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Abstract: When constructing flood protection structures such as river levees, oftentimes due to
various factors engineers must design composite structures, i.e., reinforced earthen structures which
comply with all the stability criteria. The most common way of reinforcing such structures is the
usage of geosynthetics, or mostly geogrids when talking about stability. Since geosynthetics are
man-made materials produced in a controlled environment and go through quality control measures,
their characteristics contain a negligible amount of uncertainty compared to natural soils. However,
geosynthetic handling, their installation in the levee, and their long-term degradation can all have
significant effects of variable magnitude on geosynthetic characteristics. These effects and their
variability can be considered as random variables, which can then be used in probabilistic analyses
together with soil properties. To investigate the effects of the geogrid’s resistance variability on slope
stability compared to soil properties variability, probabilistic analyses are conducted on a river levee
in northern Croatia. It is found that the geogrid’s variability generally has very little effect on the
total uncertainty compared to the friction angle’s variability, but out of the three geogrid layers used
the top grid has the most influence.

Keywords: fragility curves; river levees; geogrid reinforcement; First Order Reliability Method
(FORM); Surface Response Method (SRM); slope stability

1. Introduction

River levees for flood protection are structures usually made from earthfill material,
and their cross section can be made up of multiple distinct parts, which serve specific
purposes in the protection from high waters. However, as Wang et al. [1] noted, levees
cannot completely exclude flood disasters, and living behind a levee poses unique flood
risks since levees are designed to reduce the impact of a flood event at a certain scale.

Their stability is mostly affected by the material used for the levee body, the foundation
material, and is also a function of the water level on the riverside. Often, due to cadastral
parcels owned by the investor, stability cannot be ensured for required crown heights
corresponding to defined return periods of flood events by using conventional solutions
due to the need of building steep slopes to fit the levee into the parcel width. This
issue is commonly solved by introducing ground reinforcement techniques that allow
for steeper slopes. One common technique in such structures is the reinforced fill built by
placing geosynthetic layers during the construction or reconstruction of a levee. The use of
geosynthetic materials generally in reinforced earth structures started to increase after 1971
when the first geotextile reinforced wall was constructed in France, and their beneficial
effect was noticed. At a later date, around 1980, geogrids were developed [2]. Nowadays,
geosynthetics are widely used in various fields of geotechnical engineering, such as shallow
footing to increase bearing capacity and decrease settlement [3–5], retaining walls [6–8],
and road construction [9,10]. When used in levees, their benefit has also been shown
in decreasing settlement of levees on soft soil [11] and increasing slope stability [12], or
both. Their effects have been studied under undrained [13,14], partially drained [14], and
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drained [15] conditions, during and after embankment construction. Hird and Kwok [13]
studied the stress distribution in the geosynthetic element depending on its stiffness,
and the strength and stiffness of the embankment material. As the levees can be made
from various materials, Balakrishnan and Viswanadham [16] studied the tensile load-
strain behaviour of geogrids embedded in different soil types and under variable normal
stress. Other ground reinforcement methods can also be combined with geosynthetics. For
example, Zheng et al. [17] have used stone columns in conjunction with geosynthetics to
achieve stable embankments on soft soil and have studied their interaction.

Studies have shown the stability benefit of using geosynthetics to ensure embankment
stability, as well as the economic advantages, with the help of limit equilibrium based
methods [18–20] and numerical methods [14,21,22] in 2D and 3D [23], physical models [24],
as well as various other methods mentioned by Tandjiria et al. [25]. In practice, the most
used method is the limit equilibrium due to its simplicity, despite all the limitations and
assumptions, which has shown good performance in real-life problems [25].

The introduction of geosynthetics for stability, mostly geogrids, is significant not only
because it means a higher stability, but also because it is a reinforcement element which
can be made from various materials (polyester, polypropylene, polyethylene, polyamide,
polyester, and polyvinyl chloride) [26], and whose characteristics can be controlled during
their production, which in turn means a higher reliability in their parameters’ values and
less variability. Nevertheless, some variability within geogrid parameters can still arise
from various sources, namely biases regarding strength reduction factors, which consider
installation damage, creep, and durability.

As Rowe and Soderman [18] stated, geosynthetics can fail by two mechanisms, either
on the soil-reinforcement interface, or internally as the rupture of the reinforcement element
itself. To resist the tensile rupture of the element, the resistance is straightforwardly
calculated by using the material’s parameters and the cross section. To resist pull out,
multiple effects are in place, whose relative contribution to the total pull-out resistance
effect has been studied by various authors [24,27,28]. When such elements are placed within
a levee, a few failure modes can be expected, namely internal, external, and compound [29],
as shown in Figure 1. Internal stability refers to slip surfaces which pass entirely through
the reinforcement layers, which means that the reinforcement failed either by tensile
rupture, or by pull out. External failure refers to deeper slip surfaces which go around all
the reinforcement layers. The compound failure is the most common type, where the slip
surface goes around and through various reinforcement layers. On top of those mentioned
failure modes, if the spacing between neighbouring reinforcement layers is too big and
secondary reinforcement is not provided, failure can initiate by soil sliding between those
layers, which then leads to a global failure. Thus, geogrid reinforced slope sections usually
consist of primary or principal, and secondary or intermediate, geogrid layers [2,29–31].
Failure of the slope can also occur without the need of reinforcement failure, i.e., if the
reinforcement is a low stiffness geosynthetic whose failure strain is much larger than the
strain at which the slope fails, then the whole slope might fail without reaching any of
the previously defined geosynthetic failure mechanisms [18]. Which failure mechanism
will occur in a levee highly depends on the cross section of the levee and whether it is a
newly constructed levee or a reconstructed one, because these parameters will dictate the
placement of geogrids.

Even though levees are characterized by a number of failure mechanisms [32,33],
and that about half of earth embankment failures occur as a result of processes related to
piping [34], this study considers only the slope stability of a reconstructed and additionally
reinforced river levee. The primary purpose of this study is to investigate the sensitivity of
reinforced levees to rising water levels and uncertainties in geotechnical materials, while
also promoting the usage of probabilistic analyses which can take those uncertainties into
consideration. Thus, probabilistic analyses are conducted with the objective of quantify-
ing the effects of uncertainties related to geogrid reinforcement on the slope stability of
levees, and to construct fragility curves which show the probability of failure of the levee
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for any water level. Such probabilistic slope stability analyses can be conducted using
numerous methods [35–43]. In this study, the limit equilibrium method is adopted due to
its simplicity and wide usage in geotechnical practice, while results are further processed
with programmed probabilistic methods to find the probabilities of unwanted behavior
of the levee subjected to various water levels with steady state conditions. The statistical
techniques and probabilistic methods used in this study are the Surface Response Method
(SRM) and the First Order Reliability Method (FORM), which have been programmed with
MATLAB. The variability values of random variables used for probabilistic calculations
are selected as reported in literature. Since the considered sources of variability of geogrids
include the long-term degradation, and no seismic event is considered, the conditions
considered for the whole levee are drained. The case study is described in Section 3.

Fragility curves, which will be constructed as a result of this study, are curves showing
the conditional probability of an unwanted behaviour occurring as a result of increasing
the design event intensity. Their usage in civil engineering began in, at least, 1980 with the
work of Kennedy et al. [44] related to the safety of a nuclear power plant. Later, their usage
in flood protection started in 1991 with a USACE Policy Guidance Memorandum [45],
followed by a further explanation in a 1993 USACE Engineer Technical Letter [46], as
reported by [47]. Today, their usage in slope stability is widespread [35,39,47], with regards
to seismic events, rainfall, and rising water level.
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Figure 1. Failure modes of reinforced slopes [2].

2. Methodology

In this study, the Hasofer-Lind method is employed [48], also known as the First
Order Reliability Method (FORM), together with the surface response method (SRM) for
approximatively calculating the reliability of the flood protection embankment. The SRM
is a statistical technique used to approximate the response of a model to input variables by
using a suitable function when the true relationship is unknown. The approximation is done
by fitting the selected function to the original model evaluated at multiple sample points,
i.e., the coefficients of the function are determined by an error minimization technique. It
is chosen as a relatively simple tool to complement the FORM by defining the required
performance function. In this study it is used to construct an n-dimensional surface which
approximates the response of the levee, where n is the number of random variables, based
on known function values and on regression analysis. The surface used in this study is a
quadratic function defined by a second-order polynomial, as shown in Equation (4). The
coefficients of the function are obtained by minimizing the error between the original and
approximated functions [49]. After that, the probability of failure is obtained through
FORM optimization. The FORM is an upgrade to the First Order Second Moment (FOSM)
method with its geometrical interpretation of the reliability index, which is invariant to
the performance function format. To employ it, the first step is to convert all random
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variables to independent variables in the standard normal space with zero mean and unit
standard deviation, and the performance function needs to be known. It offers a solution
which defines the reliability index (β) as the shortest distance from the failure function
(defined by SRM and the performance function) to the origin of the standard variable space,
which is the mean of the joint probability distribution, and is the most efficient method
for estimating pf for problems involving one dominant failure mode [50]. Rackwitz [51]
noted that, for 90% of all application, the FORM fulfils all practical needs, and its numerical
accuracy is usually more than sufficient. Since all the random variables are normally
distributed and independent, the transformation to the standard normal space is simply
done by Equation (1) [52].

xi =
xi−µ
σ

(1)

where xi is the standard normal variable value, µ the mean value of the original variable,
and σ the standard deviation of the original variable.

The first step in the analyses is to determine the number of random variables to be used,
and their respective statistics. The mechanisms of failure of the geogrids are the rupture of
the elements, or the pull out of the grid from the soil. Regarding the tensile strength, as there
are three rows of geogrids reinforcing the body, the ultimate tensile strength of each of them
is simulated as an independent random variable. The interaction between reinforcement
and soil depends on various factors, including grid parameters such as roughness, grid
opening dimensions, thickness of transverse ribs and deformability characteristics, as well
as soil parameters such as friction angle, grain size distribution, particle shape, density,
water content, cohesion, and stiffness [2]. For the pull-out parameters in this study, the
soil-grid interface friction is taken as a fraction of the soil internal friction angle, while the
cohesion is ignored. As the soil-grid interface friction depends on the friction angle of the
material which covers the grid, the internal friction angle of that material is also taken as a
random variable. Thus, a total of 4 random variables are considered (Table 3). Since there is
no face anchorage, the sliding of the soil on the soil-grid interface can happen on either end
of the grid, i.e., inside the body or at the face. Throughout the analyses, a specific soil-grid
friction ratio is kept constant to investigate the behaviour at various ratios. The analyses
are performed for three design cases with different interface friction, named here as SIF
(small interface friction), MIF (mean interface friction) and HIF (high interface friction).
Sia and Dixon [53] analysed the variability of interface strength parameters between soil
and geotextiles or geomembranes in coarse- and fine-grained soils. In this paper, the ratio
is held constant as a deterministic parameter. For the MIF case, a contact friction angle
of 2/3 ϕ is used, which is the recommended conservative value for geosynthetics [2].
This is closely in agreement with values obtained by Yu and Bathurst [54] who used a
reduction factor applied to the tangent of backfill friction angle of 0.5–0.8, with the best
agreement between pull out tests and numerical model results being 0.67 or 2/3. Other
studies propose different values, e.g., Ferreira et al. [12] define the interface friction angle
as 6/7 ϕ, while Jewell [55] takes a factor of 0.8 as the “direct sliding coefficient” as a value
to “safely encompass most practical cases”. In this study, the factor 0.67 is used as the mean
value but applied directly to the friction angle instead of its tangent (which is equivalent
to applying a factor of 0.63 to the tangent). For the other two cases, SIF and HIF, interface
friction ratios of 0.5 and 1 are used, respectively.

Next, an arbitrary number of different deterministic slope stability analyses are con-
ducted for each water level by varying the random variables’ values. In this study, this is
achieved with the help of Latin Hypercube simulations, which varied the grids’ strength for
each chosen friction angle. All the variables’ values are then transformed into the standard
normal variable space by Equation (1), and the resulting safety factor is corrected accord-
ingly with the appropriate performance function, as follows. The performance function is
defined for two cases and shown in Equations (2) and (3), one for failure condition where
FS = 1 (ULS), and one for an arbitrary safety factor value of FS = 1.5. The “probability of
failure” calculated for the second case actually refers to the probability of reaching the



Water 2021, 13, 2615 5 of 22

defined threshold. When the performance functions defined by the left and middle terms
in Equations (2) and (3) are equated to zero, this becomes the limit state function which
defines failure or unwanted behaviour. Deterministic slope stability analyses, as well
as steady seepage analyses, are conducted using Slide2 v9.009, Rocscience Inc., Toronto,
ON, Canada.

g(x) = Fs−1 = 0 (2)

g(x) = Fs−1.5 = 0 (3)

Such defined groups consisting of standard normal variables’ values and the respective
performance function values for each water level are fitted with a polynomial shown
in Equation (4) [56].

g′(x)= c +
N

∑
i=1

bixi +
N

∑
i=1

N

∑
j=1

aijxixj (4)

The g′(x) symbolizes an approximation of the real performance function, where “c”,
“b”, and “a” are its coefficients, N is the number of random variables, and “x” the random
variables’ values. The fitting is done in MATLAB by minimizing the sum of squared
residuals with the lsqcurvefit function, where the value or the performance function and
the random variables are known. The results of such minimization are the coefficients
“c”, “b”, and “a” for a polynomial, which approximates the performance function in the
vicinity of the design point (1 or 1.5). Now that the coefficients are known, a constrained
optimization (minimization) is run. What we are searching for is the minimal value of
the Euclidean norm of the standard normal variables which satisfies the condition that
g (x) = 0. This is done by minimizing the vector of standard normal variables xi with the
constraint g (x) = 0, by using the MATLAB function fmincon.

β =
√

xi
′·xi = min (5)

The result is, (1) the reliability index β defined as the shortest value of the radius vector
xi which defines the limit state function, and (2) the standard normal variables’ values xi
which give the previously defined distance. After a few iterations, these values converge
towards the true limit state function. When the difference between two iterations becomes
negligible, the procedure stops. This is usually achieved within 2–4 iterations for this
study. Each iteration contains new deterministic slope stability analyses with new random
variables’ values, which resulted from previous iterations. To calculate the probability of
failure from the resulting reliability index, the cumulative standard normal distribution
is calculated for the reliability index with inversed sign. As the optimization needs a set
of starting values, they are varied for the same calculation to check for the robustness of
the result and for local minima. Another quality check is made by plotting surfaces in a
3-dimensional space by ignoring 2 of the random variables. To accept the result, not only is
a small change in consecutive iterations needed, but also the quality of regression between
the real performance function and the approximated one, as shown in Equation (6) [56],
needs to be ≥0.95.

R2 = 1 − ∑r
i=1[g(x) − g′(x)]2

∑r
i=1[E[g(x)] − g(x)]2

→ 1 (6)

where E[g(x)] is the expected value of the performance function, simply taken as the
arithmetic mean of all the deterministic performance function values. On top of that, the
mean square error (MSE) is also calculated by Equation (7), and the results varied between
5 × 10−6 and 2 × 10−19.

The whole process is repeated for various water levels, and fragility curves are constructed.

MSE =
1
n

n

∑
i=1

[
g(x) − g′(x)

]2 → 0 (7)
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The previously discussed methodology for the development of fragility curves for
levee stability, summarized in Figure 2, requires the proper water pressure state to be
established. For the design situations which include water level up to the top of levee
crown, numerical analyses include commonly used boundary conditions of properly
defined hydraulic heads on the riverside and landside. However, as Librić et al. [57] found
in their study, the overtopping of the case study levee has a high risk exposure compared
to other risks, thus overflow is also considered in this study. Overtopping (i.e., overflow)
is usually a result of a high-water event (surge), or it can occur due to wave overtopping.
The combined effect of surge and wave overflow is discussed by many authors [58–60].
However, for the river levee considered, only a surge type of overflow is relevant. When
the water level rises higher than the crown, the stress analyses are supplemented with
the additional boundary shear stress along the crown and landside slope. Additionally, a
trapezoidal stress is applied over the crown during overflow to simulate water pressure,
corresponding to the height of water on the upstream side, and to the water height on
the downstream side calculated by Equation (10). Given that this aspect goes beyond
standard analyses, a cautious evaluation of these shear stresses is required. The boundaries
of both analyses are defined far from the levee region, enough to not affect the results.
Seepage analyses require only hydraulic boundary conditions, which in this case consist of
constant or varying hydraulic head values applied on lateral boundaries and on the top
boundary of the model, up to the required height. During surge overflow, the water velocity
increases down the slope until a terminal velocity is reached at equilibrium between water
momentum and slope frictional resistance, after which the flow becomes steady and the
velocity can be calculated by the following equation:

v0 =

[√
sin θ
n

]3/5

·q2/5
0 (m/s) (8)

where v0 (m/s) is the steady flow velocity, θ (◦) is the landside slope angle, n (-) is the
Manning’s coefficient, and q0 (m2/s) is the steady discharge [58]. For supercritical flow,
which develops on the landside slope—as shown in Figure 3—Hewlett et al. [61] proposed
a value of Manning’s coefficient of n = 0.02, relevant for slopes of 1:3.
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The discharge over the levee crown can be calculated using the equation for flow
over a broad-crown weir, which gives slightly conservative results due to not taking into
consideration frictional losses [63]:

q =

(
2
3

)3/2
·√g·h3/2

1 (m 2 /s) (9)

where g (m/s2) is the gravitational acceleration and h1 (m) is the upstream head (elevation
over the levee crown). If a steady flow is assumed, the discharge is constant along the slope.
Therefore, the height of water perpendicular to the slope in the steady, uniform flow area
for unit length of the levee can be calculated from Equations (8) and (9) as:

h =
q
v0

(m) (10)

Finally, when steady, uniform, flow is reached, the shear stress resulted from surge
overflow, is equal to:

τ0 = γw·h·sin θ (kPa) (11)

where γw (kN/m3) is the unit weight of water. Equation (11) conservatively overestimates
results, since the resulting pressure is a little bit higher than the pressure in area above
the steady flow [60]. Shear stresses calculated this way are applied along the crown and
landside slope, as shown in Figure 4 for the case study numerical model.
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Stability analyses aim to find the critical slip surface by using a population-based
stochastic algorithm, Cuckoo Search, which searches for non-circular slip surfaces, together
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with Monte Carlo optimization to potentially find even more critical surfaces [64]. All
the slope stability analyses are deterministic with values of the four random variables
previously described varied over appropriate ranges, while probabilistic analyses are
conducted after the results of deterministic analyses are obtained. The variation is manually
performed for the friction angle, while for the geogrids it is performed with the help of
Latin Hypercube simulations. It was initially conducted over a range of ±3σ with steps of
1σ to detect the approximate location of the design point and was then corrected to smaller
steps closely spaced around the design point.

3. Case Study

River Drava, with the overall length of 710 km, flows from Italy to eastern Croatia
where it merges with Danube, and is historically known for major flood events [65], where
prominent events occurred in last several years. For this case study, a reach of a 3.7 km long
section of flood protection embankment running from Otok Virje to Brezje on the Drava
River in Croatia is analysed. The reach lies on sediments from the Holocene period. They
are mostly sediments of the first alluvial terraces of Drava, composed of large amounts of
sand and gravel, which at places surpass 100 m in depth. Closer to the surface, layers of
silty material can be found.

In 2012, a water level of 1000-year return period was measured in the Drava River,
which caused the overflow of the embankment over a length of more than 1 km, and
breaching over a length of 50 m, causing huge damages to the surrounding area. Since the
original embankment was built in 1968 with the design high water level from 1965 [66],
a reconstruction of the existing embankment is required for raising its crown height to
new design water levels. The new required height corresponds to the new 100-year
return period water level +1 m, which is between a few cm and 1 m above the old crown.
Raising the height also implies a widening of the embankment cross section, which can
be accomplished in three ways: by keeping the existing embankment on the landward
side of the new one (i.e., reconstructing towards the river side), keeping the existing
embankment on the river side (i.e., reconstructing towards the landward side), and by
coinciding the existing and new axes (i.e., reconstructing on both sides). The selected reach
for this case study is defined by the reconstruction direction and subsoil stratigraphy—the
reconstruction on both sides is chosen. A situational view of the embankment section on
the Drava River is shown in Figure 5.

To prove the stability of the newly reconstructed embankment in all the relevant
design situations, calculations are made using deterministic limit equilibrium analyses,
and all according to valid norms for geotechnical design, i.e., EN 1997-1:2012 Eurocode 7:
Geotechnical design—Part 1: General rules and its respective Croatian national annex for static
design situations, EN 1998-1:2011 Eurocode 8: Design of structures for earthquake resistance—
Part 1: General rules, seismic actions and rules for buildings and its respective national annex for
seismic design. The analyses resulted in the deterministic safety factors shown in Table 1.
It can be seen that safety factor values for all design situations are acceptable.

Table 1. Deterministic safety factors for the cross section of interest in various design situations.

Design Situation Safety Factor 1

Reconstruction on
both sides of the

existing levee

Low water
Riverside Static + traffic Drained 1.79

Seismic 475-year RP Undrained 1.47

Landside Static + traffic Drained 2.18
Seismic 475-year RP Undrained 1.48

High water (100-year RP) Landside Static + traffic Drained 1.72
Seismic 475-year RP Undrained 1.49

Water at crown height Landside Static + traffic Drained 1.66
RDD Riverside Static Drained 1.21

1 Analyses are made using EC7, DA3, thus the minimum required safety factor is 1.
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The reconstruction of the levee is made with well graded gravel (GW by USCS
classification). Since gravel is highly permeable, GCL membranes are used to make sure the
free water surface stays inside the levee body during high water events. Suzuki et al. [67]
performed field and laboratory tests with various types of GLC to find their effect on the
stability of the embankments. However, since the GCL in this study is located on the
riverside of the levee, while the stability of the landside is analysed, their effect is not
relevant for this study. Other than that, the body is further strengthened using TENAX
TT 045 GS, HDPE uniaxial geogrids. The embankment’s cross section used in calculations
is shown in Figure 6. Geogrids are placed on 0.7 and 0.9 m distance from one another to
fit the height of the embankment, while the maximum suggested height for reinforced
slopes as per [31] is 1 m due to local face stability. This way, local face instabilities are partly
mitigated. Instabilities on the landside may also be initiated by surface erosion during
overflow. The resistance against such action can be increased by placing a reinforcing layer
of standard geosynthetics or other specific products [68] such as biopolymers [69,70] over
the slope, but in this case, there is no such additional protection. The same applies for the
riverside slope where surface erosion might be caused by the flow of the river and during
the rapid decrease of water level in the river (RDD).
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Variability of Materials’ Parameters

Deterministic parameters for all soils are carefully chosen from the available laboratory
and field data conducted by the authors of this paper. The mean values of geogrid param-
eters are taken from the manufacturer’s specification sheet. Statistics for the parameters
assigned as random variables are chosen from literature. Table 2 shows the design values of
deterministic parameters for each material, while Table 3 shows the statistics of the random
variables. As all three grids inside the embankment are the same, their statistics are also
the same, but each grid is modelled as an independent random variable.

Table 2. Deterministic values of parameters.

Material USCS Symbol ϕd (◦) cd (kPa) γd (kN/m3) k (m/s)

Reconstruction material—GW GW Random 0 20 2.5 × 10−2

Existing body SM 25.1 1.6 19 1.4 × 10−5

Thin surface layer MI 18.8 3.3 19 5 × 10−6

Second thin layer SP-SM 25.6 0 19 4.7 × 10−4

Foundation soil GP-GM 28.4 0 19 8.6 × 10−4

GCL 1 - - - 1 × 10−7

1 GCL is only relevant in seepage modelling.

Table 3. Statistics of random variables.

Material
Tensile Strength (kN/m) Friction Angle (◦)

Mean CoV Mean CoV

Geogrids 19.06 0.122 - -
Reconstruction material—GW - - 35 0.1

Distribution Normal Normal

The statistical parameters for the geogrids are determined as follows. The mean
value is taken from the manufacturer’s specification sheet where the characteristic value
is divided by a series of factors, namely the factor for installation damage (RFID), creep
(RFC), and degradation due to chemical and/or biological processes (RFD), to obtain a
design tensile strength of 18.5 kN/m. To transform the manufacturer’s proposed long term
design strength into a random variable, it is first multiplied with the mean values of bias
factors for installation damage (µXID

), creep (µXC
) and durability (µXD

), whose statistics are
determined from literature [71–74] to obtain the mean, while the CoVs of different bias
factors are together taken as the CoV for tensile strength (Equation (12)). Theoretically, this
is valid for uncorrelated log-normal random variables, but with small CoVs it is sufficiently
accurate for uncorrelated normal random variables [75]. Since the durability factor is
mostly project-specific, it is taken with an arbitrary CoV = 0.1 [72]. Chosen statistics for all
factor’s bias values are shown in Table 4. The chosen geogrids are made from HDPE (High
Density Polyethylene), which showed the lowest mean and CoV of the bias factors values,
and their statistics are found to be independent of soil type [72]. As the random variables
of the geogrids are normally distributed [72] and uncorrelated, the simple conversion to
standard normal variables as shown in Equation (1) can be employed.

CoV =
√

CoVXID
2+CoVXC

2+CoVXD
2 (12)

Table 4. Statistics for reduction factor’s bias values.

Statistic XID XC XD

Mean 1.03 1 1
CoV 0.06 0.036 0.1
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Since partial factors in various design approaches are calibrated using reliability
analyses [76], the mean friction angle of the reconstruction material is left at its characteristic
value and the variability is applied to it, while all the other deterministic values are factored
using partial factors from Eurocode 1997 DA3.

4. Results and Discussion

During slope stability calculations at higher water levels, small variations in random
variables’ values resulted in shallow and deep sliding surfaces with highly different safety
factors, such as those shown in Figure 7. In such cases, the shallow and deep surfaces are
separated, and two probabilities of failure are calculated, one pertaining to the shallow
sliding and the other to deep sliding. Fragility curves are then constructed for two limit
states defined by safety factors 1 and 1.5 (LSF10 and LSF15 respectively), for both types of
failures. Figure 8 shows the resulting fragility curves for the two limit states, for varying
water levels from the toe to the crown of the levee (located at 196.8 m.a.s.l.), and over to
simulate surge overflow. The water level is increased until almost certain failure is ensured.
However, Rackwitz [51] noted that FORM works well only for sufficiently large reliability
indices, which he defined as β > 1, as otherwise it might not be the best linearization
point [77], which in this case corresponds to water level of around 200.5 m.a.s.l. for LSF10,
and 196 m.a.s.l. for LSF15. The curves used to fit the points are represented by general
sigmoid function with the following equation [78]:

f(x) = pf,min + (p f,max − pf,min)/
(

1 + 10[(H − x)k]
)

(13)

where pf,min and pf,max are minimum and maximum values of the function respectively, H
the mean hydraulic head, and k is the slope of the curve at the mean value. The curve is
fitted to the points using least-squares. By using such a function, a curve can be defined
even by not having the whole range of points from zero to one probability of failure. As
can be seen from the figures, for the cases where the limit state function is defined by
FS = 1.5 (LSF15), the probabilities of failure occur over the whole range, and certain limit-
state-behaviour with probability of one is already reached at the crown water level. For
the limit state function defined by FS = 1 (LSF10), the maximum calculated probabilities of
failures reach from around 65% to as low as 10%, while the rest of the curve is based just
on the fitting to those smaller values.
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From the diagrams it is seen that with increasing interface friction, the distinction
between shallow and deep surfaces starts to show earlier, i.e., at lower water levels, for
LSF10. For δ/ϕ = 0.5, the distinction occurs at pf > 0.3, for δ/ϕ = 0.67 at pf > 0.05, and
for δ/ϕ = 1 at pf > 0.002. Regardless, this effect never reached water levels as low as the
levee crown for this case. For the LSF15, the distinction occurs at lower water levels rather
than higher and is not so large, which is the reason why it is not noticeable on the normal
scale. Also, the interface friction in this regard does not have any noticeable effect in this
case. At water levels where there is no distinction between deep and shallow surfaces,
this happens because of two reasons. One is that all the failures occurred as either deep
or shallow failures, and the other is that there is little distinction between safety factors of
deep and shallow surfaces. The first reason indicates that the curves are constructed for
the stability of the slope regardless of the failure mode, as long as all the surfaces followed
the same mode. Only when different modes appear, the curves become separated.

Even though the diagrams for both limit states seem to merge at lower water levels,
obviously this is not the case because the diagrams refer to different limit states which
cannot be achieved with the same strength parameters for a specific water level. Thus,
Figure 9 shows the diagram in a logarithmic scale to see the difference at lower water levels.
The LSF15 points can still be approximated as relatively good by the same sigmoid function.
For LSF15 the probability of failure starts to noticeably increase only after the water level
reaches circa 60% of the levee height. On the other hand, the LSF10 points have a worse fit
which is caused by the fact that the pf stays almost the same for water levels between 0 and
the levee crown, and start to substantially change only for the surge overflow. Thus, to fit
the LSF10 points, the first point referring to a no-water situation is ignored. The reason
for the constant probability of failure is that the parameters needed to achieve the defined
limit state are such that they produce small slip surfaces on which water has no effect in
this case. This means that regardless of the water level up to the crown, the pf of the levee
stays the same. It can be noted from the figures that deeper failure surfaces are generally
less likely to occur during failure than shallower surfaces. This is certainly conditioned by
the fact that the levee body through which the deeper surfaces pass has been modelled as a
deterministic material. An interesting thing to note for the minimum friction LSF15 case is
that the points which refer to deep surfaces show a slight decrease of pf with the increase
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of the water level at the beginning of the curve. This means that for the lower water level
there is a higher probability that the levee will fail overall, than there is for the higher water
level that the levee will fail through deep sliding. The reason for such behaviour is because,
for the smaller water level, no deep surfaces are found. For other interface friction angles,
these two values are quite similar.
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While interpreting the results of computed conditional probabilities of failure, it
must be kept in mind that they are calculated based on only one point closest to the
origin, defined by the reliability index. This implies the linearization of the limit state
function for integration below the standard normal joint distribution, which can lead to an
overestimation or underestimation of the real probability, depending on the true shape of
the limit state function [52]. To investigate their shapes, 2D representations of the limit state
functions for mean interface friction, and for LSF10 and LSF15, are shown in Figure 10,
where the black lines represent LSFs for soil internal friction and top grid strength as
random variables, red lines LSFs for soil internal friction and middle grid strength as
random variables, and blue lines LSFs for soil internal friction and bottom grid strength
as random variables. The rightmost curves correspond to higher water levels, decreasing
towards the leftmost curves. The circles in Figure 10 represent the standard normal joint
distribution, i.e., each circle corresponds to one standard deviation. From the figures it can
be seen that LSFs are slightly curved in either direction, without any notable trend, thus
giving mixed results in terms of conservativeness. However, the effect of linearization is
not expected to be high in most cases due to the curvatures being relatively mild. Similar
shapes are noted for all interface friction angle values and are not shown here.

To better investigate the effect of increasing reliability with increase of interface friction
ratio, defined as δ/ϕ, graphs are plotted in Figure 11 showing these trends for LSF10 with
the normalized reliability index on the vertical axis. The normalized reliability index is
simply the reliability index for the mean interface friction ratio for each respective water
level subtracted from the reliability indices at other friction ratios (βn = β− β0.67). This way
all the curves are translated over the vertical axis for better comparison. From Figure 11
two characteristics are noticed, one being that the trend is approximately linear, changing
from a power law for the lower water levels (i.e., higher β, lower pf) to a positive parabola
for the higher water levels (i.e., lower β, higher pf). The second relates to the increase of
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steepness of the curve from lower to higher water levels, which is more pronounced on the
higher friction ratio than on the lower. Also, the same increasing effect is seen for deeper
versus shallow surfaces for the same water level (the two highest curves). For the LSF15
case (not shown on figures), even though some differences apparently exist between pfs
for different friction ratios, there are no visible trends, except for the deep sliding curve
being steeper than the corresponding shallow sliding curves.

To analyse the sensitivity of the slope stability to each of the defined random variables,
2D sections of the response surfaces through the design point are plotted on Figure 12. For
each graph, one variable of interest is varied in the vicinity of the design point, while the
other random variables are held at their respective design point values. The horizontal
axes on the graphs are normalized such that the design point value is at zero and show the
number of standard deviations away from the point. In other words, the curves are shifted
from values obtained through Equation (1) to align all the design points at zero. This helps
comparing the trends of the response surface at various water levels. From the response
surfaces, it is found that two main trends exist, namely parabolic (positive or negative)
and linear. This is of course constrained by the function used to approximate the response
surface (Equation (4)), which is a quadratic polynomial. It is intuitive that the increase of
any strength or resistance parameter’s value causes the stability of a slope to increase by
increasing the safety factor. However, some curves shown in Figure 12 seem to contradict
this statement as they are parabolas which have maxima and minima at, or close to, the
design point. This is just an apparent problem caused only by the chosen approximation
function and does not show any inconsistencies considering the friction angle because all
the maxima are found on the right side of the design point, while all the minima are found
on the left side, and the curves are fitted to the data by their increasing parts. This mostly
occurred when smaller friction angles did not have a distinction between deep and shallow
sliding, but higher friction angles did have it. In those cases, a sudden increase in safety
factor occurs and a parabolic response surface cannot be generated with the whole range
of data for deep sliding. This means that to achieve a good fit of the data to a parabola, one
needs to discard all but the closest sample points on either side of the design point, while
only keeping all the points on the opposite side. An example of such situation is shown in
Figure 13. It is obvious that a higher order function should be used to approximate such
data. It could be argued that if only a narrow range of data around the design point is
used, then there would be no need to approximate the data using higher order function.
While this may be true in some cases, in other cases the range which would be needed to
avoid higher order functions is relatively narrow, and would complicate the analysis to
find values only inside that narrow range.

For the geogrids’ tensile strengths, the trends are generally constant, which means they
do not affect the safety factor. However, there are multiple increasing curves, and others
which actually do show a decrease of the safety factor with a strength increase. Regarding
the latter, it should be noted that the range of safety factors on Figure 12 for the grids is
from 0.95 to 1.05, and thus such trends cannot be deemed as true trends. They can instead
be attributed to data scatter in both deep and shallow surfaces, as well as to the shape
limitations of the selected approximation function. This data scatter occurs mostly for the
bottom and middle grid layers, and only at the higher end of friction angles. In the same
region of friction angles, the top grid’s strength start showing a linear to parabolic trend, as
shown in Figure 14. This kind of data, however, also did not cause any inconsistencies with
results, as the design point tensile strengths are practically at the mean values for most
cases (Figure 15).
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With each increment in water level there is change in probability of failure/reliability
index, which is caused by the different critical values of random variables needed to
reach a specific LSF at that specific water level. Even though the critical values differ
when the same water level is evaluated with different interface friction ratios, because the
difference is not large, Figure 15 shows the mean critical value of each random variable.
Figure 15 is a representation of Equation (5), where the total reliability index can also
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be calculated for each water level by knowing the corresponding critical values of each
random variable. Even though Figure 15b shows a decrease in critical tensile strength for
the LSF15 at hydraulic head near 196 m.a.s.l. compared to lower heads, the reliability index
still decreases (Figures 8 and 9) due to an increase in critical friction angle. On the other
hand, the critical value for the LSF10 shows practically no change with the increase of
water level. This is also true for both LSFs for the middle and bottom grids.

To investigate the relative contribution of the uncertainty of each random variable to
the total uncertainty, the direction cosines (or sensitivity factors) are calculated as the ratio
of each random variable’s critical value to the reliability index. The squared sensitivity
factors give us the values of interest [79]. For all interface friction angles (low, mean, high)
for LSF10, the contribution of the internal friction angle is >99.84%, with a mean value of
99.97%. The small remainder (<0.15% of total uncertainty) belongs to all three layers of
geogrids, with almost 3/4 of that belonging to the top grid, and the rest somewhat evenly
distributed between the middle and bottom grids. For LSF15, the relative contribution of
the internal friction angle decreases with the increase of water level, from almost 100% to
17%, while the rest is attributed to the top grid, as shown in Figure 16. The middle and
bottom grid’s contribution stayed close to zero at all times.
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5. Conclusions

It should be noted that conclusions drawn from this study are only valid for systems
similar to the analyzed levee, where local face stability in ensured between geogrid layers,
and where there is no anchorage on the front face, which would increase stability even
more at the cost of additional material for the anchorage. From the presented results, a few
conclusions can be drawn:

• Close to the ULS, at higher water levels (in this case pf > 0.002), small variations in
random variables cause deep and shallow sliding surfaces with highly different safety
factors and pfs. With the increase of interface friction angle, the water level at which
this distinction becomes visible decreases. Farther from the ULS, this effect occurs
at low water levels rather than higher, and the interface friction doesn’t have any
noticeable effect on the occurrence. Shallow sliding is shown to be more likely to occur
for both limit states.
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• Linearization of the performance function required for calculation of the probability
of failure with the FORM does not influence the results greatly as the curvatures of
the limit state functions are generally not large.

• The increase of reliability with increase in interface friction ratio is approximately
linear in proximity of the ultimate limit state, with higher steepness for higher water
levels. Also, deep surfaces seem to have a steeper curve than shallow surfaces. This is
not true farther away from the ULS.

• Constant, linear, and parabolic trends, and those of higher order, are found for the
performance function dependency to the reconstruction material friction angle and
to the geogrid layers. The order of the function tends to increase with water level,
i.e., with probability of failure. The higher order trends occur mostly for deep sliding
when a sudden increase of safety factor occurs as a result of small increase in friction
angle of the levee body. For this reason, quadratic functions should be used with
care, and perhaps a function with an inflection point (e.g., cubic function) should be
employed in some cases.

• The internal friction angle contributes almost completely to the total uncertainty
when close to the ULS (the contribution of the grids is negligible). However, it seems
that geogrids placed near the top contribute the most out of all the geogrids. The
contribution of the internal friction angle seems to diminish going farther away from
the ULS (e.g., LSF15), and it transfers to the grid placed near the top, while the other
grids’ contribution remains negligible. This importance of the top grid, however,
needs to be considered carefully, because in this study the top grid is the only one that
goes from one slope of the levee to the other, while the middle and bottom grids are
only placed on one side. The relative contribution might be different in case all grids
are the same length.

• The reason for the grids’ extremely low contribution to the total uncertainty lies with
the small variability of their tensile strengths. But as seen in the LSF15 case, as the
required critical tensile strength reaches the actual tensile strength, their variability
has more effect on the stability, which indicates a way of determining the required
strength for each grid layer. Moreover, since the increase of both the soil friction angle
and the soil-grid interface friction individually tend to generate deeper surfaces, it
is implied that a balance between these parameters can be found. Both procedures
would lead to a balanced reinforced slope design with regard to geogrid rupture
strength and geogrid pull out.

At this time, deterministic analyses are still the dominant type of analyses when it
comes to designing levees for flood protection in terms of slope stability. These calculations
require safety factors >1 to be acceptable by definition of the safety factor. However, it is
rarely deemed acceptable to reach safety factors around one, and higher values are often
targeted. This study deals with slope stability of a geogrid reinforce levee in a probabilistic
manner, and shows trends in the response of the levee and behaviour of the reinforcement
components for two target safety factors of one and 1.5. Even though some trends are
not as clear as others, and/or they are not quantitatively defined, and for which further
investigations are needed, the identified trends might still serve as guidelines for design
and can be loosely interpolated (where applicable) to increase understanding of the system
behaviour for a targeted safety level.
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Multidiscip. Istraživanja 2017, 16, 5–35.
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