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Abstract: Northeast China (NEC) is a region sensitive to climate change. However, the adoption of
long-season maize cultivars in NEC has caused a substantial yield increase under climate change
conditions. It is important to determine whether such cultivar adoptions are effective throughout
the whole NEC to sustainably increase grain yield. In this study, phenological observations and
meteorological data at six sites from 1981 to 2018 were used to detect thermal time (TT) trends during
the maize growing period. TT, as a parameter for measuring changes in maize cultivars, was used in
the crop simulation model CERES-Maize to examine the variations in maize yield produced with
different cultivar × climate combinations in different decades. In NEC, both TTs from emergence to
anthesis and from anthesis to physiological maturity showed significant increasing trends from 1981
to 2018. Simulation results for humid areas revealed that adopting longer-season cultivars during
2000–2018 caused yield increases, ranging from 6.3% to 13.3%, compared with the 1980s. However,
for stations in semi-humid areas, maize grain yield showed a decrease or a small increase (from
−12.7% to 8.0%) when longer-season cultivars were adopted during 2000–2018. For semi-humid
areas, decreasing trends in the ratios of rainfed yield to no water-stress yield (Yrainfed/Yno water-stress)
and lower Yrainfed/Yno water-stress values during 2000–2018 indicated a growing sensitivity of maize
production to water, which was attributed to changes in TT and precipitation. Our results indicate
that, for the semi-humid area, maize yield was limited by water after introducing cultivars with
higher TT requirement under climate change conditions. Therefore, securing food supplies will
depend on increases in water-use efficiency levels and other adaptive strategies, such as varietal
diversification, drought-resistant varieties, conservation tillage and irrigation.

Keywords: climate change; crop simulation model CERES-Maize; thermal time; water scarcity;
grain yield

1. Introduction

Northeast China (NEC) (Heilongjiang, Jilin and Liaoning provinces) is the most
important and largest rain-fed maize production region in China, and the grain production
of maize in NEC accounts for 30% of the nation’s total [1,2]. Generally, the maize growing
season in NEC extends from May to September, and maize production has mainly been
conducted under rain-fed conditions. From 1961 to 2017, NEC has experienced a warming
trend in surface average air temperature equal to 0.31 ◦C per decade, which is higher
than the average value of all of China during the same period, and the value of the whole
world during the past 50 years [3]. This indicates that NEC is a region sensitive to climate
change [3]. In addition, annual total precipitation and rainfall days experienced decreasing
trends of 0.52% per decade and 2.44 days per decade, respectively. Consequently, drought
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risk is a main limiting factor of maize production in NEC [2]. Moreover, most areas in NEC
show future drying trends during the middle and late maize growth stages (from June to
September) [4].

Progressive climate change is expected to negatively affect agricultural production [5–7].
If maize genotypes and management practices are fixed, then climate change (warmer
temperatures and a decrease or seasonal redistribution of precipitation) induces reductions
in crop season duration, and thus, yield (warmer climates accelerate crop development
and reduce the length of the growing period) [8–11]. However, the actual yields in NEC
showed a tendency to increase by 1.27 metric tons (t) per hectare (ha) per decade from 1961
to 2010 [12]. The negative effects of climate warming on maize yield appear to have been
reversed by changing the sowing date and adopting longer-season cultivars in NEC [2,13].
Baum’s results confirmed that changes in cultivar relative maturity or sowing date across
the landscape can mitigate anticipated climate impacts [14].

Additionally, modern breeding has increased ear fertility and grain-filling rate, as
well as delayed leaf senescence, without modifying the net photosynthetic rate [15,16].
Specifically, the adoption of longer-season cultivars caused a substantial increase in maize
yield from 6.5% to 43.7% during 1981–2007 in NEC [1,13]. In addition, for each extra day of
the extended growing season, the spring maize grain yield increased by 75.2 kg/ha [13].
However, the longer growth period of these maize cultivars also results in a greater water
requirement [9].

In the Chinese Maize Belt, the sensitivity of maize production to water has increased,
and water scarcity in China remains a serious problem [9]. In midwestern USA, lengthening
the maize maturation time is not a widespread climate change-related adaptive strategy,
and hybrid maturation times were shorter in fact in the majority of the region during
2000–2017 owing to production-related factors, such as decreasing grain drying costs and
labor constraints [17]. In Europe, shorter-maturing oat varieties have been preferred in
response to climate change because of concerns about late-season droughts [18]. Thus, in
areas prone to precipitation shortages or heat stresses, shortening the hybrid maturation
period may be a risk-averse strategy [17]. However, in China, would the adoption of
longer-season cultivars be an effective strategy for the whole NEC to sustainably increase
grain yield? Would this increase the susceptibility of yields to water scarcity and adverse
weather in NEC?

In this study, we focused on the relationship between the increased demand for
water and water availability during maize production in NEC. The CERES-Maize model
has proven to be an effective tool to estimate maize production under many kinds of
environment [19–22]. Therefore, we used the CERES-Maize model to simulate rainfed
yields and no water-stress yields of different cultivars planted under different climatic
conditions, which would help to address the problem that how to increase maize yields
sustainably in NEC. On the basis of the precipitation requirement (446–460 mm) during
the maize growing season to meet yield potential without irrigation, the NEC was divided
into two areas, humid (450 mm ≤ precipitation during maize growing season < 600 mm)
and semi-humid (300 mm ≤ precipitation during maize growing season < 450 mm). The
objectives of this study were to (i) identify changes in the thermal requirements of maize
cultivars and (ii) quantify the effects of cultivar shifts on maize yield and water available
over the past 38 years in NEC.

2. Materials and Methods
2.1. Study Sites

In this study, six agrometeorological experimental stations for maize in northeast
China (NEC) were selected on the basis of their representative climate and the completeness
of the phonological data from 1981 to 2018. The sites were Tailai (46.4◦ N, 123.42◦ E) and
Bayan (46.08◦ N, 127.35◦ E) in Heilongjiang province, Baicheng (45.63◦ N, 122.83◦ E) and
Dunhua (43.37◦ N, 128.2◦ E) in Jinlin province, and Fuxin (42.07◦ N, 121.75◦ E) and Changtu
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(42.78◦ N, 124.12◦ E) in Liaoning province (Figure 1). These sites are also members of the
national meteorological networks of the China Meteorological Administration.
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Figure 1. The locations selected for simulation of maize yield in Northeast China (NEC). Solid circles indicate locations
used for simulating yield (names are shown in regular font). Lines show provincial boundaries. Province names are in
italics. The left figure is a map of China that indicates the location of NEC.

2.2. Climatic, Biological and Soil Data

Climatic data, including the daily mean, maximum and minimum temperatures,
daily sunshine hours and daily precipitation, were collected from 1980 to 2018 at each
station. Sunshine duration was converted into daily solar radiation using the Ǻngström
formula [23,24]. The experimental data on maize phenology (sowing, emergence, anthesis
and physiological maturity dates) were obtained from local agrometeorological experimen-
tal stations in NEC. For each station and each year, the accumulated thermal times (TTs)
(expressed in degree days above a base temperature of 8 ◦C) from emergence to anthesis
and from anthesis to physiological maturity were calculated. The soil data used in this
study included soil texture, bulk density, saturated volumetric water content, drained
upper limit and field water capacity in different soil layers. These data were also obtained
from the agrometeorological experimental stations.

2.3. Crop Modeling and Simulation

The CERES-Maize model simulates maize yield under both rainfed and no water-stress
conditions [25,26]. The model has performed well in a variety of regions in China [27–29].
In this study, we relied on a calibrated model from a prior report [28].To simulate grain
yield, the CERES-Maize model requires the input of daily solar radiation, maximum
and minimum temperatures and precipitation. Other model inputs included the date of
planting and plant population density. In this study, the real sowing dates for varieties
used in the 1980s and 2000–2018, as well as plant population densities (44,800 plants/ha
at all stations), were used in the simulations for both rainfed and no water-stress maize
with varieties from the 1980s and 2000–2018. The change in atmospheric CO2 level since
the 1980s was not taken into account in the simulation. For each station, model parameter
TT from seedling emergence to the end of the juvenile phase (P1, expressed in degree days
above a base temperature of 8 ◦C) was calibrated by comparing the simulated anthesis date
with the observed date using the trial-and-error method. In the simulation, the P1 values
averaged during the 1980s and 2000–2018 for each station were used as parameter values
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(Table 1). In addition, averages of TTs from anthesis to physiology maturity during the
1980s and 2000–2018 were used as TTs from silking to physiological maturity (P5, expressed
in degree days above a base temperature of 8 ◦C) for the crop model simulation (Table 1).

Table 1. Parameters P1 and P5 in the CERES-Maize model during the 1980s and 2000–2018 for the
six stations.

Time Parameter Fuxin Changtu Baicheng Dunhua Tailai Bayan

1980s
P1 310 310 265 200 240 220
P5 780 762 664 459 637 572

2000s
P1 320 335 295 315 290 270
P5 795 809 760 545 721 621

2011–2018
P1 320 335 300 315 290 270
P5 821 858 810 565 726 641

We used the CERES-Maize model to relate yield outcomes to weather realizations
using a scenario in which varieties were constant. Thus, the same varieties used by farmers
in the 1980s were used throughout the simulation. For the model simulation, grain yield
under climate conditions during the 1980s, 2000s and 2011–2018 was the average of a
10-year or 8-year simulation incorporating weather data from 1981–1990, 2001–2010 and
2011–2018, respectively. Yno water stress simulations assumed that water inputs were non-
limiting to eliminate the effects of water stresses on the simulated maize yield. Planting
density, sowing depth and nutrient inputs (N, p and K were applied at 90, 60 and 46 kg/ha,
respectively) were kept constant throughout the simulated years 1981–2018.

2.4. Data Analysis

A linear regression analysis was used to detect trends in TT from emergence to anthesis
and from anthesis to physiological maturity. The slope of the linear regression line against
time was evaluated using a t-test at the 95% or 99% confidence level. The following
equations were used to examine the percentage of yield variation owing to the change of
both varieties and climate.

PV1 =
grain yield of 2000s’ varieties ∗ 2000s’ climate-grain yield of 1980s’ varieties ∗ 1980s’ climate

grain yield of 1980s’ varieties ∗ 1980s’ climate
(1)

PV2 =
grain yield of 2011-2018 varieties ∗ 2011-2018 climate-grain yield of 1980s’ varieties ∗ 1980s’ climate

grain yield of 1980s’ varieties ∗ 1980s’ climate
(2)

The following equations were used to examine the percentage of yield variation owing
to the change of climate.

PV3 =
grain yield of 2011-2018 varieties ∗ 2011–2018 climate-grain yield of 1980s’ varieties ∗ 2011-2018 climate

grain yield of 2011-2018 varieties ∗ 2011-2018 climate
(3)

PV4 =
grain yield of 2000s’ varieties ∗ 2000s’ climate-grain yield of 1980s’ varieties ∗ 2000s’ climate

grain yield of 2000s’ varieties ∗ 2000s’ climate
(4)

3. Results
3.1. Environmental Conditions and Trends in Thermal Time (TT) during the Maize
Growing Period

The six stations selected in this study represent six different climatic regions, clas-
sified by average temperature and total precipitation during the maize growing season,
representing regions with precipitation levels between 300 and 450 mm (semi-humid) and
between 450 and 600 mm (humid) that have temperatures in the 16.0 to 22.0 ◦C range.
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More detailed information on the climate of each site is provided in Figure 2a,b and Table 2.
The average temperature and total precipitation are presented using box plots, in which the
box contains the middle 50% of the data, and the upper and lower edges of the box indicate
the 75th and 25th percentiles of the data set, respectively. The median value is indicated
by a horizontal line in the box. The upper and bottom lines of the diagram represent the
values between the 10th and 90th percentiles, respectively.
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Figure 2. Total precipitation (a) and average temperature (b) during maize growing season from 1981 to 2018 for the
Dunhua, Bayan, Tailai, Baicheng, Chuangtu and Fuxin stations.

Table 2. The climatic regions classified by average temperature (Tave) and total precipitation (p)
during the maize growing season from 1981 to 2018 in Northeast China.

Dunhua Bayan Tailai Baicheng Changtu Fuxin

Tave (◦C) 16.0–17.5 17.6–19.5 19.0–20.5 19.0–20.5 19.6–21.0 20.6–22.0
p (mm) 451–600 451–600 300–450 300–450 451–600 300–450

Both thermal times (TTs) from emergence to anthesis and from anthesis to physio-
logical maturity had similar increasing trends from 1981 to 2018. The TT from anthesis to
physiological maturity had a larger magnitude than the TT from emergence to anthesis,
with increases ranging from 18.9 to 52.0 ◦C days per decade for stations during the 1981
to 2018 period (Figure 3a–f). Therefore, the TT from anthesis to physiological maturity
was 41–146 ◦C days greater by 2011–2018 than it was in the 1980s, which is equivalent
to a 5–23% increase in the TT. Five of six stations, except Fuxin, experienced significant
increases in the TTs from emergence to anthesis and from anthesis to physiological maturity.
In Fuxin, the trend did not differ significantly from zero (Figure 3a).
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Figure 3. Time series of the thermal times during the vegetative (open boxes) and reproductive (open circles) periods of
maize at Fuxin (a), Changtu (b), Baicheng (c), Dunhua (d), Tailai (e), and Bayan (f) sites in Northeast China (NEC) from
1981 to 2018. Straight lines represent the linear regression lines against years. ** p < 0.01 and * p < 0.05.

3.2. Effects of Varietal Change on Maize Yield

Simulating the maize yields of 2000–2018 using the CERES-Maize model with varieties
from the humid region stations (Changtu, Dunhua and Bayan) produced increases of
6.3–13.3% (Figure 4a,c,e calculated by Equations (1) and (2)) compared with varieties
from the 1980s because the cultivars had higher TT requirements. For the semi-humid
region stations (Fuxin, Baicheng and Tailai), compared with 1980s varieties, the maize
yields of the 2000–2018 varieties ranged from −12.7% to 8.0% (Figure 4b,d,f, calculated by
Equations (1) and (2)), although cultivars with higher TTs were used in maize production.
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Figure 4. Simulated combined effects of variety (varieties planted in the 1980s and 2000–2018) and climate (climate in the
1980s and 2000–2018) on grain yields in humid region (a,c,e) and semi-humid region (b,d,f) stations. Error bars indicate
standard deviations.

Maize yield of the 1980s varieties in the humid region stations decreased 9.6–35.7%
(Figure 4a,c,e, calculated by Equation (3)) owing to climate change from the 1980s to
2011–2018. Similarly, if maize varieties had not changed since the 1980s, then the maize
yields in the 2000s for the humid region stations would decrease 5.4–35.5% (Figure 4a,c,e,
calculated by Equation (4)) compared with the maize yields of the 2000s varieties. For the
semi-humid region stations, if maize varieties did not change since the 1980s, then maize
yields in 2011–2018 would decrease 7.8–20.6% (Figure 4b,d,f, calculated by Equation (3))
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compared with the maize yields of the 2011–2018 varieties. Additionally, if maize va-
rieties did not change since the 1980s, then maize yields in the 2000s would decrease
1.8–11.0% compared with the maize yields of the 2000s varieties (Figure 4b,d,f, calculated
by Equation (4)).

3.3. Rainfed Maize Yield Compared with No Water-Stress Maize Yield

To determine whether the gaps between no water-stress and rainfed maize yields
in the humid and semi-humid regions are increasing, the ratios of rainfed yield to no
water-stress yield (Yrainfed/Yno water-stress) were calculated for five combinations of three
kinds of varieties and three climatic periods (Figure 5a–f). For the humid region stations,
Yrainfed/Yno water-stress was between 0.72 and 0.99 when varieties used in the 1980s were
combined with climates from the 1980s. In the 2000s and 2011–2018, Yrainfed/Yno water-stress
remained constant (for Changtu) or decreased to 0.82–0.88 (Figure 5a,c,e). For the semi-
humid region stations, Yrainfed/Yno water-stress was lower (0.72–0.79) than in humid region
stations when varieties used in the 1980s were combined with climates from the 1980s. In
the 2000s and 2011–2018, Yrainfed/Yno water-stress decreased to 0.57–0.68 (Figure 5b,d,f).

Yrainfed/Yno water-stress when the 1980s varieties were combined with 2000s or 2011–2018
climates increased compared with Yrainfed/Yno water-stress during the 2000s and 2011–2018
at all the region stations (Figure 5a–f). The increasing magnitude (0.11–0.20) for semi-
humid region stations (Baicheng and Tailai) was greater than that (0.06–0.15) for humid
region stations.

3.4. Correlating Thermal Time (TT) and Precipitation

Because at the semi-humid region stations (Fuxin, Baicheng and Tailai), compared with
1980s varieties, maize yields of the 2000s and 2011–2018 varieties decreased, to investigate
correlations between TT and precipitation during the 1980s, 2000s and 2011–2018 for
Fuxin, Baicheng and Tailai stations, accumulated TTs since maize emergence and the
corresponding total precipitation were presented in Figure 6. For these three stations, the
numbers of growing days (from emergence to physiological maturity) during the 2000s
and 2011–2018 increased (2–20 d) compared with during the 1980s, whereas the available
water decreased. The average rainfall for each day dropped from 2.8, 3.0 and 2.8 mm/day
to 2.6, 1.8 and 2.1 mm/day for Fuxin, Baicheng and Tailai, respectively.
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Figure 5. Ratios of simulated rainfed yield to no water-stress yield for combinations of variety (varieties planted in the
1980s and 2000–2018) and climate (climate in the 1980s and 2000–2018) for humid region (a,c,e) and semi-humid region
(b,d,f) stations. Error bars indicate standard deviations.
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Figure 6. The correlations between thermal time and precipitation during the 1980s and 2000–2018 at
Fuxin (A), Baicheng (B), and Tailai (C) stations. The emergence dates at the Fuxin, Tailai and Baicheng
stations were 12 May, 17 May and 19 May, respectively, which were averaged using the observed
data. Thermal time from emergence (E) to physiological maturity (PM) showed as horizontal lines.
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4. Discussion

To determine whether cultivar selection (adoption of cultivars with higher thermal
time requirements) is a sustainable strategy to maintain or increase maize yield in north-
east China (NEC), we divided the NEC into two areas to analyze the thermal time (TT)
requirements for maize growth and their effects on yield and water supply under climate
change conditions. Switching to late maturing cultivars may have increased the grain yield
by 6.5–43.7% during 1981–2007 in NEC [2,13]. In this study, simulation results for humid
areas indicated that the adoption of longer-season cultivars during the 2000s and 2011–2018
caused increases in yield ranging from 6.3% to 13.3% compared with the 1980s, which
indicated a shift towards planting higher-yielding cultivars in these areas to take advantage
of the resulting growing season extension and that water is not a limiting factor. The
cultivars adopted during the 2000s and 2011–2018 have higher TT requirements, especially
for the grain fill (calculated as the TT from flowering to maturity) period (Figure 3), which
increases the length of time devoted to yield accumulation. Sacks and Kucharik [30] found
a lengthening of the maize reproductive period from 1981 to 2005, which was attributed
to the use of longer-season cultivars. Thus, the cultivars adopted during the 2000s and
2011–2018 more efficiently used the growing season in these areas. In the USA, an average
lengthening of the grain filling period by 0.37 days per year has occurred as a result of
variety renewal [31]. Moreover, statistical analyses suggest that a longer grain-filling period
accounts for roughly one-quarter of the yield increase trend by promoting kernel dry matter
accumulation [31].

Climate change induced reductions in crop duration, and thus, yield may be reversed
by the planting of varieties that require more time to mature [1,13]. This was verified in
humid areas of NEC, in which the longer growth periods of longer-maturing varieties also
resulted in a greater water requirement. Whereas the study on water requirement of oat
in north and northeast China indicated that the crop water requirement and irrigation
demand presenting decreasing trends over past decades [32]. In fact, precipitation levels
in 62% of NEC failed to meet the demands of longer-maturing varieties (445–460 mm
during the maize growing season) [9]. Our studies confirmed these results. We found that
for semi-humid areas, grain yield decreased or slightly increased (from−12.7% to 8.0%)
when longer-season cultivars were adopted during the 2000s and 2011–2018. Compared
with rainfed maize growing in semi-humid areas of NEC, winter wheat planted in north
China showed an improved yield level and yield stability, which might be attributed to the
development of agricultural technology (including irrigation) and breeding [33].

Generally, drought events caused maize yield reductions when they occurred later in
the season (10–22%) or in the early season (5–17%) [34]. The decreasing rainfall (Figure 6)
and the increasing demand for water are the main reasons for yield variations during
the 2000s and 2011–2018 in semi-humid areas. Moreover, the decreasing yields during
the 2000s and 2011–2018 may be attributed to the decreasing rainfall per day during the
maize growing season. Undoubtedly, the adoption of longer-season cultivars contributed
to maintaining the maize yield’s stability because maize yield decreased (from 1.8% to
35.7%) if varieties were not changed since the 1980s (Figure 4). As water resources become
increasingly scarce, especially under climate change conditions, increasing maize yields
in semi-humid areas should not only depend on cultivar selection but also on increasing
water-use efficiency [35,36]. The dry matter accumulation after silking and kernel weight
are the key factors to increase water-use efficiency [37]. Other adaptive strategies can
be adopted by farmers to cope with drought, including varietal diversification, drought-
resistant varieties, soil tillage and irrigation [38]

During the past years, adaptation strategies against drought have been implemented
in NEC [39]. The adoption of more than one maize variety (varietal diversification) was
regarded as an effective way to mitigate the negative effects caused by drought and increase
the maize yield stability, since different maize varieties vary in resilience to drought and
hybrid maturity (longer maturity hybrids or shorter maturity hybrids), and households
usually have several fields to grow maize. Furthermore, farmers that used more than one
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variety often adopted drought resistant varieties. In areas prone to precipitation shortages,
shortening the hybrid maturity may be a risk-averse strategy [17,34]. If farmers used more
than one variety, the maize yield was about 150 kg/ha higher than farmers who only
planted one variety [38].

Generally, the genetic improvement in maize yield is associated with increased stress
tolerance [40]. Drought tolerant hybrids consistently had 3–6% lower seasonal ET than
conventional hybrids under water-limited conditions and less water extraction for drought
tolerant hybrids were found during the vegetable stage [41]. Farmers that adopted drought
resistant varieties had higher maize yield under dry conditions compared to that without
using drought resistant varieties [42]. The adoption of drought resistant varieties led to
maize yield increase by about 220 kg/ha [38]. For semi-humid areas of NEC, the potential
for further maize yield improvement through increasing drought stress tolerance is very
large, not only because of the frequent occurrence of drought [2], but also due to the larger
yield gap between no water-stress and rainfed maize yields (Figure 5b,d,f).

The positive effects of conservation tillage and deep loosening tillage have been sup-
ported by many studies [38,43,44]. Conservation tillage was referred to tillage used in
spring instead of rotary tillage, which mainly includes ploughing and no tillage. Tillage in
autumn can help to improve soil water holding content capacity and reduce soil evapo-
ration in spring [45]. The adoption of conservation tillage led to maize yield increase by
438–459 kg/ha [38]. However, less than 20% of farmers in NEC used either conservation
tillage or deep loosening tillage in maize production. Whether the households have higher
soil quality and whether they can receive technical support are two factors that affect the
application of tillage practices [38].

Generally, irrigation is the most efficient adaptation measure to mitigate drought
effects [7,46] In NEC, irrigation includes dibbling irrigation used to cope with drought in
spring and irrigation adopted in both summer and autumn. Dibbling irrigation (seeding
with irrigation to the seeds) is a traditional practice in NEC which is widely used in spring
before maize sowing [38].Maize yield was highly correlated with the soil moisture content
during planting date [47] and dibbling irrigation is an effective measure to adjust sowing
soil moisture content. Therefore, dibbling irrigation can cope with drought by improving
both water use efficiency and maize seeding emergence ratio [47,48]. Irrigation in summer
and autumn can mitigate the negative effects of drought; the adoption of irrigation in
summer and autumn led to maize yield increase by 419–435 and 444–463 kg/ha, respec-
tively [38]. However, the irrigation systems in NEC are not well developed; less than 25%
of farmers have irrigation access in maize production [49]. Therefore, the development
of more efficient irrigation systems should be given high priority in semi-humid areas
of NEC.

The Yrainfed/Yno water-stress ratio represents the gap between no water-stress and rain-
fed maize yields. A lower Yrainfed/Yno water-stress value indicates a greater water scarcity
for maize to obtain its potential yield. For semi-humid region stations, both the decreas-
ing trend in Yrainfed/Yno water-stress and its lower values during the 2000s and 2011–2018
(Figure 5) indicated a growing sensitivity of maize production to water, as reported by
Meng et al. [9] who use a hybrid-maize model to examine the gap between irrigated and
rainfed maize yields of Chinese maize belt. The decrease in Yrainfed/Yno water-stress is partly
related to reductions in precipitation (Figure 6) and to increased evaporative demands
in warmer climates. Precipitation becomes the dominant climatic factor driving maize
yield variations when the growing season precipitation is less than ~400 mm [50]. The
gap between rainfed and no water-stress yields substantially increased from 25% in the
1980s to 35% in the 2000s and 2011–2018 at semi-humid region stations, which manifested
the changing correlations between TT and precipitation. Gao et al. [51] also reported that
the projected increase in annual precipitation did not always keep pace with the rising
temperature to sufficiently support the cropping systems in North China under both the
RCP4.5 and RCP8.5 scenarios. A larger gap between rainfed and no water-stress yields
also suggests that new adaption measures, other than a shift to longer-maturing varieties,
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are needed. In fact, factors other than thermal availability appear to more strongly impact
farmer decision-making [17]. Under climate change conditions, new hybrids with drought-
tolerant qualities, applications of nitrogenous fertilizers and irrigation may be effective
measures for semi-humid regions to maintain maize production [7].

5. Conclusions

This study aimed to determine whether the adoption of longer-season cultivars is
an effective measure for the whole northeast China (NEC) to sustainably increase the
grain yield. For humid areas, the adoption of longer-season cultivars during the 2000s
and 2011–2018 caused increases in yield ranging from 6.3% to 13.3% compared with the
1980s, which showed that the negative effects of climate warming on maize yield were
reversed by cultivar selection. A longer maturity hybrid showed to generally result in
higher yields when soil water availability is not limited during the season. For semi-humid
areas, grain yield decreased or slightly increased (from −12.7% to 8.0%) when longer-
season cultivars were adopted during the 2000s and 2011–2018. Maize yield was limited
by water when cultivars with higher thermal time requirements under climate change
conditions were introduced. Thus, having a secure food supply will depend on increases in
water-use efficiency and other adaptive strategies, such as varietal diversification, drought-
resistant varieties, conservation tillage and irrigation. Therefore, we should take differential
measures for humid and semi-humid areas of NEC to achieve the increase of maize
yield sustainably.
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