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Abstract: The change in movable beds is related to the mechanisms of sediment transport and hy-
drodynamics. Numerical modelling with empirical equations and the simplified momentum equa-
tion is the common means to analyze the complicated sediment transport processing in river chan-
nels. The optimization of parameters is essential to obtain the proper results. Inadequate parameters 
would cause errors during the simulation process and accumulate the errors with long-time simu-
lation. The optimized parameter combination for numerical modelling, however, is rarely dis-
cussed. This study adopted the ensemble method to simulate the change in the river channel, with 
a single model combined with multiple parameters. The optimized parameter combinations for a 
given river reach are investigated. Two river basins, located in Taiwan, were used as study cases, 
to simulate river morphology through the SRH-2D, which was developed by the U.S. Bureau of 
Reclamation. The input parameters related to the sediment transport module were randomly se-
lected within a reasonable range. The parameter sets with proper results were selected as ensemble 
members. The concentration of sedimentation and bathymetry elevation was used to conduct the 
calibration. Both study cases show that 20 ensemble members were good enough to capture the 
results and save simulation time. However, when the ensemble members increased to 100, there 
was no significant improvement, but a longer simulation time. The result showed that the peak 
concentration and the occurrence of time could be predicted by the ensemble size of 20. Moreover, 
with consideration of the bed elevation as the target, the result showed that this method could quan-
titatively simulate the change in bed elevation. With both cases, this study showed that the ensem-
ble method is a suitable approach for river morphology numerical modelling. The ensemble size of 
20 can effectively obtain the result and reduce the uncertainty for sediment transport simulation. 

Keywords: sediment transport; SRH-2D; ensemble method; improvement rate 
 

1. Introduction 
The estimation of the sedimentation mechanism was generally adopted to investi-

gate the river morphology issues by using the numerical model. The collected data need 
to cover several periods to calibrate and verify simulated sensitive parameters in the past. 
Then, a better set of parameters could be used to predict the variation in the river sedi-
mentation. However, the traditional parameter optimization process is prone to uncer-
tainty and produces errors in the different case studies that use the same parameter set. 
In addition, it is time-consuming work to adjust the parameters in the hydraulic simula-
tion, and sedimentation simulation has more parameters and empirical formulas that 
need to be adjusted to match the sediment transport pattern. Moreover, the calibrated 
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parameters are often inadequate to apply in other research regions, due to the different 
sedimentation patterns. Therefore, a faster and more efficient approach should be devel-
oped to solve the above obstacles. The ensemble forecast only needs to randomly and rea-
sonably generate multiple sets of parameters to simulate and ensemble the average value 
of the simulation outcome to evaluate. Therefore, this study combines a numerical model 
and an ensemble method to improve the current disadvantage. It is quite helpful for in-
creasing the speed of the simulation, to further establish an early warning system. 

Firstly, choosing an appropriate numerical model to combine the ensemble method 
and investigate the sedimentation pattern in the river channel is a crucial issue. The 1D 
models were developed due to their higher computational efficiency. The simulated result 
can reflect the river behavior at a certain scale. However, the simulation of the horizontal 
variation in the river bed is difficult to obtain by using 1D models. Owing to advances in 
technology, the 2D and 3D models have gained popularity. The 2D model could estimate 
the erosion and deposition patterns along with the flood events; however, it was not ac-
curate when calculating the flow field around structures such as bridges and groynes. In 
comparison, a 3D model simulates the vertical flow mechanism; however, the obstacle of 
being time consuming still exists, and it is insufficient to apply in real-time forecasting. To 
consider reasonable physical mechanisms and computational efficiency, the 2D model is 
a moderate selection. The 2D model can simulate the horizontal velocity distribution, the 
secondary flow of the meandering channel, and the variation in the water level in each 
cross-section appropriately. In addition, the application of the 2D shallow water model 
can be well applied in this study, because the simulation case is an open-channel flow type 
with a water depth that is relatively smaller than the river width [1–5]. 

Although the numerical model is becoming mature, and the simulated result has 
gradually improved, numerous uncertainties still exist in the hydrological process, be-
cause the numerical models mainly solve the nonlinear physical phenomenon by using 
the calculus or gradient method. In addition, errors often occur during the simulation pro-
cess, due to inappropriate parameter selection [6]. The failed simulation is also affected 
by other sources, such as boundary conditions, initial conditions, and model architecture 
[7]. Therefore, numerous studies have begun to analyze different sources of uncertainty 
in hydrological models [8–11]. Data assimilation is one of the new approaches that have 
been developed to deal with different sources of uncertainty [12–17]. Most of these studies 
focus on one or two uncertainties in a single model. A concept has been proposed that 
compensates for the bias from a single model, by combining multiple models to output 
the modified simulated result [18]. The above description can be mainly classified into 
two methods. The first is to combine the different models with the weight of the parame-
ters, to produce the updated result [19–22]. The second, such as the Bayesian model aver-
age (BMA), uses the probability distribution as a metric standard [23]. The weight of each 
ensemble member in the model will be different according to the successful percentage. 
Both approaches can be determined by the evaluation method of the uncertainty, and 
noted to be stable and accurate by comparing them with the single model method [24–26]. 

The above-mentioned methods have been used for decades in meteorological science 
[27,28]. Whether machine learning or ensemble forecasting, the decision of the ensemble 
size is still an independent subject [29,30]. Chiang et al. [31] applied the concept of ensem-
ble forecasting to the conceptual model HBV and the recursive neural network (RNN), to 
calculate the river flow and analyze the sensitivity of the ensemble size. As a result, the 
ensemble size should be the critical point at which both models can obtain reasonable 
performance. The increasing ensemble size does lead to a slight improvement, but re-
quires too much calculation time. This concept is worthy to be investigated and applied 
in different scientific fields. 

Above all, there are many applications in the hydrological field, but few cases have 
been applied to river sediment issues. Therefore, this study conducts sediment transport 
simulations through ensemble forecasting, and figures out the applicability of ensemble 
members. It combines multiple clusters of hydraulic and sediment parameters to analyze 



Water 2021, 13, 2588 3 of 19 
 

 

the sensitivity of the number of members, and to assess whether the ensemble model has 
improved. Moreover, the range of parameter values is recommended through the statisti-
cal parameter relationship of the members, and the optimized ensemble size can be deter-
mined to improve the simulation effectiveness. The traditional method can approximate 
the measured results by finding the better value of each parameter. However, all the pa-
rameters need to be re-adjusted to fit the variety of different scenarios. The contribution 
of this study is to use the ensemble method in hydraulic and sediment simulations, and 
figure out the ensemble size in different river basins. Furthermore, the advantage of this 
research is that the same set of parameters and fixed ensemble sizes can be applied in 
different field sites and grasp the relatively reasonable simulation outcome. Extreme dis-
asters are frequently happening in recent years. This study is valuable to pressing ahead 
in the hydraulic engineering field, to enhance forecasting during flash flooding events. 

2. Methodology 
This study combined numerical modelling and ensemble method to investigate the 

ensemble size. The flowchart of this research is shown in Figure 1. 

2.1. Governing Equation of SRH-2D 
An introduction to hydraulic and sediment modeling, SRH-2D, was conducted to 

help to understand the physical mechanism and determine whether simulation parame-
ters are sensitive to the ensemble members. 

SRH-2D (sediment and river hydraulic two-dimension model) is a 2D shallow water 
model, which was developed by the United States Bureau of Reclamation (USBR). In ad-
dition, SRH-2D provided the numerical methods and algorithms to solve the governing 
equations [32]. This model is widely applied in the flow and sediment simulation in dif-
ferent river basins worldwide [33–37]. The vertical motion is negligible due to the hori-
zontal direction being much larger than the vertical length. Therefore, the two-dimen-
sional equations of the water depth average were solved as a substitute for the three-di-
mensional Navier–Stokes equation. The continuity and the momentum equation are as 
below: 

0h hU hV
t x y

∂ ∂ ∂+ + =
∂ ∂ ∂

 (1)

xyxx bxhThThU hUU hVU zgh
t x y x y x

τ
ρ

∂∂∂ ∂ ∂ ∂+ + = + − −
∂ ∂ ∂ ∂ ∂ ∂

 (2)

T
= xy yy byh hThV hUV hVV zgh

t x y x y x
τ
ρ

∂ ∂∂ ∂ ∂ ∂+ + + − −
∂ ∂ ∂ ∂ ∂ ∂

 (3)

where t  = time; x  and y = x -direction and y-direction in Cartesian coordinate; h  
= water depth; U  and V  = vertical-averaged velocity in x -direction and y-direction; 

g  = acceleration of gravity; xxT , xyT , yyT  = depth-averaged stresses due to turbulence as 

well as dispersion; bz z h= +  = water surface elevation; bz  = bed elevation; ρ  = water 

density; bxτ , byτ  = bed shear stresses in x -direction and y-direction. Where the bed 
stresses can be calculated by the Manning’s equation as shown in Equation (4). 

2 2 2 2 1/3
* 2 2

(U, V)( , ) = C U +V (U, V),   C /
U +V

bx by f fU gn hτ τ ρ ρ= =  (4)

where *U  = bed frictional velocity; n  = Manning’s coefficient; C f  = bed friction. Tur-
bulence stresses can obtain with the Boussinesq’s formula as shown below: 
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22( )
3xx t

UT k
x

υ υ ∂= + −
∂

 (5)

V 22( )
3yy tT k

y
υ υ ∂= + −

∂
 (6)

2( )( )xy t
U VT
y x

υ υ ∂ ∂= + +
∂ ∂

 (7)

Equation (5)–(7) are solved with the Boussinesq formula (Lai and Greimann [38]). 
Where υ  = kinematic viscosity of water; tυ  = eddy viscosity; k  = turbulent kinetic 
energy. 

The eddy viscosity can be calculated with the depth-averaged parabolic model. The 
eddy viscosity is calculated as Equation (8). 

*t tCU hυ =  (8)

where tC  = model constant and the default value = 0.7 is used in this study [32]. 
Equation (9) and (10) are the sediment concentration equations, which rely on the 

law of conservation of mass, and could be represented as follows: 

* 2 21= ( )k k t k
k k

k

hC hC hC q U V hC
t x y L

∂ ∂ ∂
+ + − +

∂ ∂ ∂
 (9)

* 2 21(1 )( ) ( )b
b k k k

b

zp q U V hC
t L

∂
− = − − +

∂
 (10)

where kC  = layer-averaged volumetric concentration of the thk  sediment size class; 

kL  = adaptation length, which is determined to a calibrated parameter; *
kq  = volume 

fraction of the thk  sediment size class; bp  = porosity of bed sediment. 

*      if  ( ) 0a b
ak akp p

t t
δ δ∂ ∂

= − <
∂ ∂

 (11)

where aδ  = active layer thickness, which is the sensitive parameter in sedimentation sim-

ulation; bδ  = sub-surface layer thickness; akp  = volume of particle distribution in active 
layer fraction; and 1ak

k
p = . 

*
akp  = volume of particle distribution in sub-surface fraction. 

= ( )      if  ( ) 0b b a b
k

k

z z
t t t t

δ δ∂ ∂ ∂ ∂
− >

∂ ∂ ∂ ∂  (12)

Discussion of sediment movement could be based on existing sediment formulations. 
In this research, Muller–Peter–Meyer (MPM) [39], and Parker [40] were adopted to esti-
mate the sedimentation of the open channel. These equations are described in (13) and 
(14), representing MPM and Parker, respectively. 

( )
3 2

1 3 2 3
500.047 0.25s

s b
r

K RS d q
K

ρ ρ ρ
 

= − + 
 

 (13)
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where 
3 2

s r

r

K S
SK

 
=  

 
; 

2

2 4 3
S

VS
K R

= ; 
2

2 4 3r
r

VS
K R

= ; 1 6
90

26
rK d

= ; R  = hydraulic radius (m); 

where 50d  = median diameter (m); bq  = erosion rate potential; sK  and rK  = bed load 
constants. 

( )
( )

( )1.5

1
11.93b s

i
i b

q g
f

p

ρ
φ

τ ρ

−
=  (14)

where ( )( )1i g iS dφ τ ρ= − ; gτ  = particle shear stress; bτ  = bed shear stress. 

2.2. Ensemble Method 
The concept of ensemble forecasting is to combine the ensemble members of several 

different sources into an average outcome. Therefore, the average value can absorb the 
uncertainty to improve the accuracy of ensemble forecasting. Technically speaking, en-
semble forecasting can be divided into the following two ways: (1) using multiple models 
and parameters; (2) using a single model and multiple parameter combinations. This 
study adopted the second approach to reduce parameter uncertainty and to simulate the 
river sedimentation issue. 

Determining the optimal ensemble size is the purpose of this study. This is to figure 
out the inflection point to solve the time-consuming problem and improve forecasting 
ability. In the present study, a sensitivity analysis is conducted through the selection of 
the ensemble size. The performance of each ensemble member is arranged in order from 
the worst to the best performing. Four estimation standards were adopted to determine 
where the significant turning points of different ensemble sizes are. Then, they were used 
to evaluate the selection of ensemble sizes and the accuracy of sediment concentration, 
riverbed variation, and cross-section erodible trend hindcasting. This method can use the 
optimized ensemble size in different cases to get a reasonable simulation result and ignore 
the complicated calibration and verification procedure. The above-mentioned standards 
include root mean square error (RMSE), correlation coefficient (CC), and Nash–Sutcliffe 
(NS) efficiency coefficient. In addition, an improvement rate (IR) was applied to evaluate 
the percentage improvement of numerical performance in the multiple parameter combi-
nation scenario with respect to hindcasting from the single model scenario in terms of 
RMSE. Regarding the above standard indexes, the smaller RMSE means better perfor-
mance; in the opposite, the bigger CC and NS means better performance. These standards 
are defined below: 

2

1

ˆ( ( ) ( ))
N

i
Q i Q i

RMSE
N

=

−
=


 (15)

1

2 2

1 1

ˆ ˆ( ( ) )( ( ) )

ˆ ˆ( ( ) ) ( ( ) )

N

i

N N

i i

Q i Q Q i Q
CC

Q i Q Q i Q

=

= =

− −
=

− −



 
 (16)

2

1

2

1

ˆ( ( ) )

( ( ) )

N

i
N

i

Q i Q
NS

Q i Q

=

=

−
=

−




 (17)

arg( ) 100%base t et

base

E E
IR

E
−

= ×  (18)
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where Q  and Q̂  = the observed and hindcast value, respectively; Q  and Q̂  = the 
means of observed and hindcast value, respectively; argt etE  = the RMSE obtained from the 

multiple parameters combination averaging; and baseE  = the RMSE obtained from the 
single model herein. A positive improvement rate indicates that the performance of mul-
tiple parameter combination averaging is better than that of the single model. 

2.3. Multiple Parameters Combination 
Different parameter sets were considered to conduct the ensemble forecast. The 

range of each parameter is described and presented below (Table 1). 

Table 1. Parameter range selection. 

Term Manning’s Coefficient Time Step Sediment Formula Adaptation Length 
Range 0.015–0.050 0.5–2.5 (s) MPM (1948), and Parker (1990) 1 to 5 times river width 

1. Manning’s coefficient: 
The water flow and shear stress are highly related with the Manning’s coefficient. It 

also affects the flow discharge and sediment capacity. Furthermore, it reflects the deposi-
tion and erosion pattern by the different selection of Manning’s coefficient. Technically 
speaking, the Manning’s coefficient is mainly determined by the bed material. According 
to the empirical formulation, the Manning’s coefficient of the Dahan River and Beigang 
River were calculated between 0.015 and 0.05. 
2. Time step: 

The stability and efficiency of the simulation are highly dependent on the numerical 
time step. Adopting a suitable value of the time step based on the grid size can improve 
the simulated results. In this study, both value ranges of different locations were consid-
ered by using the grid size. Herein, the time step was selected from 0.5 to 2.5 (s) in the 
Dahan case. In addition, the range of time step was selected from 0.5 to 1.5 (s) in the Bei-
gang case. 
3. Sediment formula: 

The selected sediment formulas were Muller–Peter–Meyer, MPM [39], and Parker 
[40]. The detail description is shown in Equations (13) and (14). 
4. Adaptation length: 

The adaptation length is a crucial parameter, which represents the characteristic 
length of the river bed from equilibrium to non-equilibrium. In other words, it means the 
influence distance of a single particle in the river. The adaptation length should be cali-
brated, and the range is selected at 1 to 5 times river width based on the official manual of 
SRH-2D. 
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Figure 1. Flowchart of the proposed approach. 
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3. Application 
River sedimentation has already attracted much attention all over the world. Moreo-

ver, the issue of river erosion and deposition, caused by flooding disasters, is highlighted 
in Taiwan, an island in East Asia. Among all the rivers in Taiwan, the Beigang and Dahan 
Rivers, observed to have severe sedimentation problems, were selected to be our investi-
gation field site. The relative locations of the Beigang and Dahan Rivers in Taiwan are 
shown in Figure 2. 

 
Figure 2. Location of the (a) Beigang River; (b) Dahan River. 

Beigang River was initially one affluent of the Chouishui River. It is about 82 km long 
and has a drainage area of about 645.2 square kilometers. The river elevation is mostly 
between 100 and 270 m; the flat area accounts for about 80% of the total area of 516 square 
kilometers. The slope is between 1/1200 and 1/10,000, from the mountainside to the river 
estuary. In addition, the average slope of the Beigang River is 1/159. The severe problem 
of this river is the erodible trend, because of the enormous flood. Therefore, we focus on 
the variation in the critical cross-section. The selected comparison basis is the measured 
data of 2000 and 2007. 

Dahan River is the main channel of the Shihmen Reservoir, and this reservoir is the 
major water construction in Northern Taiwan. However, Shimen Reservoir suffered from 
several serious typhoons and lost 34% of its storage capacity, due to the huge amount of 
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yield sediment from the watershed. In addition, climate change led to the rise in the fre-
quency of extreme flood events. These two factors caused the inflow sediment to increase 
dramatically. Therefore, this study adopts the Dahan River to investigate the sedimenta-
tion issue. The selected comparison basis is the measured data of 2012 and 2013 typhoon 
events. The case study list is shown in Table 2. 

Table 2. Case study list. 

Region Event Duration (h) Initial Condition Target 
Beigang 2000–2007 typhoons 2000 bed elevation Cross-section variation 

Dahan 2012–2013 typhoons 2012 bed elevation 
Sediment concentration, 

river bed elevation 

4. Results and Discussions 
This research focuses on the ensemble size in the sedimentation simulation. Two dif-

ferent river basins were adopted to determine the feasible ensemble size, by using the 
variation in the cross-section elevation, sediment concentration, and bed elevation. 

4.1. Performance of Bed Elevation Hindcasting 
Table 3 shows the simulation performance obtained from different ensemble sizes, 

from single to 100 in Beigang River. Each estimation standard value shown in Table 3 
indicates that each ensemble size presents a reasonable result in bed elevation hindcast-
ing. The RMSE shows the continued downward trend, and the CC and NS present the 
continued upward trend from single to 100 ensemble size. As a result, the performance is 
presented with a significantly improving trend with the increasing ensemble size. Regard-
ing the combination of ensemble sizes, the trend of the performance obtained in the en-
semble size of 20 is significant compared to that of the single ensemble size. The improve-
ment becomes insignificant when the ensemble size is larger than 20, and an ensemble 
size of 20 should be the better selection. 

Table 3. Performance by different ensemble size in Beigang River. 

Region 
Beigang River 

RMSE(m) CC NS 
single 2.393 0.529 0.170 

20 2.320 0.547 0.219 
40 2.321 0.548 0.220 
60 2.311 0.548 0.226 
80 2.309 0.549 0.227 
100 2.300 0.549 0.233 

Figure 3a shows the simulated results of the 100 ensemble members generated, with 
the performance from the worst member to the best member, individually. It can be ob-
served that the simulations produce a similar downward trend for RMSE, and an upward 
trend for CC and NS, and, finally, reach a similar accuracy when the best member is pro-
vided. Figure 3b further shows the simulated results of multiple parameters, with the 
combination of different ensemble sizes, cumulatively. For example, the values at 20 mem-
bers indicate that the statistical indexes are calculated by combining the outputs obtained 
from the worst 20 members. By displaying the results in this way, it is easier to find the 
inflection point that occurs at the member size of 20, in terms of the NS, RMSE, and CC 
indexes. The results displayed in b indicate the worst scenario for different ensemble sizes, 
because members are selected in the order of the worst to the best members. In other 
words, if we randomly select 20 out of the 100 members, the accuracy will undoubtedly 
be equal to, or better than, the worst 20 members. Moreover, it should be noted that the 
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NS, RMSE, and CC obtained from the single ensemble size are 0.170, 2.393, and 0.529 (see 
Table 3), respectively. Nevertheless, the NS, RMSE, and CC criteria improve to 0.219, 
2.320, and 0.547 when the performance is computed based on 20 members. In addition, 
the NS, RMSE, and CC criteria improve to 0.233, 2.300, and 0.549 when the performance 
is computed based on 100 members. By comparing with the above data, the ensemble size 
of 20 has already obtained a better improvement, and the ensemble size of 100 just ob-
tained a slight improvement. 

  
(a) (b) 

Figure 3. Simulation performance obtained from (a) individual member; (b) different ensemble sizes in Beigang River. 

The above indexes are used to evaluate the variation in the river bed elevation in each 
cross-section. The adopted sections shown in Figure 4 are a, b, and c will be presented in 
Figure 5. As a result, the simulation results in Figure 5a,b can reflect the deposition trend 
from the year 2000 to 2007; the simulation of Figure 5c can reflect the variation in river 
main channel meandering from the year 2000 to 2007. Although the accurate absolute el-
evation is challenging to be simulated, the clear trend indicates that the ensemble size of 
20 has already presented a good improvement ability. The above information is sufficient 
to help the management to organize a feasible strategy. 
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Figure 4. Simulation zone and compared cross-section (a–c) of Beigang River. 
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(c) 

Figure 5. Comparison of the measurement and the simulation obtained from different ensemble 
sizes of (a–c) in Beigang River. 

4.2. Performance of Sediment Concentration Hindcasting 
Table 4 and Figure 6 show the simulation performance obtained from different en-

semble sizes, from single to 100, by different sediment formulas. Each estimation standard 
value shown in Table 4 indicates that each ensemble size presents a continued improving 
trend in sediment concentration hindcasting. The CC and NS present the upward trend, 
and the RMSE presents the downward trend as the ensemble size increases. Regarding 
the combination of ensemble sizes, the trend of the performance obtained in the ensemble 
size of 20 is significant compared to that of the single ensemble size. The improvement 
becomes insignificant when the ensemble size is larger than 20. It is clear that the ensemble 
size of 20 should be the better selection. 

Figure 7 shows a scatter plot of observation and prediction. It is clear that prediction 
obtained a reasonable result, and models with a larger ensemble size are closer to the ideal 
(1:1) line. Overall, the Parker formula presents an underestimation trend; in contrast, the 
MPM formula indicates an overestimation pattern. The importance is that both sediment 
formulae can show higher accuracy when the sediment concentration is between 6000 and 
8000 ppm. In addition, the scatter points of the ensemble size of 20 almost coincide with 
the ensemble size of 100. 

Table 4. Simulation performance obtained from different ensemble size in Dahan River. 

Region 
Parker (1990) MPM (2006) 

RMSE(m) CC NS RMSE(m) CC NS 
single 3118 0.934 0.173 5215 0.946 0.032 

20 2060 0.951 0.639 3642 0.958 0.045 
40 1907 0.956 0.691 3442 0.959 0.062 
60 1894 0.959 0.69 3290 0.963 0.079 
80 1838 0.961 0.713 3169 0.962 0.145 
100 1785 0.963 0.73 3070 0.963 0.198 

  

meandering
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(a) (b) 

Figure 6. Comparison of prediction and observation obtained from different ensemble sizes in Dahan River, (a) Parker; 
(b) MPM. 

  
(a) (b) 

Figure 7. Simulation performance obtained from different ensemble sizes in Dahan River, (a) Parker; (b) MPM. 
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Figure 8 shows the comparison of the simulated and observed sediment concentra-
tion variations by using different sediment formulas. The forecasting interval (FI) indi-
cates the uncertainty of the model outputs. The interval produced by all 100 members is 
provided (grey) to show the reliability of model hindcasting. For Parker (Figure 8a), the 
whole journey simulation produces similar results and performs well compared with the 
observation. For MPM (Figure 8b), the simulated result presents a similar trend to the 
observation. The relative error value is slightly higher than the Parker; However, it indi-
cates that the result is consistent. In addition, the differences in the outcomes between 
Parker (1990) and MPM (2006) is due to the riverbed material. 

  
(a) (b) 

Figure 8. Comparison of the simulated and measured data, (a) Parker; (b) MPM. 

4.3. Determination of Ensemble Size 
Figure 9 shows the performance of cross-section elevation, sediment concentration, 

and bed elevation by different ensemble sizes. The results obtained from different cases 
with 20 members are quite similar to those for 100 members, indicating that members 
above 20 are redundant and the improvement is also limited. As far as the accuracy and 
efficiency are concerned, there should be a trade-off when calibrating sediment transport 
simulation models. It usually takes more computational time (less efficient) for calibration 
or training if the model requires better hindcasting (more accurate), and vice versa. The 
results obtained in the present study suggest that for the single model fusion multiple 
parameter combination, the ensemble size 20 provides a good compromise between 
model accuracy and efficiency. In addition, the improvement is insignificant, but there is 
an increase in simulation time when the ensemble size is larger than 20. For example, an 
ensemble size of 100 will increase the simulation time to 5 times, and it is detrimental to 
apply this to forecasting work. 

FI FI



Water 2021, 13, 2588 15 of 19 
 

 

 
Figure 9. Performance of (a) cross-section elevation; (b) sediment concentration; (c) bed elevation 
by different ensemble sizes. 

5. Concluding Remarks 
The purpose of this research is to embed the ensemble method concept to improve 

the forecasting ability to respond to extreme disasters. This study firstly combines the en-
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semble method concepts and the sediment transport simulation to figure out the applica-
bility of ensemble members. This study proposes a multiple parameter combination in a 
single model, to analyze the sensitivity of ensemble size by evaluation of their efficiency 
and accuracy for river sediment concentration, bed elevation, and erodible trend. Firstly, 
100 members were generated, respectively, with different parameter combinations for the 
optimal ensemble size. 

The results indicate that multiple parameter combinations do contribute to river sed-
imentation hindcasting, because the accuracy of SRH-2D is enhanced as the number of 
ensemble members is increased. The inflection of the improvement rate occurring at the 
ensemble size of 20 shows that the improvement as the ensemble size number rises from 
1 to 20 is much higher than the improvement as the number goes from 20 to 100. In terms 
of model accuracy and efficiency, the ensemble size of 20 can provide a compromised 
solution between model accuracy and simulation time. 

Finally, this study gives a detailed and complete investigation of the suitability of the 
ensemble size for the sediment transport numerical model. The performance demon-
strates that 20 ensemble members are sufficient to describe the variation in river sedimen-
tation, and can provide reliable hindcasting of sediment concentration, and the erosion 
and deposition trend. In other words, the ensemble method can reduce the uncertainty of 
model parameters, to improve reliability. It is urgent and necessary for an advanced early 
warning system. 

The generalization or suitability of ensemble size for different problems, such as rain-
fall forecasting and water quality simulation, have not been verified. The determined en-
semble size, 20, can be a valuable reference to further investigate these issues. 
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Nomenclature 

tC  model constant and the default value = 0.7 is used in this study 

d  average particle size. 

50d  median diameter (m) 

D  average water depth 

baseE  the RMSE obtained from the single model 

argt etE  the RMSE obtained from the multiple parameters combination averaging 
g  acceleration of gravity 
h  water depth 
k  turbulent kinetic energy 

sK  bed load constants 

rK  bed load constants 
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n  manning’s coefficient 

kp   volume of particle distribution in active layer fraction and 1ak
k
p =  

*
akp  volume of particle distribution in sub-surface fraction 

bq  erosion rate potential 

tq  unit sediment discharge (ton/m) 
Q   the observed value 

Q̂   the hindcast value  

Q̂   the means of hindcast value 

R   hydraulic radius (m) 
S   energy slope 

xxT , xyT , yyT  depth-averaged stresses due to turbulence and dispersion 

t   time 
U   depth-averaged velocity in x -direction 

*U   bed frictional velocity 

V   depth-averaged velocity in y -direction 

SV   average velocity 
x  x -direction in Cartesian coordinate 
y  y -direction in Cartesian coordinate 

z   water surface elevation 
z  bed elevation 
ρ  water density 

sρ   sediment density 

bτ   bed shear stress 

bxτ   bed shear stresses in x -direction 

byτ   bed shear stresses in y -direction 

gτ   particle shear stress; 
υ   kinematic viscosity of water 

tυ   eddy viscosity 

aδ   active layer thickness, which is the sensitive parameter in sedimentation simulation 

bδ   sub-surface layer thickness 
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