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Abstract: Groundwater resources are largely used in rural communities of river basins due to their
acceptable water quality and reliability for domestic purposes where little or no treatment is required.
However, groundwater resources have been affected by changes in land use, mining activities,
agricultural practices, industrial effluent, and urbanisation among anthropogenic influences while
climate change impacts and volcanic eruptions have affected its involvement among the natural
phenomena. The purpose of the study was to assess groundwater potential in the basin with the use
of Analytical Hierarchy Process (AHP), remote sensing, GIS techniques, and groundwater occurrence
and movement influencing factors. These factors were used to produce seven thematic maps, which
were then assigned weights and scale using an AHP tool, based on their degree of influence on
groundwater occurrence and movement. A weighted groundwater potential map was produced with
four zones denoted as 0.4% (317 km2) for very good potential; 27% (19,170 km2) for good potential;
61% (43,961 km2) for moderate potential and 12% (8639 km2) for poor potential. Validation, using
existing boreholes, showed that 89% were overlain on moderate to very good potential zones and
henceforth considered to be a novel approach which is useful for groundwater resources assessment
and integrated water management in the basin.

Keywords: groundwater resources assessment; groundwater potential map; integrated water
management; AHP; remote sensing; GIS

1. Introduction

Groundwater resources assessments are of great prominence in arid and semi-arid
regions where water is generally a critical resource [1]. Assessment of groundwater po-
tential for a river basin is a prerequisite for integrated water management [2,3]. Adequate
information on temporal and spatial variability of potential groundwater resources is
required, especially with regard to water availability, quality and maintenance of environ-
mental flows [4]. Groundwater resources are a primary source of domestic use for many
communities across the world [5,6].

Human development largely depends on the availability of quality surface and
groundwater resources to meet the needs of water supply for human health, energy,
agricultural, environmental, industrial, and mining sectors. The priority in water allocation
is to meet the needs of water supply for human health. Groundwater resources are the
most preferred resources for domestic use since little or no treatment is required. Many
surveys for groundwater potential involve costly and complex techniques which include
geophysical investigations, predictions, ground-based surveys and exploratory drilling [1].
These techniques require much time, large data sets and are also expensive [5].

Several studies are currently using weighted overlay analysis to evaluate ground-
water potential zones [5,7–9]. For instance, a groundwater potential zone was simulated
in the Itwad-Khamis watershed in Saudi Arabia using Fuzzy-AHP and geoinformation
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techniques, and found that 82% of existing wells were located in a very good and good
potential area [10]; Geoscience, GIS and the AHP approach were used for mapping ground-
water potential zones in Buffalo semi-arid catchment in South Africa, where the obtained
results showed a good correlation between borehole data and the groundwater potential
zones, and recommended the approach for semi-arid areas [11]. Groundwater potential
zones were delineated using geospatial techniques and AHP for Dumka district of India,
and after comparing the groundwater potential zone map with measured discharge data
from various wells within the study area, the results were found to be reasonable [12].
Geospatial techniques were used to evaluate groundwater potential in the Gerardo River
Catchment of Northern Ethiopia; the dug wells and boreholes on groundwater potential
suitability map were overlaid, and found that they coincided with expected values [13].
GIS and AHP techniques were applied by the delineation of groundwater potential zones
as a case study in Southern Western Ghats of India and concluded that much of the basin
area was covered under moderate, followed by low and high groundwater potential zones
while very high and very low potential zones were extremely limited in the basin [14].

Other previous studies in geospatial techniques include: a comparative study of
machine learning and Fuzzy-AHP technique to groundwater potential mapping in the
data-scarce region of India, where it was concluded that machine learning models could
not map the groundwater potential areas as much as fuzzy-AHP based weighted overlay
analysis [9]; a model-driven fuzzy spatial multi-criteria decision making method was
used in developing sustainable road infrastructure performance indicators in western
Australia and was found to be a reliable and accurate method in decision making [15];
multi-criteria decision making and machine learning in conjunction with remote sensing
and GIS techniques were used in a flash-flood susceptibility assessment of Prahova river
basin of Romania and it was concluded that, in general, a better performance could be
realized from the kNN–AHP ensemble model [16].

Most of the studies in the Zambezi River Basin have explored aspects such as surface
hydrology, general modelling, and climate change. Some of the studies undertaken include:
comparison of the performance of two models in the Zambezi River Basin with regard to
reliability and identifiability [17]; satellite rainfall data was compared with observations
from gauging station networks in Southern Africa [18]; an assessment of impacts of climate
change on water resources and hydropower systems in central and Southern Africa [19];
modelling impact of climate change on Kabompo catchment water balance in Zambezi
River Basin [20]; application of gridded climate data for hydrological modelling in the
Zambezi River Basin, Southern Africa [21]; assessment of hydrological risks and conse-
quences for Zambezi River Basin dams [22]; analysis of spatiotemporal precipitation in
the sparsely gauged Zambezi River Basin [23]; assessment of climate change/variability
implications on hydroelectricity generation in the Zambezi River Basin [24].

However, there are no known studies that have assessed groundwater potential at
a high resolution in the basin. This paper, therefore, seeks to fill the existing research
gap by assessing the groundwater potential for Kabompo catchment (KC) in the Zambezi
River Basin and help to generate new knowledge around the integrated assessment of
groundwater potential, and contribute towards integrated water management in the basin.

This paper focusses on the application of the Analytical Hierarchy Process (AHP),
remote sensing, GIS techniques, and groundwater occurrence and movement influencing
factors in an integrated manner to assess the potential for groundwater resources in the
KC. The resultant groundwater potential map emanating from this study is expected to
be a useful tool for groundwater assessments, prospection, and integrated groundwater
management in the basin.

2. Materials and Methods
2.1. The Study Area

Kabompo catchment was selected as a study site within the Zambezi River Basin, in
Southern Africa. The Kabompo catchment is found in the north-western province of Zambia



Water 2021, 13, 2610 3 of 20

and Kabompo River is one of the major tributaries of the middle Zambezi River Basin. The
basin is predominately underlain with loose sandy soils and with wooded savannah as the
major land use. Figure 1 shows the location of the study area in Southern Africa.
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2.2. Biophysical Data

The study involved the collection of biophysical data such as land use/land cover,
soil, topography, precipitation, lithology, and borehole data (ground truthing data).

The land use/land cover was sourced from Global Land Cover Characterisation
(GLCC). The data set has the resolution of 500 × 500 m land cover type from Moderate
Resolution Imaging Spectroradiometer (MODIS). The MODIS Global Land Cover Types
are widely used in hydrological investigations. The MODIS land cover type product
(MCD12Q1), with a collection 5.1, has annual plant functional types of classification with a
valid range of 0 to 11 which is recognised with higher inter-annual variations, reaching 40%
of land pixels that indicate land cover change in one or more times during 2001–2010 [25].

The soil data was obtained from the FAO Africa database, http://www.fao.org/soils-
portal/soil-survey/soil-maps-and-databases/en/ (accessed on 12 October 2020). The KC
has four major soil types, of which loose sandy soils are predominant, followed by fine
loamy to clayey soils, fine loamy soils and gravelly clayey soils. The loose sandy soils, also
called Kalahari sands, cover nearly one metre of depth with a sand content of more than
70%, and characterised with a clay and silt content of less than 10%, low nutrient content,
and low water retention capacity.

Precipitation, which is mostly rainfall in the basin and measured in mm, was obtained
from Zambia Meteorological Department (ZMD), Lusaka, Zambia, an institution responsi-
ble for collection and management of weather data in the country. The monthly rainfall data

http://cridf.net/RC/wp-content/uploads/2018/01/CRIDF-Map-Project-distibution-1.jpg
http://cridf.net/RC/wp-content/uploads/2018/01/CRIDF-Map-Project-distibution-1.jpg
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for the period from 1982 to 2013 was collected from weather stations, which are considered
to have direct influence on the KC. These are Solwezi, Mwinilunga, Kabompo, Kasempa
and Zambezi. Hydrogeological data was obtained from Water Resources Management
Authority (WARMA), Lusaka, Zambia, which contained a complete description of lithology,
such as rock type, class, age, and formation for the entire catchment.

Borehole data was obtained for 980 boreholes from the Department of Water Resources
Development (DWRD), Solwezi, north-western province under Ministry of Water Develop-
ment, Water Supply and Sanitation and Environmental Protection of the Government of
the Republic of Zambia. The data covered the period from 1970 to 2016 and was considered
vital for ground truthing and validation. The 980 boreholes were just few of the thousands
of boreholes and wells constructed in the basin over the years. The data was obtained
from every part of the basin, which included Mwinilunga, Ikelenge, Kabompo, Manyinga,
Mufumbwe and Kalumbira districts. Kalumbira district includes Manyama, Lumwana and
Maheba areas. The data details included: name of borehole, location coordinates, depth of
borehole, static water level, dynamic water level, constituency, ward and, in a few cases,
borehole yield. The status of these boreholes in terms of functionality is unknown but
the Department estimate that 75% of the captured boreholes could be functional and 25%
may be non-functional due to factors such as breakdown of pumping device, drying up of
the borehole, borehole collapsing, polluted water, vandalised boreholes, and abandoned
boreholes due relocation of communities.

The Digital Elevation Model (DEM) was obtained from the Shuttle Radar Topo-
graphical Mission (SRTM) with a resolution of 30 m US-Geological Survey, earth explorer
(https://earthexplorer.usgs.gov/, accessed on 17 October 2020), the elevation data most
commonly used in the world. The KC was extracted from the pro-mosaic DEM, with
elevation ranging from 1020 to 1568 m above sea level.

The study focussed on geological, biophysical and hydrometeorological factors, which
are critical in the study area. Based on these factors, seven thematic maps were created for
the integrated assessment of groundwater potential.

2.3. Methodological Approach

The study approach considered geology, biophysical and hydrometeorological factors
where seven thematic layers were extracted and assigned varying weights depending on
their influence on groundwater potential [26,27]. Figure 2 illustrates the methodological
approach for assessment of groundwater potential.
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Figure 2 illustrates seven thematic maps that were processed from geological, biophys-
ical and hydrometeorological factors in groundwater evaluation potential. The thematic
layers included: lineament density, lithology, land use land cover, soil, slope, rainfall and
drainage density.

2.4. Preparation of Thematic Data

The lineament density layer was created through the digitisation of Digital Elevation
Model (DEM) from and combining this with the identified faults from the geological data
using GIS techniques. DEM was downloaded from SRTM with a resolution of 30 m under
earth explorer U.S. Geological Survey website (www.earthexplorer.usgs.gov, accessed on
10 October 2020). Lithology was extracted and processed from geological map of Zambia
and clipped to the study area in GIS.

Land use and land cover data was downloaded from GLCC, https://www.usgs.gov/
centers/eros/science/usgs-eros-archive-land-cover-products-global-land-cover-characterization-
glcc (accessed on 12 October 2020). This was a Moderate Resolution Imaging Spectrora-
diometer (MODIS) Land Cover Type that has a ground resolution of 500 m × 500 m. The
obtained land cover data was clipped to the study area and further processed in GIS. The
soil data was obtained from FAO Africa soils and the identification of soil types for the
study area was conducted using the FAO soil scientific description in GIS. The soils can
be accessed from FAO Africa, website http://www.fao.org/soils-portal/soil-survey/soil-
maps-and-databases/en/ (accessed on 12 October 2020).

Slope layer was processed from DEM and calculated in degrees in GIS. A river net-
work, drainage density layer and study area were processed from the DEM in GIS. The
drainage density layer was determined in kilometres per unit area (km2). The evaluation of
groundwater potential would not be complete without hydrometeorological data analysis;
therefore, a rainfall map was created from ground observed meteorological data obtained
from Zambia Meteorological Department using inverse distance weighted method (IDW) in
GIS. Rainfall was considered very important for the catchment without which groundwater
would not be available.

2.5. Multi-Criteria Decision Making Methods

There are several multi-criteria decision making methods used in groundwater po-
tential evaluation among them are: Multi-Influencing Factor (MIF), Analytical Hierarchy
Process (AHP), Fuzzy Logic (FL), Frequency Ratio (FR), Certainty Factor (CF), Weights–Of-
Evidence (WOE), Index Models (IM). Among these techniques, AHP, is the most widely
used method and a forerunner in the delineation of groundwater potential zones [12,14].
The AHP technique is one of the most efficient decision making tools and the results
obtained are often reliable [28,29]. It simplifies difficult decisions to a series of pair-wise
comparisons and then integrates the results. Furthermore, AHP is an appropriate tool for
determining the consistency ratio of the results in order to minimise biases in decision
making process [30]. Therefore, in this study, AHP technique was selected and used in the
analysis of groundwater potential.

2.6. Assignment of Weights to Individual Thematic Layers

The assignment of weights was conducted using the AHP technique, which helps to
integrate the information based on the user knowledge of the influence of the thematic
layers in the study area. Comparisons are made in pairs based on specific criteria for
the created thematic layers and the weight for each parameter is then determined. The
accuracy of the matrix is estimated by a Consistency Ratio (CR). The recommended CR
values are as follows: less than 0.05 for a 3 × 3 matrix, 0.09 for a 4 × 4 matrix and 0.1
for larger matrices [30]. The thematic layers are subdivided into classes, each based on
the scale factor in AHP, which ranges from very poor to very good or very low to very
high depending on the preference of the user. Influence (weight) is the overall importance
of a layer, while the scale value is the importance of the features in the layer. The scale

www.earthexplorer.usgs.gov
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-land-cover-products-global-land-cover-characterization-glcc
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-land-cover-products-global-land-cover-characterization-glcc
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-land-cover-products-global-land-cover-characterization-glcc
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/en/
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values may range from 1 to 5 where 1 is less important (very poor) and 5 is more important
(very good).

2.7. Validation of Groundwater Potential Zones

The verification of delineated groundwater zones is achieved via validation, using
existing boreholes, wells and springs data. Several previous studies have used existing
borehole data for validations, for example [28,31,32]. Borehole or well data may include:
name, location details such as coordinates, yield important for classification of groundwater
zones, depth, static water levels, dynamic water level while the spring data will mostly
include the discharge, type of spring and location details. However, this kind of data is
very scarce in most developing countries such as Zambia in Southern Africa [27].

3. Results

Groundwater recharge is influenced by dominant catchment and climate factors [33]. It
is an important process for increasing the volumes of groundwater reserves. Groundwater
flow is governed by Darcy’s law that describes a method for estimating the volume of
groundwater flow based on the hydraulic gradient and the permeability of an aquifer,
expressed using K, the hydraulic conductivity. The equation widely used by hydrogeologist,
may be presented as follows;

Q = K × i × A (1)

where Q is the volume of the groundwater flow (m3/s), K is the hydraulic conductivity
(m/s), i is the hydraulic gradient, and A is the cross-sectional area of the aquifer [34].

Groundwater normally occurs in fissures, faults, and fractured zones within a ge-
ological formation. Geological composition has a higher influence on the groundwater
occurrence and distribution in any terrain [35]. In general, aquifers are classified into
four basic formation types based on the geologic environment of their occurrence and
these include: unconfined, confined, semi-confined, and perched [36]. Important aquifer
properties include transmissivity and storativity [37]. According to [38], the aquifers in
Zambia are classified into three major types:

• Aquifers, where groundwater flow is mostly through fractures, fissures and/or dis-
continuities, are categorised as highly productive. Highly productive aquifers occur
mostly in karstic limestones/marbles on the Copperbelt and stretching down into the
Lusaka area;

• Aquifers, where intergranular groundwater flow is dominant, occur mostly in alluvial
soils and Tertiary sand deposits;

• Low-yielding weathered and/or fractured aquifers with limited potential are largely
found in the Basement complex, and some in igneous rocks.

Factors influencing groundwater recharge may vary from one location to another
largely due to geological, climatological, and biophysical aspects. The following factors,
considered in this study, are found to be critical in influencing groundwater recharge for
the study area (KC); these factors are lithology, drainage density, lineament density, slope,
soil, land use/land cover and precipitation.

3.1. Lithology

Lithology is an important factor in influencing groundwater, besides drainage and
lineament densities. Many studies have shown that lithology is critical for the evaluation
of groundwater recharge as it has a large influence on water infiltration and percolation for
a particular area [5,7,34].

The study area is predominantly underlain with fossil seif dunes and shale silt sand-
stone, followed by mine series undifferentiated, undifferentiated granite gneiss, carbonate
rocks, basal conglomerate and others (Figure 3). The fossil seif dunes, basal conglomerate
and carbonate rocks are considered to be good aquifers of groundwater [39].
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3.2. Drainage Density

The drainage density, which is largely dependent on the lithology, is an indicator of
groundwater recharge as it affects the percolation rate [5,7]. The recharge rate becomes
higher when drainage density is lower than it was when it was higher [40]. If the area is
well drained, there will be less infiltration of water into the ground as much of the surface
water will be drained to larger water bodies [11,12]. The drainage network for KC was
processed from DEM and validated with topographical data. The drainage density is
calculated using Equation (2).

Drainage density =
Total length o f river network

Drainage area
(2)

The lower the drainage density the more potential the area may have for groundwater
occurrence and vice versa. The drainage density map was further categorised into five
classes, which are 0–3 for very good, 3–7 for good, 7–11 for moderate,11–15 for poor and
15–18 for very poor. Figure 4 illustrates the drainage density for the catchment.

3.3. Lineament Density

A lineament is a simple or complex linear feature of a surface that can be drawn. Its
components are aligned in a rectilinear or slightly curvilinear correlation, which varies
from the configuration of adjacent features and apparently characterises a subsurface
occurrence [7,41]. Geological lineaments are mostly presented as faults and joints that
are deemed ducts for granitic intrusions [41]. Typically, a lineament will appear as a
fault-aligned valley, a series of fault or fold-aligned hills, a straight coastline or indeed
a combination of these features. Lineaments are hydro-geological factors which provide
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pathways for groundwater movement [7,42]. They are also used in the exploration of
minerals and location of weathered zones from lineament density map which is usually
applied in soil erosion investigations [5]. The lineament density in this study was calculated
using Equation (3).

Ld =
∑i=n

i=1 Li

A
(3)

where, ∑i=n
i=1 Li denotes the total length of lineaments (L) and A denotes the unit area (L2).

A high lineament length density indicates high secondary porosity, thus indicating a zone
with high groundwater potential [43].

Areas with high lineament density indicate a permeable zone, which reveals good
groundwater potential. Very high lineament density is indicative of good groundwater
potential whereas areas with very low lineament density indicate poor groundwater poten-
tial. The lineament map was created from DEM and the faults structure from the geological
map and categorised into lineament density with classes ranging from 0.00–0.04 for very
poor; 0.04–0.09 for poor; 0.09–0.13 for moderate, 0.13–0.18 for good and 0.18–0.22 for very
good. Figure 5 illustrates the lineament density for Kabompo catchment.
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3.4. Slope

The gradient of any given land directly influences the infiltration rate of precipitation
and/or surface water. The steeper the ground the less the infiltration and the flatter the
ground the more the infiltration. Slope also influences the velocity of the runoff, which
may lead to soil erosion. Gentle to flat slopes are very important for groundwater recharge.

The slope may also indicate a general flow direction of groundwater. In order to assess
the potential for groundwater recharge, the catchment area was classified into five slopes:
less than 1o for very good; 1–2◦ for good, 2–4◦ for moderate, 4–8◦ for poor, and above
8◦ for very poor ground water potential. The catchment is generally flat with gentle to
undulating slopes in some parts. Figure 6 illustrates the catchment slope in degrees.

3.5. Soils

The physical characteristics of soils, such as structure and texture, play a significant
role in groundwater recharge. Therefore, it needs to be identified and classified according
to texture in order to determine their infiltration rate. The soils with fine texture tend to
have higher runoff rates and less infiltration. The KC is predominantly Kalahari sand,
which has higher infiltration rates.

The soils were categorised according to infiltrations rates, which included: loose sand
soils for very good infiltration rate, fine loamy soils for good infiltration rate, gravelly to
clayey soils for moderate infiltration rate, fine loamy to clayey soils for poor infiltration
rate, and clayey soils with high clay/silt ratio for very poor infiltration rate. The catchment
is predominantly underlain by loose sand soils followed by fine loamy soils which have
higher infiltration rates and therefore leads to better potential for groundwater. Figure 7
illustrates the soil distribution across the catchment.
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3.6. Land Use/Land Cover

The land use/land cover type can either increase or decrease infiltration. Urbanised
areas have lower infiltration rates than vegetated areas. It is for this reason that classifying
land use becomes important. The catchment area was classified into five major land
use/land cover classes based on the infiltration capacity. The classes include: urbanised
areas for very poor infiltration; range brush, mixed forest for poor infiltration; closed
shrub land, ever green broadleaf forest, range grasses, woody savannahs, savannahs; for
moderate infiltration; agricultural land-generic, for good infiltration; mixed wetlands, for
very good infiltration. Figure 8 illustrates the catchment land use/land cover.
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3.7. Precipitation

Groundwater principally comes from precipitation and therefore good rainfall can
lead to good groundwater recharge while less rainfall may also mean limited recharge.
Precipitation is therefore an important factor in mapping groundwater potential zones [1].
Precipitation was estimated using the arithmetic mean as shown in the Equation (4).

P =
p1 + p2 + p3 . . . . . . .pn

N
(4)

where P is the average depth of precipitation of the area, P1, P2, P3 and Pn are rainfall data
at weather stations 1, 2, 3, and N is the number of weather stations.

A precipitation map was created from observed historical rainfall data for 32 years
(1982–2013) from the five most influential meteorological stations within the catchment,
using inverse distance weighted (IDW) method in the GIS environment. The monthly
rainfall was further categorised into classes of amounts received per year as follows:
900–950 for very poor; 950–1000 for poor; 1000–1100 for moderate; 1100–1150 for good and
1150–1250 for very good. The map in Figure 9 clearly shows that more rainfall is received
in the northern part of the catchment than the southern parts.
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3.8. Ranking of Influencing Factors Using Analytical Hierarchy Process

The identified parameters with influence on the basin were ranked according to
their importance in Analytic Hierarchy Process (AHP). The AHP is a tool that has been
widely used in the assessment of groundwater influencing factors [12,14]. The intro-
duced AHP tool, deals with complicated decisions in groundwater assessments and other
related fields [44,45]. Table 1 illustrates the criteria for assignment of scales during a
pair-wise comparison.

Table 1. Pair-wise comparison criteria.

Importance Definition Description

1 Equal Importance Two elements contribute equally to the objective

3 Moderate importance Experience and judgement slightly favour one element over another

5 Strong Importance Experience and judgement strongly favour one element over another

7 Very strong importance One element is favoured very strongly over another, its dominance is
demonstrated in practice

9 Extreme importance The evidence favouring one element over the other is of the highest
possible order or affirmation

2, 4, 6 & 8 are normally used to express intermediate values.

Comparisons were conducted in pairs based on the criteria in Table 2 for seven
thematic layers and the weight for each parameter was determined. Consistency Ratio
(CR) was used to estimate the accuracy of the matrix and in this study, it was calculated to
be 0.08, which is well within the recommendations [30]. The CR values obtained using the
AHP were tabulated (Table 2).
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Table 2. Pair-wise comparison matrix of seven thematic layers and their normalised weights.

Factors Rainfall Lithology Lineament
Density LULC Drainage

Density Soil Slope Normalized
Weight (%)

Rainfall 1 3 3 5 5 5 7 37
Lithology 0.33 1 3 3 5 5 7 24

Lineament density 0.33 0.33 1 3 3 5 5 16
LULC 0.2 0.33 0.33 1 3 3 5 10

Drainage density 0.2 0.2 0.33 0.33 1 3 3 6
Soil 0.2 0.2 0.2 0.33 0.33 1 3 4

Slope 0.14 0.14 0.2 0.2 0.33 0.33 1 3
Total 2.4 5.2 8.06 12.86 17.66 22.33 31 100

The seven thematic layers with normalized weights were determined by the AHP
based on the degree of influence on groundwater potential. Precipitation was analysed with
a higher weight, followed by lithology, lineament density, land use/land cover, drainage
density, soil, and finally slope. The thematic layers were further subdivided into five
classes, each based on the scale factor in AHP, which ranged from 1, for very poor to 5, for
very good. Table 3 illustrates the thematic layers with rankings and normalised weights.

Table 3. Thematic layers with ranks and normalised weights.

Parameter Class Groundwater
Potential Ranking Normalised

Weight (%)

Precipitation

(mm/year)

37

1150–1250 Very Good 5
1050–1150 Good 4
1000–1050 Moderate 3
950–1000 Poor 2
900–950 Very Poor 1

Lithology

Lithological Unit

24

Alluv colluv laterit Very Good 5
Basal conglomerate Very Good 5

Basalts Very Good 5
Carbonate rocks Good 4

Dolomite & argilli Good 4
Fossil sief dunes Good 4

Meta-carbonate rocks Good 4
Meta-quartzites Moderate 3

Mine Series undiff Moderate 3
Syenite syenodiorite Moderate 3

Upp Karoo undiff Poor 2
psammite rudite form Poor 2

shale silt sandstone Poor 2
Undiff granite gneiss Very poor 1

Undiff schists Very Poor 1
Grainite Very Poor 1

Igneous meta-igneous Very Poor 1

Lineament density

Km/Km2

16

0.18–0.22 Very Good 5
0.13–0.18 Good 4
0.09–0.13 Moderate 3
0.04–0.09 Poor 2
0.00–0.04 Very Poor 1
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Table 3. Cont.

Parameter Class Groundwater
Potential Ranking Normalised

Weight (%)

Land use/Land cover

Wetlands-Mixed Very Good 5

10

Agriculture Land-Close grown Good 4
Agricultural Land-Generic Good 4

Range-Grasses Moderate 3
Savannahs Moderate 3

Woody Savannahs Moderate 3
Closed Shrub-lands Moderate 3

Evergreen Broadleaf Forest Moderate 3
Range Brush Poor 2
Forest-Mixed Poor 2

Deciduous Broadleaf Forest Poor 2
Urban and Built-Up Very poor 1

Drainage density

km/km2

6

0–3 Very Good 5
3–7 Good 4

7–11 Moderate 3
11–15 Poor 2
15–18 Very Poor 1

Soil

Soil Texture

4

Loose sandy soils Very Good 5
Loose sandy soils Very Good 5
Fine loamy soils Good 4
Fine loamy soils Good 4

Gravelly clayey soils Moderate 3
Fine loamy to clayey soils Poor 2
Fine loamy to clayey soils Poor 2

Clayey soils with a high silt/ clay ratio Very Poor 1

Slope

Degrees

3

0–1◦ Very Good 5
1–2◦ Good 4
2–4◦ Moderate 3
4–8◦ Poor 2

8–52◦ Very Poor 1

3.9. Weighted Overlay Operation

The information in Table 3 was used for reclassification in GIS in order to standardise
all the thematic layers as a preparation for weighted overlay. The reclassification was
conducted for slope, drainage density, lineament density and precipitation while land
use/land cover, soil and lithology thematic maps were already classified. After reclas-
sification, all the thematic maps were arranged, and a weighted overlay analysis, based
on groundwater potential index, was performed in GIS to determine the groundwater
potential of the catchment [28,46]. The groundwater potential index (GwPI) was calculated
using Equation (5) proposed by [47].

GwPI =
m

∑
j=1

n

∑
i=1

(
Wj ∗ Xi

)
(5)

where, GwPI is the groundwater potential index, Wj is the normalised weight of the j
thematic layer, Xi is the rank number (values) of each class with respect to the j layer, m is
the total number of thematic layers, and n is the total number of ranks in a thematic layer.
Figure 10 illustrates the groundwater water potential of the Kabompo catchment.
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Figure 10. Ground Water Potential Map of the Kabompo catchment.

Figure 10 shows that much of the northern part of the KC has good potential for
groundwater while the southern part has some areas with poor potential. The northern
part of the catchment is also characterised by high annual rainfalls, lower drainage den-
sity and higher lineament density. In general, the basin is predominately characterised
with moderate to good potential for groundwater giving hope for conjunctive water man-
agement involving domestic water supply, environmental water requirement, irrigated
agriculture, and fish farming. The groundwater potential variability across the catchment
was further analysed into coverage areas to highlight risk and uncertainty. Table 4 shows
these coverage areas.

Table 4. Ground water potential zonal areas.

Groundwater
Potential

Number
of Pixels

Sub Area
km2

Area
(%) Comments

Poor 5203 8639 12 Has low potential for ground water
Moderate 26,476 43,961 61 Has sufficient potential for ground water

Good 11,545 19,170 27 Has a high potential for ground water
Very Good 191 317 0.4 Has a very high potential for ground water

Total 43,415 72,087 100

3.10. Validation of the Groundwater Potential Map

The groundwater potential map was validated using ground truthing data obtained
from Department of Water Resources Development (DWRM) north-western province of
Zambia. The data used were existing boreholes across the basin drilled between 1970
and 2016. The boreholes are mostly used for domestic purposes in the rural population
and Central Business Districts (CBD) of Mufumbwe, Manyinga and Lumwana districts.
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According to the Department, about 75% of the boreholes may be functional while 25% are
considered non-functional.

Most of the borehole yield ranged from 0.5 to 1 `/s while some high-yielding boreholes
for domestic use have 1–5 `/s. These are non-commercial boreholes with 100 mm diameter
and depth ranging from 20 to 60 m. Commercial boreholes have diameters equal to or
greater than 150 mm and depth ranges from 30 to 100 m. The total number of 980 boreholes
across the basin were overlaid on the Groundwater Potential Map to validate the delineated
potential zones. The results revealed that 89% of the boreholes were found on the moderate
to very good potential zones for groundwater. Figure 10 illustrates the validation of the
groundwater potential.

The boreholes were selected from all areas of the catchment that included Maheba
refugee camp, Lumwana mine area, Kalumbira mine area, Mufumbwe, Mwinilunga, and
Kabompo districts. The light sky-blue dots on Figure 11 show high yielding boreholes
estimated between 7.2 and 18 m3/h, which corresponds to good potential for groundwater.
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4. Discussion

The results have shown that the catchment has moderate to very good potential for
groundwater, which is why the existing boreholes are found on most parts of the catchment.
These results are in agreement with previous studies that analysed the aquifer productivity
on the north-western part of Zambia (where the basin is located) to be low to moderate and
high in some parts. The aquifer was identified to be unconsolidated in some areas, while
other areas a sedimentary fracture with high aquifer productivity [48]. The distribution of
boreholes on the zones is shown in Table 5.
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Table 5. Number of boreholes on suitable groundwater potential zones.

Number of
Zones

Groundwater
Potential

Zone

Coverage Area
km2

Number
of Existing
Boreholes

% of Existing
Total Boreholes

% of Boreholes on
Suitable Zones

1 Poor 8639 113 11 n/a
2 Moderate 43,961 666 68 68
3 Good 19,170 143 15 15
4 Very Good 317 58 6 6

Total 72,087 980 100 89

Table 5 shows that 89% of the existing boreholes are found on the moderate potential
zone, followed by good potential zone, and very good potential zones, which are delineated
to be suitable. The results show that boreholes can be drilled at nearly any location within
the catchment with a very high success rate. It is noted that even in poor groundwater
potential zones, boreholes have been drilled except that the yield has been estimated to be
less than 1.8 m3/h.

However, a few challenges were encountered during validation as most of existing
boreholes did not have borehole yield data, due to some missing information and in cases
where the yield was provided, it was as old as the borehole (no update has been conducted).

The high-yielding boreholes in Figure 11 have correlated well with the delineated
groundwater potential zones. The use of borehole data, such as total number per zone
and yield to validate the delineated groundwater potential, has also been widely used in
many previous studies for groundwater potential assessment [10,12–14]. The pattern of
the existing boreholes follows the human settlement, which is mostly along the roads other
than the geological formation. It is, however, found that the settlements are predominantly
located on moderate to good groundwater potential zones. This is an indication that the
local people were also using their indigenous knowledge for prospecting groundwater
before settlement.

The fact that the catchment is predominantly moderate potential for groundwater
confirms the findings of the previous studies that analysed the overall groundwater poten-
tial for the Zambezi River Basin to be moderate to low and occasionally high especially in
alluvium aquifers along the major river channels and karst aquifers with high secondary
porosity [27].

The study area is predominantly underlain with fossil seif dunes and shale silt sand-
stone, followed by mine series undifferentiated, undifferentiated granite gneiss, carbon-
ate rocks, basal conglomerate which are good aquifers. The findings are in agreement
with previous studies that analysed the kahalahari of Zambezi River Basin to have sedi-
ments composed mainly of conglomerates, gravels, clays, sandstones and unconsolidated
sands [39]. The groundwater potential map also demonstrates that drilling of boreholes and
construction of shallow hand-dug wells in the catchment may be successfully conducted
without any special geophysical investigations or surveys (terrameters, resistivity meters,
magnetometers etc.) provided that the map be utilised for guidance purpose.

The use of geospatial techniques for the assessment of groundwater potential has
been proved as a useful model that may be replicated in Southern Africa and other parts of
the world, providing easy and reliable results. Similar previous studies found the use of
GIS and Remote sensing model approach for groundwater assessments to be reliable and
recommended its use in any semi-arid environment [11,12,14].

Therefore, the groundwater potential map presented in this study can be a useful
tool for stakeholders to enhance integrated groundwater management and reduce risk
and uncertainty.

5. Conclusions

The use of geospatial techniques for the integrated assessment of groundwater po-
tential in KC has proved to be a novel approach that has generated new knowledge. The
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produced weighted groundwater potential map for the basin has four zones denoted
as 0.4% (317 km2) for very good potential; 27% (19,170 km2) for good potential; 61%
(43,961 km2) for moderate potential and 12% (8639 km2) for poor potential. Overall, the
results have revealed that KC predominantly has moderate to very good groundwater
potential zones as confirmed by 89% of the overlaid existing boreholes.

The groundwater potential map may be used as a cost-effective and alternative tool
for groundwater assessments in rural and urban development processes. The map also
shows that boreholes and hand-dug wells may be constructed on nearly any part of
the catchment with good success rate and minimal challenges. The application of the
groundwater potential map, produced in this study, coupled with indigenous knowledge,
may contribute towards sustainable use and management of groundwater in the area. The
research results have created a baseline for future research on impacts of climate change on
groundwater resources and analyses of the risks and uncertainties.
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