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Abstract: The change in movable beds is related to the mechanisms of sediment transport and
hydrodynamics. Numerical modelling with empirical equations and the simplified momentum
equation is the common means to analyze the complicated sediment transport processing in river
channels. The optimization of parameters is essential to obtain the proper results. Inadequate
parameters would cause errors during the simulation process and accumulate the errors with long-
time simulation. The optimized parameter combination for numerical modelling, however, is rarely
discussed. This study adopted the ensemble method to simulate the change in the river channel,
with a single model combined with multiple parameters. The optimized parameter combinations for
a given river reach are investigated. Two river basins, located in Taiwan, were used as study cases,
to simulate river morphology through the SRH-2D, which was developed by the U.S. Bureau of
Reclamation. The input parameters related to the sediment transport module were randomly selected
within a reasonable range. The parameter sets with proper results were selected as ensemble members.
The concentration of sedimentation and bathymetry elevation was used to conduct the calibration.
Both study cases show that 20 ensemble members were good enough to capture the results and save
simulation time. However, when the ensemble members increased to 100, there was no significant
improvement, but a longer simulation time. The result showed that the peak concentration and the
occurrence of time could be predicted by the ensemble size of 20. Moreover, with consideration of
the bed elevation as the target, the result showed that this method could quantitatively simulate the
change in bed elevation. With both cases, this study showed that the ensemble method is a suitable
approach for river morphology numerical modelling. The ensemble size of 20 can effectively obtain
the result and reduce the uncertainty for sediment transport simulation.

Keywords: sediment transport; SRH-2D; ensemble method; improvement rate

1. Introduction

The estimation of the sedimentation mechanism was generally adopted to investigate
the river morphology issues by using the numerical model. The collected data need to cover
several periods to calibrate and verify simulated sensitive parameters in the past. Then, a
better set of parameters could be used to predict the variation in the river sedimentation.
However, the traditional parameter optimization process is prone to uncertainty and
produces errors in the different case studies that use the same parameter set. In addition,
it is time-consuming work to adjust the parameters in the hydraulic simulation, and
sedimentation simulation has more parameters and empirical formulas that need to be
adjusted to match the sediment transport pattern. Moreover, the calibrated parameters
are often inadequate to apply in other research regions, due to the different sedimentation
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patterns. Therefore, a faster and more efficient approach should be developed to solve the
above obstacles. The ensemble forecast only needs to randomly and reasonably generate
multiple sets of parameters to simulate and ensemble the average value of the simulation
outcome to evaluate. Therefore, this study combines a numerical model and an ensemble
method to improve the current disadvantage. It is quite helpful for increasing the speed of
the simulation, to further establish an early warning system.

Firstly, choosing an appropriate numerical model to combine the ensemble method
and investigate the sedimentation pattern in the river channel is a crucial issue. The 1D
models were developed due to their higher computational efficiency. The simulated result
can reflect the river behavior at a certain scale. However, the simulation of the horizontal
variation in the river bed is difficult to obtain by using 1D models. Owing to advances in
technology, the 2D and 3D models have gained popularity. The 2D model could estimate
the erosion and deposition patterns along with the flood events; however, it was not
accurate when calculating the flow field around structures such as bridges and groynes.
In comparison, a 3D model simulates the vertical flow mechanism; however, the obstacle
of being time consuming still exists, and it is insufficient to apply in real-time forecasting.
To consider reasonable physical mechanisms and computational efficiency, the 2D model
is a moderate selection. The 2D model can simulate the horizontal velocity distribution,
the secondary flow of the meandering channel, and the variation in the water level in each
cross-section appropriately. In addition, the application of the 2D shallow water model can
be well applied in this study, because the simulation case is an open-channel flow type
with a water depth that is relatively smaller than the river width [1–5].

Although the numerical model is becoming mature, and the simulated result has
gradually improved, numerous uncertainties still exist in the hydrological process, because
the numerical models mainly solve the nonlinear physical phenomenon by using the
calculus or gradient method. In addition, errors often occur during the simulation process,
due to inappropriate parameter selection [6]. The failed simulation is also affected by
other sources, such as boundary conditions, initial conditions, and model architecture [7].
Therefore, numerous studies have begun to analyze different sources of uncertainty in
hydrological models [8–11]. Data assimilation is one of the new approaches that have
been developed to deal with different sources of uncertainty [12–17]. Most of these studies
focus on one or two uncertainties in a single model. A concept has been proposed that
compensates for the bias from a single model, by combining multiple models to output the
modified simulated result [18]. The above description can be mainly classified into two
methods. The first is to combine the different models with the weight of the parameters,
to produce the updated result [19–22]. The second, such as the Bayesian model average
(BMA), uses the probability distribution as a metric standard [23]. The weight of each
ensemble member in the model will be different according to the successful percentage.
Both approaches can be determined by the evaluation method of the uncertainty, and noted
to be stable and accurate by comparing them with the single model method [24–26].

The above-mentioned methods have been used for decades in meteorological sci-
ence [27,28]. Whether machine learning or ensemble forecasting, the decision of the
ensemble size is still an independent subject [29,30]. Chiang et al. [31] applied the concept
of ensemble forecasting to the conceptual model HBV and the recursive neural network
(RNN), to calculate the river flow and analyze the sensitivity of the ensemble size. As
a result, the ensemble size should be the critical point at which both models can obtain
reasonable performance. The increasing ensemble size does lead to a slight improvement,
but requires too much calculation time. This concept is worthy to be investigated and
applied in different scientific fields.

Above all, there are many applications in the hydrological field, but few cases have
been applied to river sediment issues. Therefore, this study conducts sediment transport
simulations through ensemble forecasting, and figures out the applicability of ensemble
members. It combines multiple clusters of hydraulic and sediment parameters to analyze
the sensitivity of the number of members, and to assess whether the ensemble model has
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improved. Moreover, the range of parameter values is recommended through the statistical
parameter relationship of the members, and the optimized ensemble size can be determined
to improve the simulation effectiveness. The traditional method can approximate the
measured results by finding the better value of each parameter. However, all the parameters
need to be re-adjusted to fit the variety of different scenarios. The contribution of this
study is to use the ensemble method in hydraulic and sediment simulations, and figure
out the ensemble size in different river basins. Furthermore, the advantage of this research
is that the same set of parameters and fixed ensemble sizes can be applied in different
field sites and grasp the relatively reasonable simulation outcome. Extreme disasters are
frequently happening in recent years. This study is valuable to pressing ahead in the
hydraulic engineering field, to enhance forecasting during flash flooding events.

2. Methodology

This study combined numerical modelling and ensemble method to investigate the
ensemble size. The flowchart of this research is shown in Figure 1.

2.1. Governing Equation of SRH-2D

An introduction to hydraulic and sediment modeling, SRH-2D, was conducted to help
to understand the physical mechanism and determine whether simulation parameters are
sensitive to the ensemble members.

SRH-2D (sediment and river hydraulic two-dimension model) is a 2D shallow water
model, which was developed by the United States Bureau of Reclamation (USBR). In
addition, SRH-2D provided the numerical methods and algorithms to solve the governing
equations [32]. This model is widely applied in the flow and sediment simulation in
different river basins worldwide [33–37]. The vertical motion is negligible due to the hori-
zontal direction being much larger than the vertical length. Therefore, the two-dimensional
equations of the water depth average were solved as a substitute for the three-dimensional
Navier–Stokes equation. The continuity and the momentum equation are as below:

∂h
∂t

+
∂hU
∂x

+
∂hV
∂y

= 0 (1)

∂hU
∂t

+
∂hUU

∂x
+
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∂y

=
∂hTxx

∂x
+

∂hTxy
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− gh

∂z
∂x

− τbx
ρ

(2)

∂hV
∂t

+
∂hUV

∂x
+

∂hVV
∂y

=
∂hTxy

∂x
+

∂hTyy

∂y
− gh

∂z
∂x

−
τby

ρ
(3)

where t = time; x and y = x-direction and y-direction in Cartesian coordinate; h = water
depth; U and V = vertical-averaged velocity in x-direction and y-direction; g = acceleration
of gravity; Txx, Txy, Tyy = depth-averaged stresses due to turbulence as well as dispersion;
z = zb + h = water surface elevation; zb = bed elevation; ρ = water density; τbx, τby = bed
shear stresses in x-direction and y-direction. Where the bed stresses can be calculated by
the Manning’s equation as shown in Equation (4).

(τbx, τby) = ρU2
∗

(U, V)√
U2+V2

= ρC f

√
U2+V2(U, V), C f = gn2/h1/3 (4)

where U∗ = bed frictional velocity; n = Manning’s coefficient; C f = bed friction. Turbulence
stresses can obtain with the Boussinesq’s formula as shown below:

Txx = 2(υ + υt)
∂U
∂x

− 2
3

k (5)

Tyy = 2(υ + υt)
∂V
∂y

− 2
3

k (6)
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Txy = 2(υ + υt)(
∂U
∂y

+
∂V
∂x

) (7)

Equations (5)–(7) are solved with the Boussinesq formula (Lai and Greimann [38]).
Where υ = kinematic viscosity of water; υt = eddy viscosity; k = turbulent kinetic energy.

The eddy viscosity can be calculated with the depth-averaged parabolic model. The
eddy viscosity is calculated as Equation (8).

υt = CtU∗h (8)

where Ct = model constant and the default value = 0.7 is used in this study [32].
Equations (9) and (10) are the sediment concentration equations, which rely on the

law of conservation of mass, and could be represented as follows:

∂hCk
∂t

+
∂hCk

∂x
+

∂thCk
∂y

=
1
Lk

(q∗k −
√

U2 + V2hCk) (9)

(1 − pb)(
∂zb
∂t

)
k
= − 1

Lb
(q∗k −

√
U2 + V2hCk) (10)

where Ck = layer-averaged volumetric concentration of the kth sediment size class;
Lk = adaptation length, which is determined to a calibrated parameter; q∗k = volume
fraction of the kth sediment size class; pb = porosity of bed sediment.

p∗ak = pak if (
∂δa

∂t
− ∂δb

∂t
) < 0 (11)

where δa = active layer thickness, which is the sensitive parameter in sedimentation simu-
lation; δb = sub-surface layer thickness; pak = volume of particle distribution in active layer
fraction; and ∑

k
pak = 1.

p∗ak = volume of particle distribution in sub-surface fraction.

∂zb
∂t

= ∑
k
(

∂zb
∂t

)
k

if (
∂δa

∂t
− ∂δb

∂t
) > 0 (12)

Discussion of sediment movement could be based on existing sediment formulations.
In this research, Muller–Peter–Meyer (MPM) [39], and Parker [40] were adopted to estimate
the sedimentation of the open channel. These equations are described in (13) and (14),
representing MPM and Parker, respectively.(

Ks

Kr

)3/2
RS = 0.047(ρs − ρ)d50 + 0.25ρ1/3q2/3

b (13)

where
(

Ks
Kr

)3/2
= Sr

S ; S = V2

K2
SR4/3 ; Sr =

V2

K2
r R4/3 ; Kr =

26
d1/6

90
; R = hydraulic radius (m); where

d50 = median diameter (m); qb = erosion rate potential; Ks and Kr = bed load constants.

qbg(ρs − 1)

pi(τb/ρ)1.5 = 11.93 f (φi) (14)

where φi = τg/(ρ(S − 1)di); τg = particle shear stress; τb = bed shear stress.

2.2. Ensemble Method

The concept of ensemble forecasting is to combine the ensemble members of several
different sources into an average outcome. Therefore, the average value can absorb the un-
certainty to improve the accuracy of ensemble forecasting. Technically speaking, ensemble
forecasting can be divided into the following two ways: (1) using multiple models and
parameters; (2) using a single model and multiple parameter combinations. This study
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adopted the second approach to reduce parameter uncertainty and to simulate the river
sedimentation issue.

Determining the optimal ensemble size is the purpose of this study. This is to figure
out the inflection point to solve the time-consuming problem and improve forecasting
ability. In the present study, a sensitivity analysis is conducted through the selection of
the ensemble size. The performance of each ensemble member is arranged in order from
the worst to the best performing. Four estimation standards were adopted to determine
where the significant turning points of different ensemble sizes are. Then, they were used
to evaluate the selection of ensemble sizes and the accuracy of sediment concentration,
riverbed variation, and cross-section erodible trend hindcasting. This method can use
the optimized ensemble size in different cases to get a reasonable simulation result and
ignore the complicated calibration and verification procedure. The above-mentioned
standards include root mean square error (RMSE), correlation coefficient (CC), and Nash–
Sutcliffe (NS) efficiency coefficient. In addition, an improvement rate (IR) was applied to
evaluate the percentage improvement of numerical performance in the multiple parameter
combination scenario with respect to hindcasting from the single model scenario in terms of
RMSE. Regarding the above standard indexes, the smaller RMSE means better performance;
in the opposite, the bigger CC and NS means better performance. These standards are
defined below:

RMSE =

√√√√√ N
∑

i=1
(Q̂(i)− Q(i))2

N
(15)

CC =

N
∑

i=1
(Q(i)− Q)(Q̂(i)− Q̂)√

N
∑

i=1
(Q(i)− Q)

2 N
∑

i=1
(Q̂(i)− Q̂)

2
(16)

NS =

N
∑

i=1
(Q(i)− Q̂)

2

N
∑

i=1
(Q(i)− Q)

2
(17)

IR = (
Ebase − Etarget

Ebase
)× 100% (18)

where Q and Q̂ = the observed and hindcast value, respectively; Q and Q̂ = the means of
observed and hindcast value, respectively; Etarget = the RMSE obtained from the multiple
parameters combination averaging; and Ebase = the RMSE obtained from the single model
herein. A positive improvement rate indicates that the performance of multiple parameter
combination averaging is better than that of the single model.

2.3. Multiple Parameters Combination

Different parameter sets were considered to conduct the ensemble forecast. The range
of each parameter is described and presented below (Table 1).

Table 1. Parameter range selection.

Term Manning’s Coefficient Time Step Sediment Formula Adaptation Length

Range 0.015–0.050 0.5–2.5 (s) MPM (1948), and Parker (1990) 1 to 5 times river width
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1. Manning’s coefficient:

The water flow and shear stress are highly related with the Manning’s coefficient. It
also affects the flow discharge and sediment capacity. Furthermore, it reflects the deposition
and erosion pattern by the different selection of Manning’s coefficient. Technically speaking,
the Manning’s coefficient is mainly determined by the bed material. According to the
empirical formulation, the Manning’s coefficient of the Dahan River and Beigang River
were calculated between 0.015 and 0.05.

2. Time step:

The stability and efficiency of the simulation are highly dependent on the numerical
time step. Adopting a suitable value of the time step based on the grid size can improve the
simulated results. In this study, both value ranges of different locations were considered by
using the grid size. Herein, the time step was selected from 0.5 to 2.5 (s) in the Dahan case.
In addition, the range of time step was selected from 0.5 to 1.5 (s) in the Beigang case.

3. Sediment formula:

The selected sediment formulas were Muller–Peter–Meyer, MPM [39], and Parker [40].
The detail description is shown in Equations (13) and (14).

4. Adaptation length:

The adaptation length is a crucial parameter, which represents the characteristic length
of the river bed from equilibrium to non-equilibrium. In other words, it means the influence
distance of a single particle in the river. The adaptation length should be calibrated, and
the range is selected at 1 to 5 times river width based on the official manual of SRH-2D.

3. Application

River sedimentation has already attracted much attention all over the world. Moreover,
the issue of river erosion and deposition, caused by flooding disasters, is highlighted
in Taiwan, an island in East Asia. Among all the rivers in Taiwan, the Beigang and
Dahan Rivers, observed to have severe sedimentation problems, were selected to be our
investigation field site. The relative locations of the Beigang and Dahan Rivers in Taiwan
are shown in Figure 2.

Beigang River was initially one affluent of the Chouishui River. It is about 82 km long
and has a drainage area of about 645.2 square kilometers. The river elevation is mostly
between 100 and 270 m; the flat area accounts for about 80% of the total area of 516 square
kilometers. The slope is between 1/1200 and 1/10,000, from the mountainside to the river
estuary. In addition, the average slope of the Beigang River is 1/159. The severe problem
of this river is the erodible trend, because of the enormous flood. Therefore, we focus on
the variation in the critical cross-section. The selected comparison basis is the measured
data of 2000 and 2007.

Dahan River is the main channel of the Shihmen Reservoir, and this reservoir is the
major water construction in Northern Taiwan. However, Shimen Reservoir suffered from
several serious typhoons and lost 34% of its storage capacity, due to the huge amount
of yield sediment from the watershed. In addition, climate change led to the rise in the
frequency of extreme flood events. These two factors caused the inflow sediment to increase
dramatically. Therefore, this study adopts the Dahan River to investigate the sedimentation
issue. The selected comparison basis is the measured data of 2012 and 2013 typhoon events.
The case study list is shown in Table 2.

Table 2. Case study list.

Region Event Duration (h) Initial Condition Target

Beigang 2000–2007 typhoons 2000 bed elevation Cross-section variation

Dahan 2012–2013 typhoons 2012 bed elevation Sediment concentration,
river bed elevation
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4. Results and Discussion

This research focuses on the ensemble size in the sedimentation simulation. Two
different river basins were adopted to determine the feasible ensemble size, by using the
variation in the cross-section elevation, sediment concentration, and bed elevation.

4.1. Performance of Bed Elevation Hindcasting

Table 3 shows the simulation performance obtained from different ensemble sizes,
from single to 100 in Beigang River. Each estimation standard value shown in Table 3
indicates that each ensemble size presents a reasonable result in bed elevation hindcasting.
The RMSE shows the continued downward trend, and the CC and NS present the continued
upward trend from single to 100 ensemble size. As a result, the performance is presented
with a significantly improving trend with the increasing ensemble size. Regarding the
combination of ensemble sizes, the trend of the performance obtained in the ensemble size
of 20 is significant compared to that of the single ensemble size. The improvement becomes
insignificant when the ensemble size is larger than 20, and an ensemble size of 20 should
be the better selection.

Figure 3a shows the simulated results of the 100 ensemble members generated, with
the performance from the worst member to the best member, individually. It can be
observed that the simulations produce a similar downward trend for RMSE, and an
upward trend for CC and NS, and, finally, reach a similar accuracy when the best member
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is provided. Figure 3b further shows the simulated results of multiple parameters, with
the combination of different ensemble sizes, cumulatively. For example, the values at
20 members indicate that the statistical indexes are calculated by combining the outputs
obtained from the worst 20 members. By displaying the results in this way, it is easier to
find the inflection point that occurs at the member size of 20, in terms of the NS, RMSE, and
CC indexes. The results displayed in b indicate the worst scenario for different ensemble
sizes, because members are selected in the order of the worst to the best members. In other
words, if we randomly select 20 out of the 100 members, the accuracy will undoubtedly
be equal to, or better than, the worst 20 members. Moreover, it should be noted that the
NS, RMSE, and CC obtained from the single ensemble size are 0.170, 2.393, and 0.529
(see Table 3), respectively. Nevertheless, the NS, RMSE, and CC criteria improve to 0.219,
2.320, and 0.547 when the performance is computed based on 20 members. In addition,
the NS, RMSE, and CC criteria improve to 0.233, 2.300, and 0.549 when the performance is
computed based on 100 members. By comparing with the above data, the ensemble size of
20 has already obtained a better improvement, and the ensemble size of 100 just obtained a
slight improvement.

Table 3. Performance by different ensemble size in Beigang River.

Region
Beigang River

RMSE(m) CC NS

single 2.393 0.529 0.170
20 2.320 0.547 0.219
40 2.321 0.548 0.220
60 2.311 0.548 0.226
80 2.309 0.549 0.227

100 2.300 0.549 0.233
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The above indexes are used to evaluate the variation in the river bed elevation in each
cross-section. The adopted sections shown in Figure 4 are a, b, and c will be presented
in Figure 5. As a result, the simulation results in Figure 5a,b can reflect the deposition
trend from the year 2000 to 2007; the simulation of Figure 5c can reflect the variation in
river main channel meandering from the year 2000 to 2007. Although the accurate absolute
elevation is challenging to be simulated, the clear trend indicates that the ensemble size of
20 has already presented a good improvement ability. The above information is sufficient
to help the management to organize a feasible strategy.
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4.2. Performance of Sediment Concentration Hindcasting

Table 4 and Figure 6 show the simulation performance obtained from different ensem-
ble sizes, from single to 100, by different sediment formulas. Each estimation standard
value shown in Table 4 indicates that each ensemble size presents a continued improving
trend in sediment concentration hindcasting. The CC and NS present the upward trend,
and the RMSE presents the downward trend as the ensemble size increases. Regarding
the combination of ensemble sizes, the trend of the performance obtained in the ensemble
size of 20 is significant compared to that of the single ensemble size. The improvement
becomes insignificant when the ensemble size is larger than 20. It is clear that the ensemble
size of 20 should be the better selection.

Table 4. Simulation performance obtained from different ensemble size in Dahan River.

Region
Parker (1990) MPM (2006)

RMSE(m) CC NS RMSE(m) CC NS

single 3118 0.934 0.173 5215 0.946 0.032
20 2060 0.951 0.639 3642 0.958 0.045
40 1907 0.956 0.691 3442 0.959 0.062
60 1894 0.959 0.69 3290 0.963 0.079
80 1838 0.961 0.713 3169 0.962 0.145
100 1785 0.963 0.73 3070 0.963 0.198



Water 2021, 13, 2588 11 of 17

Water 2021, 13, 2588 11 of 19 
 

 

 

Figure 4. Simulation zone and compared cross-section (a–c) of Beigang River. 

 
(a) 

 
(b) 

ab

c

ab

c

D
ep

o
si

te
d

D
ep

o
si

te
d

Water 2021, 13, 2588 12 of 19 
 

 

 
(c) 

Figure 5. Comparison of the measurement and the simulation obtained from different ensemble 

sizes of (a–c) in Beigang River. 

4.2. Performance of Sediment Concentration Hindcasting 

Table 4 and Figure 6 show the simulation performance obtained from different en-

semble sizes, from single to 100, by different sediment formulas. Each estimation standard 

value shown in Table 4 indicates that each ensemble size presents a continued improving 

trend in sediment concentration hindcasting. The CC and NS present the upward trend, 

and the RMSE presents the downward trend as the ensemble size increases. Regarding 

the combination of ensemble sizes, the trend of the performance obtained in the ensemble 

size of 20 is significant compared to that of the single ensemble size. The improvement 

becomes insignificant when the ensemble size is larger than 20. It is clear that the ensemble 

size of 20 should be the better selection. 

Figure 7 shows a scatter plot of observation and prediction. It is clear that prediction 

obtained a reasonable result, and models with a larger ensemble size are closer to the ideal 

(1:1) line. Overall, the Parker formula presents an underestimation trend; in contrast, the 

MPM formula indicates an overestimation pattern. The importance is that both sediment 

formulae can show higher accuracy when the sediment concentration is between 6000 and 

8000 ppm. In addition, the scatter points of the ensemble size of 20 almost coincide with 

the ensemble size of 100. 

Table 4. Simulation performance obtained from different ensemble size in Dahan River. 

Region 
Parker (1990) MPM (2006) 

RMSE(m) CC NS RMSE(m) CC NS 

single 3118 0.934 0.173 5215 0.946 0.032 

20 2060 0.951 0.639 3642 0.958 0.045 

40 1907 0.956 0.691 3442 0.959 0.062 

60 1894 0.959 0.69 3290 0.963 0.079 

80 1838 0.961 0.713 3169 0.962 0.145 

100 1785 0.963 0.73 3070 0.963 0.198 

  

meandering

Figure 5. Comparison of the measurement and the simulation obtained from different ensemble sizes
of (a–c) in Beigang River.



Water 2021, 13, 2588 12 of 17
Water 2021, 13, 2588 13 of 19 
 

 

  
(a) (b) 

Figure 6. Comparison of prediction and observation obtained from different ensemble sizes in Dahan River, (a) Parker; 

(b) MPM. 

  
(a) (b) 

Figure 7. Simulation performance obtained from different ensemble sizes in Dahan River, (a) Parker; (b) MPM. 

  

Comparison observations and hindcasting Comparison observations and hindcasting
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Figure 7 shows a scatter plot of observation and prediction. It is clear that prediction
obtained a reasonable result, and models with a larger ensemble size are closer to the ideal
(1:1) line. Overall, the Parker formula presents an underestimation trend; in contrast, the
MPM formula indicates an overestimation pattern. The importance is that both sediment
formulae can show higher accuracy when the sediment concentration is between 6000 and
8000 ppm. In addition, the scatter points of the ensemble size of 20 almost coincide with
the ensemble size of 100.
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Figure 8 shows the comparison of the simulated and observed sediment concentration
variations by using different sediment formulas. The forecasting interval (FI) indicates the
uncertainty of the model outputs. The interval produced by all 100 members is provided
(grey) to show the reliability of model hindcasting. For Parker (Figure 8a), the whole journey
simulation produces similar results and performs well compared with the observation. For
MPM (Figure 8b), the simulated result presents a similar trend to the observation. The
relative error value is slightly higher than the Parker; However, it indicates that the result
is consistent. In addition, the differences in the outcomes between Parker (1990) and MPM
(2006) is due to the riverbed material.
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4.3. Determination of Ensemble Size

Figure 9 shows the performance of cross-section elevation, sediment concentration,
and bed elevation by different ensemble sizes. The results obtained from different cases
with 20 members are quite similar to those for 100 members, indicating that members
above 20 are redundant and the improvement is also limited. As far as the accuracy and
efficiency are concerned, there should be a trade-off when calibrating sediment transport
simulation models. It usually takes more computational time (less efficient) for calibration
or training if the model requires better hindcasting (more accurate), and vice versa. The
results obtained in the present study suggest that for the single model fusion multiple
parameter combination, the ensemble size 20 provides a good compromise between model
accuracy and efficiency. In addition, the improvement is insignificant, but there is an
increase in simulation time when the ensemble size is larger than 20. For example, an
ensemble size of 100 will increase the simulation time to 5 times, and it is detrimental to
apply this to forecasting work.
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Figure 9. Performance of (a) cross-section elevation; (b) sediment concentration; (c) bed elevation by
different ensemble sizes.

5. Concluding Remarks

The purpose of this research is to embed the ensemble method concept to improve the
forecasting ability to respond to extreme disasters. This study firstly combines the ensemble
method concepts and the sediment transport simulation to figure out the applicability of
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ensemble members. This study proposes a multiple parameter combination in a single
model, to analyze the sensitivity of ensemble size by evaluation of their efficiency and
accuracy for river sediment concentration, bed elevation, and erodible trend. Firstly,
100 members were generated, respectively, with different parameter combinations for the
optimal ensemble size.

The results indicate that multiple parameter combinations do contribute to river
sedimentation hindcasting, because the accuracy of SRH-2D is enhanced as the number of
ensemble members is increased. The inflection of the improvement rate occurring at the
ensemble size of 20 shows that the improvement as the ensemble size number rises from 1
to 20 is much higher than the improvement as the number goes from 20 to 100. In terms of
model accuracy and efficiency, the ensemble size of 20 can provide a compromised solution
between model accuracy and simulation time.

Finally, this study gives a detailed and complete investigation of the suitability of the
ensemble size for the sediment transport numerical model. The performance demonstrates
that 20 ensemble members are sufficient to describe the variation in river sedimentation,
and can provide reliable hindcasting of sediment concentration, and the erosion and
deposition trend. In other words, the ensemble method can reduce the uncertainty of
model parameters, to improve reliability. It is urgent and necessary for an advanced early
warning system.

The generalization or suitability of ensemble size for different problems, such as
rainfall forecasting and water quality simulation, have not been verified. The determined
ensemble size, 20, can be a valuable reference to further investigate these issues.
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Nomenclature

Ct model constant and the default value = 0.7 is used in this study
d average particle size.
d50 median diameter (m)
D average water depth
Ebase the RMSE obtained from the single model
Etarget the RMSE obtained from the multiple parameters combination averaging
g acceleration of gravity
h water depth
k turbulent kinetic energy
Ks bed load constants
Kr bed load constants
n manning’s coefficient
pk volume of particle distribution in active layer fraction and ∑

k
pak = 1

p∗ak volume of particle distribution in sub-surface fraction
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qb erosion rate potential
qt unit sediment discharge (ton/m)
Q the observed value
Q̂ the hindcast value
Q̂ the means of hindcast value
R hydraulic radius (m)
S energy slope
Txx, Txy, Tyy depth-averaged stresses due to turbulence and dispersion
t time
U depth-averaged velocity in x-direction
U∗ bed frictional velocity
V depth-averaged velocity in y-direction
VS average velocity
x x-direction in Cartesian coordinate
y y-direction in Cartesian coordinate
z water surface elevation
z bed elevation
ρ water density
ρs sediment density
τb bed shear stress
τbx bed shear stresses in x-direction
τby bed shear stresses in y-direction
τg particle shear stress;
υ kinematic viscosity of water
υt eddy viscosity
δa active layer thickness, which is the sensitive parameter in sedimentation simulation
δb sub-surface layer thickness
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