure, and we finally
determined the ideal point coordinates for typical normal years (0.500, 1.100, 0.310), dry
years (0.700, 1.100, 0.340), and extremely dry years (0.850, 1.100, 0.370).

The ideal point method was used to calculate the distance between the non-inferior
solution and the ideal point in the Pareto solution set [30]. The shortest distance in a
normal year is 0.003, and the coordinates are (0.502, 1.102, 0.308); the shortest distance in
a dry year is 0.010, and the coordinates are (0.691, 1.095, 0.341); and the shortest distance
in an extremely dry year is 0.009, and the coordinates are (0.855, 1.107, 0.368). In 2018,
the structural water shortage risk index of Wusu City was 1.06, the economic benefit was
1.100 × 1010 yuan, and the fairness was 0.780. After optimization, the structural water
shortage risk index in normal year was reduced by 0.540, economic benefits increased
by 0.002 × 1010 yuan, and fairness was reduced by 0.472. In dry years, the structural
water shortage risk index was reduced by 0.369, economic benefits were reduced by
0.005 × 1010 yuan, and fairness was reduced by 0.439. In order to reduce the structural
water shortage risk index and fairness, part of the economic benefits was abandoned. In
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extremely dry years, the structural water shortage risk index decreased by 0.205, eco-
nomic benefits increased by 0.007 × 1010 yuan, and fairness decreased by 0.412. The
structural water shortage risk index and fairness had the smallest decline, but the economic
benefits improved.

In Figure 6a, the optimal solution is located to the left of the ideal point. Comparing
the ideal point with the optimal solution, the structural water shortage risk index increases
by 0.002, the economic benefit increases by 0.002 × 1010 yuan, and the fairness decreases
by 0.002. In Figure 6b, the coordinate difference between the optimal solution and the
ideal point is (−0.009, −0.005, 0.001). In Figure 6c, the optimal solution is located to
the right of the ideal point. Comparing the ideal point with the optimal solution, the
structural water shortage risk index increases by 0.005, the economic benefit increases by
0.007 × 1010 yuan, and the fairness decreases by 0.002. In the opinions of decision makers,
the optimal solutions in different typical years met the needs of development and satisfy
the requirements of local sustainable development. The water resource allocation plans for
normal years, dry years, and extremely dry years are shown in Table 5.
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Table 5. Allocation of water resources for normal years, dry years, and extremely dry years.

Category Agricultural (104 m3) Industrial (104 m3) Domestic (104 m3)

Kuitunhe Area
Normal years 17,017 1376 675

Dry years 16,680 1387 677
Extremely dry years 16,349 1392 680

Sikeshu Area
Normal years 21,099 343 284

Dry years 20,751 344 280
Extremely dry years 20,076 359 284

Chepaizi Area
Normal years 6090 - 64

Dry years 6024 - 63
Extremely dry years 5716 - 63

Jiertuhe Area
Normal years 4465 - 46

Dry years 4347 - 48
Extremely dry years 4174 - 48

It can be seen in Table 5 that in different typical years, the water consumption of the
domestic sector in each area did not change much, the water consumption of the industrial
sector had an upward trend, and the water consumption of the agricultural sector had
a downward trend. This is mainly due to the shortage of water resources; in order to
ensure local economic benefits and sufficient water for people’s domestic use, the water
consumption of the industrial sector should be increased, and the water consumption of
the agricultural sector should be reduced. Taking the Kuitun River area as an example, the
water consumption of the agricultural sector decreased by 3.93% in extremely dry years
and by 2.02% in dry years compared with that in normal years, and it decreased by 1.98%
in extremely dry years compared with that in dry years. Compared with normal years, the
annual water consumption of the industrial sector increased by 11 × 104 m3 in dry years
and by 16 × 104 m3 in extremely dry years. Water consumption per 10,000 yuan of output
value in the industrial sector is lower than that of the agricultural sector. Therefore, the
economic benefits of the industrial sector’s unit water consumption are greater than those
of the agricultural sector, and coordinating the water consumption between the industrial
and agricultural sectors can maximize economic benefits. In summary, with reference
to the opinions of decision makers, combined with actual local conditions, the optimal
water distribution plan selected by the ideal point method can provide a fair and effective
reference plan for local water resource allocation.

5. Conclusions

In order to avoid only focusing on economic benefits and ignoring the fairness of
water distribution and the water shortage risk caused by an unbalanced water structure in
water resource allocation, a new multi-objective optimization model for water resources
was established. This optimization model is suitable for water-scarce areas where there are
conflicts of water use, but not for areas where supply is based on demand. There is good
performance in similar research areas. The main conclusions are as follows.

1. The new multi-objective optimization model, which combines the fairness of water
allocation with structural water shortage risks, provides reasonable and feasible
solutions for solving water conflicts caused by unfair water distribution and water
shortage risks.

2. Analyzing the relationship between the objective functions reveals that there is a com-
petitive, restrictive relationship between the three objective functions, among which
the structural water shortage risk index and economic benefits have the strongest
negative relationship.

3. The convergence and stability of ARNSGA-III are better than those of NSGA-III,
MOSPO, and MOEA/D, which proves that ARNSGA-III has strong practicability for
water resources allocation.
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4. The new multi-objective optimization model has been applied to the allocation of
water resources in Wusu City of China. The optimal allocation schemes of water
resources in normal years, dry years, and extremely dry years are proposed, respec-
tively. Taking the normal years as an example, the structural water shortage risk
index is reduced by 0.540, economic benefits by 0.002 × 1010 yuan, and fairness is
reduced by 0.472. The results show that the model is applicable in the field of water
resources allocation.
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