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Abstract: An extended drought period with low precipitation can result in low water availability and
issues for humans, animals, and plants. Drought forecasting is critical for water resource development
and management as it helps to reduce negative consequences. In this study, scientometric analysis
and manual comprehensive analysis on drought modelling and forecasting are used. A scientometric
analysis is used to determine the current research trend using bibliometric data and to identify
relevant publication field sources with the most publications, the most frequently used keywords,
the most cited articles and authors, and the countries that have made the greatest contributions to
the field of water resources. This paper also tries to provide an overview of water issues, such as
drought classification, drought indices, historical droughts, and their impact on Asian countries
such as China, Pakistan, India, and Iran. There have been many models established for this purpose
and choosing the appropriate model for study is a long procedure for researchers. An appropriate,
comprehensive, pedagogical study of model ideas and historical implementations would benefit
researchers by helping them to avoid overlooking viable model options, thus reducing their time
spent on the topic. As a result, the goal of this paper is to review drought-forecasting approaches and
recommend the best models for the Asian region. The models are divided into four categories based
on their mechanisms: Regression analysis, stochastic modelling, machine learning, and dynamic
modelling. The basic concepts of each approach in terms of the model’s historical use, benefits, and
limitations are explained. Finally, prospects for future drought research in Asia are discussed as well
as potential modelling techniques.

Keywords: water; drought; models; forecasting

1. Introduction

Drought is the one climatic event that is linked to desertification. A natural hazard
caused by a lack of precipitation is called drought. Drought can lead to water shortages
in activities or groups. Sometimes, it is accompanied by other weather factors such as
heat, strong winds, and low humidity. Drought is distinguished from aridity because it is
generally located in regions with limited rainfall and is a constant feature of the climate.
There are droughts that occur in all climatic regions [1]. A severe drought in Latin America,
Asia, and the Caribbean in 2000 increased global concerns about future water shortages due
to long droughts. More than half of the total land area in south-eastern Europe, the Middle
East, and central Asia was affected by severe drought in 2000. Afghanistan, Bulgaria, Iraq
and the Islamic Republic of Iran, and some parts of China bore the brunt of the violence.
Northern Mexico and the southwestern regions of the United States had over six months
of abnormally hot weather, resulting in the worst wildfire in the past 50 years [2].
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Droughts are common in China, and the country is severely affected. The balance of
water accessible via surface evapotranspiration and plant transpiration is being influenced
by global warming. Drought risk, as well as the uncertainty and risk inherent with agricul-
tural production, are all increased as a result of this global warming. The stratosphere and
troposphere air circulation over East Asia, which affects most of China, has shifted signifi-
cantly since the 1970s. Extreme weather occurs, making China more susceptible to droughts
while also making it more susceptible to floods. Every year, large-scale drought hazards are
observed. Drought affects about 20.9 million hectares of agriculture each year, peaking at
40.54 million hectares in some years. Reductions in food output vary from 1 to 30 million
tonnes per year, causing a direct economic loss of about 44 billion yuan per year [3]. In
Pakistan, the climate varies greatly due to distinct climates across the country. While in
the northeast, the region is covered with glaciers and snow, the southwest experiences
severe drought. Agriculture, hydropower, drinking water, industry, culture, and the overall
economy of the country are all affected by this climate variability [4]. Five well-defined
geographic regions, namely the northwestern, southwestern, southeastern, northern, and
central/eastern regions, were revealed in Iran due to the area’s dry season variability.
Investigations indicate that there have been significant negative trends in surface water
balance across the country, especially over the past two decades (1998–2017). However, the
western area, which contains the greatest risk of drought, has experienced prolonged and
more severe droughts [5]. With a high degree of variation, rainfall over India is prone to
meteorological droughts and floods. Monsoonal rainfall exhibits high spatial variability,
which means there are occasions where some regions get flooded while others experience
a severe rainfall shortage, leading to drought [6]. Drought propagation at the catchment
scale is investigated using a lumped, simple, yet physically based hydrologic model under
various climate conditions. Because of their simple representations, conceptual models
are well suited for understanding the roles of the various processes governing drought
propagation. Simple conceptual models have fewer parameters, making it easier to track
the impact of each hydrologic process on the final result [7].

Drought is a serious threat to food, and it has become one of the most important
factors impeding a socioeconomic system’s long-term development. Crop and animal
productivity decrease as a result of decreased soil moisture, causing a reduction in the
food supply at the top of the food chain. In dry periods lasting a long time with river
stream flows or when storage levels fall below average, drought develops. Due to the fact
that it encompasses both depletion and replenishment processes, it grows at a slower rate
than the two previous categories. If water demand is not being met, a socio-economic
drought occurs. Droughts can be classified based on precipitation anomaly timescales.
For example, a common approach to determining droughts based on time scales is to use
the Standardized Precipitation Index (SPI), which defines droughts from SPI-1 to SPI-6.
From one to six on the SPI scale, droughts resulting from climatic changes are described as
agricultural droughts, and from SPI-6 to SPI-24, as hydrological droughts [8]. According
to this definition, the accuracy of forecasting drought events is vitally important to water
resources’ planning and management. A number of drought-predicting models have been
created to aid with drought forecasting. These methods have been built using sound
methodologies, such as regression analysis, Autoregressive integrated moving average
(ARIMA), Markov chain, Artificial neural network (ANN), fuzzy logic (FL), and support
vector regression (SVR).

In order to gain a better understanding of the current and potential future state of
drought across Asia, it is necessary to investigate different drought modelling techniques,
indices, and different types of droughts in that area. Writing comprehensive literature
reviews from scratch will not provide sufficient depth and consistency in all sections
of the literature. For difficult tasks, complexity and a small dataset are crucial. For
modern research, the difficulties include a lot of mapping and visualization that needs
to be done using a small dataset. A scientometric review does not add to the complexity
of analyzing existing data, but it handles large amounts of data without increasing the
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overall challenge of responding to fundamental limitations of previous manual evaluations.
While traditional reviews are being used, scientometric analysis is employed in conjunction
with those reviews to remedy the issues that traditional reviews are burdened with. The
specific methodology employed is more concerned with the keywords co-occurrence, co-
authorship, bibliographic coupling of sources, articles, and countries contributing to the
topic of the application of drought in Asia rather than just using the few most commonly
used keywords. For the manual review section, the purpose is to investigate different
drought indices and methods. An in-depth look is provided on the issues posed by drought
in Asian countries such as China, India, Pakistan, and Iran. In addition to identifying
various limitations associated with drought monitoring, this analysis suggests possible
solutions to those problems. To accomplish the following objectives in the current study, a
quantitative method for measuring science production known as scientometric analysis
is combined with a qualitative method for formulating scientific research questions and
solving problems. To find the most relevant publication field, publication sources, most
frequently used keywords, most cited authors and works, and nations with the greatest
influence in the field of waste materials’ utilization for sustainability, the publication fields,
keywords, and most cited authors and works, as well as nations with influence in the
drought modelling must be considered. To examine the current level of research and how it
has focused on numerous elements throughout the last two decades, the key to identifying
gaps in the research is identifying research priorities so that future research can be pointed
in the proper direction.

In recent decades, extensive research has been conducted to examine the drought
condition and various mitigation strategies, yielding some useful results. Additionally,
review studies were conducted, but these were primarily manual reviews. This review
is based on scientometric analysis and a detailed discussion of drought modelling tech-
niques, indices, and the drought situation in Asia. The novelty of this study is based on
scientometeric analysis, which is different from the traditional manual reviews and is more
authentic as data are collected from the Scopus database. Researchers from diverse geo-
graphical locations may benefit from the graphical representation based on scientometric
evaluation when forming research alliances, forming joint ventures, and sharing break-
through technologies and ideas as a result of this research. Despite past efforts, the lack of
drought quantification studies in China, India, Pakistan, and Iran is cause for worry. Future
research is needed to create a unified drought severity map for the Asian region. This
study will be helpful for creating drought severity maps in most Asian nations utilizing
drought indicators or indices studied in this review article to make drought mitigation
and preparation easier. Finally, Asian countries offer a plethora of possibilities for drought
research, including drought measurement using novel techniques, drought prediction and
projection, and atmospheric oscillation teleconnections. Additionally, this article explores
potential drought modelling directions. As the global sensitivity to drought has increased,
considerable focus has been paid to mitigating risks associated with its occurrence via the
implementation of planning to strengthen operational capacities (i.e., climate and water
supply monitoring, as well as the building of institutional capability), and, historically,
when a natural disaster or hazard event occurred, governments responded with impact
assessment, response, recovery, and reconstruction activities to restore the region or locality
to its pre-disaster state. Preparation, mitigation, and prediction/early warning actions
(i.e., risk management) that could mitigate future impacts and reduce the need for future
government intervention have received scant attention. There is a need for mitigation
measures pointed at mitigating the drought impacts.

2. Methodology

This study employed two approaches: Scientometric analysis review on drought
modelling and forecasting. The methodologies used in this research were quantitative
(e.g., using bibliometric mapping methods) for producing visually interesting information,
i.e., scientific data analysis was carried out using bibliometric mapping methods. The
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use of a visualization of similarities (VOS) viewer to construct the visual representation
of bibliometric network maps was implemented (i.e., VOS viewer: Visualization of Simi-
larities) [9]. In this research, the bibliometric analysis focused on the general intellectual
structure of drought monitoring and prediction, and the deployment of methods such as
dynamic modelling, stochastic modelling, and machine learning over the chosen study
period. The analyses that were completed covered the yearly output of scientific papers,
the most prolific nations, and the cooperation of both groups, as well as a lot of different
keyword occurrences, plus the development of research from topic to theme.

The literature in this field is extensive and locating the most authoritative database
is essential. As found by Aghaei et al. [10], the two most thorough, inclusive, and fact-
based literature search databases are Scopus and Web of Science. Web of Science contains
outdated bibliometric data and a less extensive coverage than Scopus [10,11]. The Scopus
bibliometric data for the present investigation on the application of drought modelling
was utilized in compiling the bibliometric data. “Droughts in Asia” was the searched
phrase in Scopus, which returned 3443 documents. To screen out the irrelevant papers,
options for data refining were utilized. Only “article” and “review” were chosen from
the “document type”. As opposed to “no language specified,” the source type was set to
“journal”, while the language was set to “English”. Beginning in 2000, the “publication
year” was restricted to 2021. With these restricting filters applied, the final number of
papers ended up being 2000. To our knowledge, prior researchers have used comparable
strategies. The methodology of scientific visualization, created by researchers for a variety
of objectives, is also used in scientometric studies. The main purpose of the essay is to
outline the difficulties researchers have while performing manual reviews, as well as to
show how keywords, authors, papers, and nations are connected in a certain study topic.

A tool was used to analyze the Scopus data, which were stored in the Comma Sepa-
rated Values (CSV) format for future reference. The mapping and visualization tools used
the VOS viewer to construct the science (version 1.6.16). The VOS viewer is a frequently
used visualization tool that is well regarded in literature. The VOS viewer was utilized to
meet the present study’s aims, as is shown in the results. A new study was conducted in
the VOS viewer, which was set up to obtain a map using data found in bibliographic database
files. While maintaining data integrity and dependability, the CSV file acquired from Scopus
was imported into the VOS viewer and evaluated in a few easy steps. Keyword co-occurrence,
citation network, co-authorship, publications, bibliometric overlaps, and country contributions
were assessed as part of the scientific mapping review. To this end, we calculated the total
number of citations to the publications. Other nations were included on the map to show the
relationships between writers and publications. Tables were utilized to describe the quantitative
values of numerous factors, while maps were employed to show their relationships and their
co-occurrence. We included keyword reviews and a summary of debate points in the study
findings to produce important findings. It is depicted in Figure 1.
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3. Results and Discussion on Scientometric Analysis
3.1. Subject Area and Annual Publication Pattern of Articles

The Scopus analyzer was used to conduct a search in the Scopus database in order
to find the most important research topics. The data revealed that the top four fields
based on the number of documents were environmental science, agriculture, and biological
science, with 28% of the total documents, followed by social science with 7%, earth and
planetary sciences with 27%, multidisciplinary with 2%, and engineering, which accounted
for 4% of the total documents, as in Figure 2. About 70.3% of the total number of papers
searched in the Scopus database were accounted for by these fields. Journal papers and
review articles were both compared to see how often the various types of papers are used
in an overall document. In fact, 87.5% of the papers published in journals were ongoing
or preliminary research, whereas 12.5% were written to assess existing work. Figure 3
represents the research field publishing trend from 2010 to 2021, which is shown by the
model in Figure 3. From 2018 to 2020, there was a minor rise in the number of publications
on the use of drought monitoring, and then in 2021, publication levels decreased. Although
a large growth was noticed in the previous two years, the actual value may be a little
lower. While experts now concentrate their efforts on drought simulation methodologies,
it is nevertheless exciting to see how new and intriguing approaches to the topic have
been discovered.
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3.2. Keywords Mapping

The keywords are an important research resource since they help identify and reflect
the topic of study under research. In order to conduct the study, the “type of analysis”
was selected as “co-occurrence” and the “unit of analysis” as “all keywords”. To ensure
that no term was ever used less than 50 times, the minimum occurrence of a term was
set at 50. As indicated in Figure 4b, the density concentration of keywords is marked
by distinctive colors Because of these limits, it was determined that only 109 terms from
12,368 fit the criterion. Table 1 shows the top 20 search terms with the highest use in the
current investigation that were employed in the research papers in the study. According to
the researcher’s analysis, the most regularly appearing terms are drought, climate change,
Asia, China, and Eurasia. The top five most regularly happening keywords include drought,
climate change, Asia, China, and Eurasia. This image (Figure 5) depicts the co-occurrence
of keywords in the network, their visualization, their connections to one another, and
the density of their correlation frequency. The position of the keyword node in Figure 4a
reflects the frequency of the keyword, while the size of the keyword node reflects the
density of the term in published works. Additionally, the visualization illustrates that the
aforementioned keywords have larger nodes than the others, which indicates that they are
the most relevant keywords in the research of drought modelling. Multiple keywords have
been visually distinguished in the network for the purpose of indicating their co-occurrence
in diverse publications. A total of four clusters were detected, with each group represented
by green, red, blue, and yellow. As an example, a cluster that is green in hue comprises the
words south Asia, central Asia, irrigation, climate change, water supply, and so on. The
colors of the rainbow in increasing order of density are red, yellow, green, and blue. In this
way, droughts, precipitation, monsoons, and rainfall all have red markings in the density
representation, signifying a greater density. This discovery will be beneficial to authors
in the future since it will assist them in picking keywords that help in locating published
material in a certain field.
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Table 1. Top twenty keywords.

Keyword Occurrences Total Link Strength

Drought 920 2257

Asia 398 1310

Climate change 513 1263

China 320 978

Eurasia 153 648

Article 189 629

Precipitation 187 621

Far east 151 586

Rain 137 496

Seasonal variation 115 450

Monsoon 132 435

Drought stress 173 412

Southeast Asia 136 403

Droughts 111 398

Rainfall 109 396

Forestry 120 380

Water supply 110 369

El Nino-southern oscillation 111 363

South Asia 119 338

Central Asia 154 330
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Figure 5. (a). Visualization of co-authorship for drought analysis; authors with minimum five documents. Green: Li
y, Red: Randerson j.t, Blue: Kumar a, Varshney r.k, Sky blue: zhang j. (b). Density Visualization of co-authorship for
drought analysis.

3.3. Co-Authorship Mapping

When citation numbers reflect an author’s impact in a given subject, that researcher’s
name will appear. Selecting “co-authorship” as the “kind of analysis” and “authors” as
the “unit of analysis” in the VOS viewer yields a great result. Approximately 188 of
6832 authors met the requirements since the minimal number of papers was 5. The results
of our study are given in Table 2, as shown by the data obtained from the Scopus database.
The total number of citations divided by the number of publications by each author was
used to get the average citation count. Liu y. has 35 published papers, whereas Dai a. had
the most citations (2527). It will be difficult to measure a researcher’s performance as an
individual. However, the author’s grade will be based on whether or not all factors are
being considered separately or when they are all included into one. The figures reveal
that the most prolific writers are Chen F., with 30 publications, Li y., with 28 publications,
and Zhang J., with 29 publications. Comparing the number of citations, Cook e.r and An-
chukaitis k.j. rank second and third with 1384 and 1383 citations, respectively, Buckley b.m.
ranks fourth with 1311, and randerson j.t. ranks fifth with (1010) citations. In Figure 5a,b,
authors with five or more papers are shown, along with the density visualization.

Table 2. Top twenty authors.

Author Documents Citations Total Link Strength

dai a 5 2527 19

cook e.r. 11 1384 27

anchukaitis k.j. 9 1383 18

buckley b.m. 9 1311 17

randerson j.t. 7 1010 5

darrigo r.d 5 1009 10
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Table 2. Cont.

Author Documents Citations Total Link Strength

liu y. 35 906 67

li j. 26 856 72

chen j. 17 855 32

li y. 32 846 71

chen y. 21 837 28

kumar a. 21 809 15

zhou t. 10 798 61

zhang j. 29 783 15

li s. 17 633 32

zhang q. 15 610 27

li x. 27 560 57

chen x. 21 600 43

3.4. Countries

Certain countries have made and continue to make more contributions to contem-
porary research than others. The visualization network was created to assist readers in
visualizing places that are devoted to environmentally friendly construction. “Biblio-
graphic coupling” was the “kind of analysis,” and “countries” was the “unit of analysis.”
The minimum number of papers required for a nation was set at 5, and 68 of the 133 nations
satisfied the requirement. Table 3 lists the top 20 active nations based on the number of
documents and citations related to the current study area. With 482, 668, and 192 papers,
respectively, the United States, China, and Germany donated the most papers overall. The
top four participating countries in terms of citation count were the United States, China, the
United Kingdom, and Germany, with 19625, 14369, 5555, and 5693 citations, respectively.
The number of papers, citations, and overall link strength demonstrate a country’s impact
on the present research domain’s development. The overall connection strength reveals
how much the papers of one nation have impacted the papers of the other nations included
in this research. As a result, it was determined that the aforementioned countries would
have the greatest impact on drought monitoring. Figure 6a,b depicts the nations’ con-
nectedness and density visualization of nations linked by citations. The size of the frame
denotes the country’s contribution to the field. Furthermore, the density graphic shows
that the nations with the most participants had a greater density. The graphical depiction
of participating nations will enable future academics to form scientific partnerships, create
joint venture reports, and exchange new methodologies.

Table 3. Countries mapping.

Country Documents Citations Total Link Strength

China 668 14,396 227,494

United states 482 19,625 203,129

Germany 192 5693 103,144

United Kingdom 161 5555 78,391

Australia 140 3795 66,910

India 242 5152 58,147

Japan 153 3494 55,803
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Table 3. Cont.

Country Documents Citations Total Link Strength

Sweden 49 1521 44,583

South Korea 82 940 34,951

France 65 2206 33,035

Italy 54 3676 32,569

Spain 37 1426 32,306

Netherlands 52 2598 30,520
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4. Types of Drought
4.1. Agricultural Drought

Drought in agriculture is often defined as a period of decreased soil humidity and the
resulting plant failure, regardless of water surface. A decrease in soil moisture is dependent
on a number of variables, including climatic and hydrological droughts, as well as the
gap between actual and prospective evapotranspiration. The quantity of water that plants
need to survive is influenced by climatic circumstances, specific attributes of a plant and its
growth stage, as well as soil attributes. Numerous drought indices have been developed to
investigate agricultural droughts. The temperatures, precipitation, and soil moisture levels
for a successful plant combination are all included in this study [12–14].

4.2. Hydrological Drought

A period of hydrological drought has been characterized as a water deficit that im-
pedes established water use. For hydrologic drought analysis, streamflow data have
been frequently used. Geology is one of the most important factors driving hydrological
droughts, according to regression analyses connecting droughts in streamflow to watershed
features [15]. Wu. J et al. studied the effects of reservoir operating regulations during dry
times on multi-scale Hydrological drought–Meteorological drought correlations. The pre-
and post-reservoir eras were compared using two standardized drought indicators (SSI
and SPI) with varying timeframes (1, 3, 6, 12, and 24 months) [16].

4.3. Meteorological Drought

Drought may be described as a lack of precipitation across a certain geographic area
for a certain amount of time. Precipitation has historically been used to determine the



Water 2021, 13, 2593 13 of 22

severity of drought. A number of studies have investigated droughts using a period of
one month’s worth of monthly precipitation data. Another alternative looks at how long
droughts have persisted in proportion to how much rain has fallen [17,18].

4.4. Socio-Economic Drought

Droughts happen when water supply systems cannot keep up with demand, and
hence affect the supply and demand for an economic benefit (water). As a result of
weather-induced water scarcity, demand for a valued commodity (water) exceeds supply.

Socioeconomic drought is a consequence of spatial-temporal supply–demand mech-
anisms and arises when the economic requirement of a product surpasses the available
supply as a consequence of a weather-related water supply shortage [19,20]. Certain
products, such as water, wheat, fish, and hydroelectric electricity, are weather-dependent.
Socioeconomic definitions of drought include components of meteorological, hydrological,
and agricultural drought.

According to some academics, this categorization should be expanded to include
edaphic drought. This form of drought is characterized by low soil penetration and a
strong emphasis on quality. Edaphic drought makes soils more susceptible to aeolian
erosion; as a consequence, vegetation suffers from moisture deficiency, nutrients on the soil
surface are depleted, and the plant dries up [15].

Drought in urban regions is characterized by reduced natural water availability,
which makes it difficult to fulfil the water requirements of sensitive socio-economic sectors
and ecosystems. Drought and drought-related risks are expected to affect several city
components. The vulnerability of a city component is a measure of the implications of
the studied natural hazard for that component, as well as its capacity to deal with its
repercussions. Drought conditions are expected to have an effect on the city’s water supply
system by altering the quality and number of raw materials used. The quantity of bacteria
in the network and reservoirs increases as the temperature rises, necessitating the use of
stronger water disinfection techniques. Dry spells continue for a long time, increasing
water consumption, including watering of residential gardens, and posing a danger due
to low water pressure in taps in peripheral housing complexes. High temperatures lead
to an increase in odor nuisance at sewage treatment plants in sewage and wastewater
management [21].

5. Drought Indices

An index based on the indicators of a specific drought reflects the severity and duration
of that drought. An index is a numerical number or formula that integrates several meteo-
rological and hydrological parameters, such as runoff, temperature, evapotranspiration,
precipitation, and water supply indicators, to provide a holistic picture of decision-making.
This kind of indicator is more practical and intelligible than raw data, and it is often pre-
sented as a numerical figure to provide planners and politicians with more decision-making
power. The government, as well as public and private organizations, analyze and react to
drought using these indicators [22].

5.1. Palmer Drought Severity Index

In 1965, Palmer came up with the concept whereby drought is characterized as a mix of
temperature, precipitation, and soil moisture, according to palmer drought severity index
PDSI [23]. This indicator is produced monthly using a complex formula that takes into
account four key factors: Precipitation, temperature, soil moisture, and evapotranspiration.
PDSI is a technique for calculating soil moisture in typically homogenous regions. It is one
of the most sophisticated and precise drought-forecasting systems in the market.

5.2. Surface Water Supply Index

The Palmer index is an algorithm that is meant for surfaces that have substantial
topographic variability, and it is not intended for areas with homogeneous soil moisture.
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Additionally, PDSI has not included the impact of snowfall in the results. SWSI is the
index used to describe surface water status in high terrains with snowfall as the principal
water supply as well as an indicator of surface water status in mountain areas with heavy
rainfall [24].

5.3. Percent of Normal Precipitation Index (PNPI)

PNPI is an advantageous tool for the general population, and the simplicity of its
method for detecting precipitation allows it to be the most powerful and effective drought-
monitoring index in Iran. The best results are obtained by using this index for a single
area or season. PNPI, however, displays variable conditions according to the geographical
location and season. When a regular distribution of precipitation is present, this indicator
is appropriate. This index is constrained by seasonal and monthly precipitations having no
special feature [25].

5.4. Crop Moisture Index

This indicator is based on a meteorological methodology to display typical planting
conditions for each week. Palmer created this approach in the same manner that he created
PDSI. While the PDSI was used to depict drought and wetness, the CMI was created to
assess short-term moisture levels in the major areas of agricultural crops under production.
This indicator adjusts to climate change in real time. It is assessed in terms of both time
and space. As a result, the maps of moisture conditions may be compared using the CMI
(Constant Moisture Index) in the U.S. in various locations [26].

5.5. Standard Precipitation Index

Using the required time period as a baseline, the standardized precipitation index (SPI)
is computed for any location [27,28]. The normal distribution is used to calculate the mean
SPI, which is then converted to a standard normal distribution to compensate for the lack
of normality in the long-term data. SPI basic strength is its ability to be computed across a
wide range of time periods. This adaptability enables SPI to monitor both immediate water
supplies, such as soil moisture, which is critical for agricultural output, and long-term
water resources, such as groundwater supplies, streamflow, and lake and reservoir levels.

5.6. Evaporative Stress Index

In terms of the time and size of peak correlations with geographically dispersed yield
data, the Evaporative Stress Index (ESI) serves as an indicator of agricultural drought.
The energy balance scheme includes important meteorological factors that contribute to
flash drought. In the United States, the ESI has been proven to give an early warning
of worsening crop moisture conditions. The research focuses on the ESI’s usefulness in
explaining regional yield variability in key crops produced in Brazil, an area designated for
substantial agricultural production improvements in terms of growth and intensification.
Brazil’s northeastern area, in particular, demonstrates a critical need for enhanced drought
preparation in the most climate-vulnerable regions. The study expands previous research
in which cross-correlations between ESI and satellite-based precipitation were examined,
further leaf area index (LAI)retrievals and anomalies across Brazil, as well as their relative
behaviors across rainforest and agricultural (farm and pasture) land cover classes. Here,
these same satellite metrics are compared with a decade’s worth of Brazilian yield data
gathered between 2003 and 2013 [29]. The evaporative stress index interacts with the US
land surface that has a strong control over the moisture of soil found in the summer season
in northern and pacific northwest regions and the southern Great Plains in the spring
season [30].

5.7. Vegetation Drought Response Index

The Vegetation drought response index (VegDRI) is a novel, large-area drought-
monitoring method that combines climate data, vegetation satellite observations, and other
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biophysical environmental variables. It is possible to monitor drought occurrences at a
finer geographic scale than with conventional climate-based drought indicators. The goal
of VegDRI was to fill a need in the market for a tool that could map and monitor spatially
precise drought patterns over broad geographic regions while also providing small-scale
drought data for better planning, mitigation, and response. This offers more detailed
drought information, which is presently only available at the county and sub-county level.
VegDRI also offers an objective and reproducible method to drought monitoring that may
be applied in near real-time and regionally extended to encompass the whole United States.
The goal of this pilot research was to introduce this novel drought-monitoring technique
and show the VegDRI’s capabilities for a single drought year in a restricted seven-state
area. This study should be regarded as the first step towards VegDR’s assessment and
development. Mesonets’ time-series soil moisture measurements will also be compared
to the VegDRI’s multi-temporal response. In addition, a network of scientific specialists
(such as state climatologists, rangeland scientists, and USDM writers), policymakers, and
agricultural producers has been created to give periodic input on the VegDRI’s accuracy
for their local region [31]

5.8. Process-Based Accumulated Drought Index

Plant conditions, soil moisture, precipitation, and crop development phases were all
included in the process-based accumulated drought index (PADI) model. The authors
make a strong case for the use of univariate and bivariate analyses in the drought system.

Because both analyses had flaws, PADI was created using a multivariate approach.
PADI was compared to PDSI and SPI and found to have a good connection. PADI was also
shown to have a strong connection with wheat yield decrease [32].

6. Drought Modelling and Forecasting
6.1. Dynamic Modelling

Real-world data are used to demonstrate a phenomenon over a period using the
perception of dynamic modelling. This is why more and more dynamic drought prediction
studies are being conducted. Dynamic drought simulations rely heavily on real-time
remote-sensing data. A methodology for acquiring accurate information about items,
places, or phenomena from afar or without direct contact with the ground is known
as remote sensing [33–36]. Drought-related climatological variables may be monitored
using remote-sensing measurements, and it is possible to utilize these to research the
effect of drought on ecosystems. In addition to monitoring and assessing the impacts of
drought, remote-sensing data have seen increasing usage in drought forecasting. Based
on the basis of remote-sensing information like the NDVI scatter plot, this land surface
temperature (VTCI series) falls into a triangle pattern as the input for the forecasting
model (1). The research effort’s main focus was not just on tracking changes in a value
of a single pixel with time, but also tracking spatial variations that apply to all 36 equally
allocated pixel values inside the geographical area [37]. The Castile and Leon forests’
short-term reaction in Spain, with remotely sensed NOAA-AVHRR photos (from 1993 to
1997), has also been investigated. The findings demonstrate that NDVI series models can
be created for different conifer species according to their needs, and climatic variables can
be used as regressors to obtain MVC-NDVI time-series forecasts for these species that are
put under summer water stress [38]. Climate Forecast System projections are downscaled
through dynamical downscaling and statistical downscaling. A more detailed evaluation
of the various RCRM methods has shown that dynamic multi-RCM ensemble downscaling
produces improved results than statistical downscaling. Only in the northwest and north-
central areas did major disparities exist. The use of thorough model selection is critical for
dynamical downscaling. The technology for real-time data observation made it possible
for novel modelling methods to be used for drought predictions. However, because a
limited amount of data is accessible, other data fusion strategies should be further studied
in order to provide more reliable model projections. A study was also carried out to
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address the issue of data continuousness (due to gauges or satellite failure) by conducting
dynamic modelling [39]. It simulated hindcast weather conditions in the contiguous United
States using WRF, employing dynamical downscaling. In this case, we discovered that
smaller-scale or dynamically downscaled fields are better for water resource applications
than large-scale ones. With WRF, moderate to severe wet and dry weather and intensity
were improved, and we concluded that dynamically downscaled fields are the better
option [40]. During the years 2002 to 2008, drought forecasting was accomplished via
satellite-based GFS (temperature and wind speed) and TMPA (precipitation) data. Bias
correction was applied to these data before they were utilized as the input for the NCEP
CFS. The projections revealed that talent in early predictions was there, but the effectiveness
of the predictions dropped as advance time rose [41].

Logistical Regression has been projected to be the standard precipitation evaporative
index SPEI and the Standard (SPI) in Europe. This type of evaluation is being included in
order to examine the influence the five European nations have on the sectors of agriculture,
energy, and industry, as well as on public water supply and freshwater ecosystems. In
the case of two highly correlated predictors interacting in two dimensions (SPI and SPEI),
the Generalized additive models (GAMs) were investigated. The pseudo-R2 and the Area
under curve (AUC) revealed an acceptable forecast with regard to the logistic regression’s
ability [42].

6.2. Probabilistic Modelling

The efficacy of a nonuniform Markov chain model formulation was examined. Using
monthly SPI data from southern Portugal, the models were built on the foundation of
67 years of monthly data. Results of the study demonstrated that the heterogenous Markov
chain model has the advantage of better differentiating across months while calculating
drought, particularly when compared to the homogeneous Markov chain model [43–45].
Markov chains were used to anticipate the length of hydrological droughts in the Canadian
prairies. The stochastic hydrating index SHI series were generated using weekly, monthly,
and yearly streamflow data. The first-order Markov chain was shown to be capable of
correctly predicting the duration of the yearly drought, but the second-order Markov chain
performed well on monthly and weekly time scales [46]. Using a weighted Markov chain
model, a region-wide drought forecast using the SPI was completed. Using data from
China’s Anhui Province, the monthly precipitation for the Huaihe River in that region
was utilized to generate the SPI series, which was then utilized for the creation of a model.
According to the results, the model was shown to be a viable tool for drought prediction,
which may be beneficial for disaster management of an area [47].

6.3. Stochastic Modelling

Stochastic models are frequently employed in science, particularly the analysis and
modelling of hydrologic time series. Stochastic models have a number of benefits, such
as a more accurate representation of time-series serial linear correlations; the ability to
search for identification in a systematic manner; model estimation and diagnostic checks;
and stochastic autoregressive moving average SARIMA deals with the properties of both
stationary and non-stationary time series. ARIMA and SARIMA are two widely used and
significant types of stochastic models [48]. In the Büyük Menderes River basin, ARIMA and
SARIMA were employed to predict the SPI. The findings demonstrated that linear stochastic
models may be used to forecast SPI time series for the Büyük Menderes River basin and
other hydro meteorologically linked basins across a wide variety of time periods [49].

7. Case Study of Asia
7.1. Case Study of China

The Yunnan Province is representative of China’s dry, drought-stricken regions.
Drought has occurred frequently in the Yunnan Province during the last twelve years,
and this has become the primary issue impeding local economic growth, as well as the
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productivity and living circumstances of the local population. With difficult circumstances
such as rocky terrain, a complex natural ecosystem, and significant regional fluctuation,
these places are especially vulnerable to drought [50]. Regional droughts occur on a regular
yearly basis and have a significant effect. While large-scale droughts do not occur on a
regular basis, they are devastating in times of crisis. The greatest drought in Chinese history
occurred during Emperor Chongzhen’s reign in the Ming Dynasty. The drought broke out
in northern Shaanxi in the Emperor’s first year of rule (1628), and the danger spread over
the following decade across Shanxi, Shandong, Henan, Hebei, and Jiangsu provinces. For
17 years, the land in the impacted area remained arid. Vast swaths of land became barren,
barely sustaining the local population. This finally culminated in the peasant insurrection
that brought the dynasty to an end. In the 20th century, large-scale droughts occurred with
an annual frequency of 11% in 1900, 1928–1929, 1934, 1956–1961, and 1972 [51]. Droughts
are more common in the northern region, although droughts have become more common in
the southern region in recent years. In China, the geographic distribution of drought shows
clear regional variation. In the western portion of Northeast China, the eastern part of
Northwest China, Southwest China, and the central and eastern regions of Inner Mongolia,
the average number of dry days per year surpasses 40 days. Arid days surpass 60 days a
year in the southern and central portions of North China, Northeast China, and the western
section of thee Jilin Province and the northeastern portion of the Huanghuai Region [52,53].
Drought frequency has increased significantly in South China, and Southwest China in
particular is notorious for its infamously bad weather as well as the western part of the
Guizhou Province. Between 2011 and 2014, the number of drought occurrences each year
increased to 50, and severe drought events have become frequent [54].

7.2. Case Study of India

Drought has an impact on many aspects of ecosystems and the environment. Some
of the environmental indicators of drought include the availability of water in reservoirs,
rainfall, soil moisture, and ground water depths [55]. Not only is the Himalayas in northern
India a significant supply of water, but they also manage India’s climate. As a water tower
endowed with a large number of glaciers, it serves as a unique drought-resistant entity
by establishing a regional buffer against drought [56]. Glaciers in the Himalayas melt
in the summer and give water to rivers and aquifers. Most glacier melt happens in the
summer, which exacerbates drought conditions. Glacial melt is increasing, hence the size
of glaciers is diminishing, therefore reducing the quantity of water that can be supplied
to river basins over time [57]. Changes in environmental elements in one location may
have an impact on the environment in another. During droughts, dust and chloride levels
have been known to rise dramatically [58]. The drought causes a food shortage, which
has a variety of social and economic consequences. It has an impact on people’s health
and safety, as well as causing water resource disputes. Due to the high density of dust
molecules in the atmosphere as a result of the extended drought, it may eventually impair
people’s respiratory systems and cause allergies.

The dry conditions may allow for additional forest fires, endangering the lives of those
who live in the woods and forest margins. The fear and despair over the economy’s loss as
a result of the drought may exacerbate tensions and disrupt mental tranquilly. According
to some accounts, individuals travel from villages to towns and cities in search of work,
exacerbating the issue of unemployment. Due to the drying up of their water sources,
600 inhabitants out of 800 in a hamlet in Madhya Pradesh’s Damoh district opted to relocate
to the adjacent Jabalpur city and district headquarters [59]. The majority of people in India
continue to live in rural regions, where agriculture is a primary source of income. Around
70% of rural India’s population is dependent on agriculture, either directly or indirectly.
They do, however, have a rain-fed agricultural system that is very susceptible to drought.
Drought affects around 70% of the agricultural crop output. Drought has a direct influence
on India’s gross domestic product GDP, as research indicates that the GDP has declined,
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owing to a significant reduction in food grain output, which correlates to a substantial
shortfall in monsoon rainfall [60].

7.3. Case Study of Pakistan

Pakistan is located in the temperate zone and experiences considerable variety due
to the country’s varied climate conditions. The northeastern region of the nation has an
exceptionally rainy environment, with glaciers and snow, whilst the southwest suffers from
severe drought. Climate variability has an effect on agriculture, hydropower, drinking
water, industry, and culture, as well as the country’s economy. According to the United
Nations Development Programme, this South Asian country would most likely dry up by
2025 [61]. Pakistan is also experiencing a major problem in the energy industry, which is
heavily reliant on the supply and management of water. Water management, on the other
hand, is significantly impacted by climate change, which includes an increasing frequency
of droughts and floods. These and several other issues underscore the critical need of under-
standing climate variability in order to improve the country’s water management. Between
1960 and 2007, researchers looked at the spatio-temporal variability of droughts using the
SPI index at various time scales and the PCA approach based on gridded precipitation
data and classified the overall drought pattern in the nation [62]. This particular study
focuses on agriculture over a three-month period and lacks an appropriate geographical
spread of research locations. There is, however, no research covering the whole nation that
discusses regionalization and reinforced firefly algorithm RFA applications, with respect
to drought risk, for varying return durations. The return period is the average length of
time that it takes a certain level of drought to have an identifiable impact on the ongoing
capability of drought performance [63]. The concept of utilizing the SPI to monitor drought
is well accepted in Pakistan. The SPI may be insufficient to adequately depict drought
conditions (particularly their initiation) in dry and rainfed locations, which often have a
naturally drier environment. Additionally, the SPI on a one-month basis does not provide
trustworthy findings when compared to the ground reality [64].

7.4. Case Study Iran

Using the SPI approach, researchers conducted a geographic analysis of long-term
droughts in Iran and determined that there was a severe drought across the country’s
east, southwest, west, and center for several months [65,66]. The researchers conducted a
drought-monitoring study in the Ardabil province using the standard evaporative precipi-
tation index SEPI fuzzy index established on the basis of fuzzy logic and concluded that
drought studies using the SEPI index show that the drought trend in Ardebil province is in-
creasing. Additionally, the temperature is growing more rapidly. The researchers assessed
the feasibility of drought prediction in Erazcose using the SPI approach and discovered that
yearly drought is forecast using spring rainfall with a correlation coefficient of 0.89 and a
square root of a projected error of 5.7◦ [67]. The researchers conducted an assessment of the
hydrological and hydrological drought conditions in the south-eastern part of Lake Urmia.
They concluded that there is a statistically significant association between meteorological
and hydrological drought at the 99 percent level, which is associated concurrently and
then becomes stronger with one Moon lag [68]. According to a 2008 assessment published
by the “Food and Agriculture Organization (FAO),” the Islamic Republic of Iran incurred
the greatest drought costs of any country in the Near East.” Between 1998 and 2001, more
than 37 million people (more than 50% of the country’s population) faced food and water
insecurity as a result of severe drought. Between 2000 and 2001, drought impacts exposed
the country’s fragility, with a 12% decline in agriculture and animal gross domestic product,
resulting in US$ 4.2 billion in agricultural losses. Iran imported 7 million tons of wheat
in 2000 due to drought, making it the world’s largest importer of grain. Extreme drought
conditions also contributed to extensive migration and the spread of disease (e.g., cholera,
diphtheria, typhoid, etc.) across the country [69].



Water 2021, 13, 2593 19 of 22

8. Summary and Future Recommendation

This research conducted a scientometric review of drought vulnerability in the Asian
area. Scientometric analysis was used to determine the pertinent research topics, the
publishing trend of papers, the co-occurrence of keywords, the most prolific authors, and
the active nations in the subject of drought. Additionally, the many forms, indices, and
modelling approaches associated with drought were studied, as well as the impact of
drought on Asian countries like China, Pakistan, Iran, and India. The impact of drought
and several forecast strategies were investigated in particular. Conclusions have been
drawn as follows:

• Scientometric analysis of data retrieved from the Scopus database revealed that the
top three fields in terms of document count were Environmental Science, Agriculture
and Biological Science, and Earth and Planetary Science, accounting for 28 percent,
28 percent, and 27 percent, respectively, of total documents. Up until 2019–2020, a
small rise in the number of articles about drought was seen. Moreover, for 2021,
data were collected from January -June, which indicate a significant decline in the
publications. However, it may be improved in the remaining months of 2021.

• Drought, Asia, climate change, and China are the top four most-occurring terms.
Additionally, China, Germany, and the United States supplied the greatest number of
papers to the present subject of research. Additionally, with 856 citations, Li j. was the
most referenced author.

• Meteorological droughts occur when there is a cumulative deficit of atmospheric
precipitation, followed by agricultural droughts, social economic droughts, and hy-
drological droughts.

• The drought index categorizes droughts based on their meteorological, agricultural,
socioeconomic, and hydrological characteristics. It is critical to establish a clear connec-
tion between agricultural, meteorological, social economic droughts, and hydrological
droughts to reveal transmission patterns and threshold criteria. Additionally, it is
critical to carefully monitor droughts and provide early notice when one occurs.

• There is a never-ending endeavor to create resourceful drought indices with the goal of
enhancing drought monitoring and creating more accurate drought metrics. Drought
indices can only characterize drought conditions using hydrometeorological variables
and cannot quantify economic damages, according to the authors.

• Drought research in China continues to confront many obstacles. Drought creation is
unique in China, and global warming and fast societal change have exacerbated the
issue’s complexity. Drought monitoring using the SPI is widely recognized in Pakistan.
In arid and rainfed areas, the SPI frequently does not sufficiently represent drought
conditions (such as their onset). Research shows that the GDP has been reduced in
India due to a large decrease in food grain production, which corresponds to a large
deficit in monsoon rainfall. The geographic analysis of Iran showed that there was a
severe drought in the country’s east, southwest, west, and center for many months.

• Three types of modelling techniques, dynamic, probabilistic, and stochastic, are
discussed in this study. In drought forecasting, dynamic modelling for real-time
forecasting is well-known. Remote-sensing data are often used as an input for
dynamic modelling. Another method used probabilistic modelling and Markov
chains to predict future drought occurrences based on the likelihood. Similarly, the
ARIMA model was discovered for forecasting time series with short lead periods with
reasonable accuracy.

Future Recommendations

• Future drought predictions should strive to include the benefits of dynamic modelling,
probabilistic, and stochastic forecasting techniques. Due to its ability to identify direct
drought effects while filtering out indirect drought effects and their consequences, big
data systems are expected to be a future trend in drought modelling.



Water 2021, 13, 2593 20 of 22

• In the long run, there should be an emphasis on the relationship between hydrological
and meteorological factors, not the time lag between them, which needs further study.

• The method employed and the models used do not take into account the important
details of local climates, watershed features, and human influences that are typically
needed for drought forecasting in Asia.

• The connection between meteorological, hydrological, soil moisture, and vegetation
drought will be investigated in the future with additional quantitative characteristics.

• A basic agent-based drought risk model for smallholder farmers in semi-arid areas
will be established.
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