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Abstract: An accurate groundwater level (GWL) forecast at multi timescales is vital for agricultural
management and water resource scheduling in arid irrigated areas such as the Hexi Corridor, China.
However, the forecast of GWL in these areas remains a challenging task owing to the deficient
hydrogeological data and the highly nonlinear, non-stationary and complex groundwater system.
The development of reliable groundwater level simulation models is necessary and profound. In this
study, a novel ensemble deep learning GWL predictive framework integrating data pro-processing,
feature selection, deep learning and uncertainty analysis was constructed. Under this framework,
a hybrid model equipped with currently the most effective algorithms, including the complete
ensemble empirical mode decomposition with adaptive noise (CEEMDAN) for data decomposition,
the genetic algorithm (GA) for feature selection, the deep belief network (DBN) model, and the
quantile regression (QR) for uncertainty evaluation, denoted as CEEMDAN-GA-DBN, was proposed
for the 1-, 2-, and 3-month ahead GWL forecast at three GWL observation wells in the Jiuquan basin,
northwest China. The capability of the CEEMDAN-GA-DBN model was compared with the hybrid
CEEMDAN-DBN and the standalone DBN model in terms of the performance metrics including
R, MAE, RMSE, NSE, RSR, AIC and the Legates and McCabe’s Index as well as the uncertainty
criterion including MPI and PICP. The results demonstrated the higher degree of accuracy and
better performance of the objective CEEMDAN-GA-DBN model than the CEEMDAN-DBN and DBN
models at all lead times and all the wells. Overall, the CEEMDAN-GA-DBN reduced the RMSE
of the CEEMDAN-DBN and DBN models in the testing period by about 9.16 and 17.63%, while it
improved their NSE by about 6.38 and 15.32%, respectively. The uncertainty analysis results also
affirmed the slightly better reliability of the CEEMDAN-GA-DBN method than the CEEMDAN-DBN
and DBN models at the 1-, 2- and 3-month forecast horizons. The derived results proved the ability
of the proposed ensemble deep learning model in multi time steps ahead of GWL forecasting, and
thus, can be used as an effective tool for GWL forecasting in arid irrigated areas.

Keywords: groundwater level forecasting; complete ensemble empirical mode decomposition with
adaptive noise (CEEMDAN); genetic algorithm (GA); feature selection (FS); deep belief network
(DBN); quantile regression (QR); uncertainty evaluation

1. Introduction

Groundwater is an indispensable natural resource to provide the necessary water
supply for the irrigation system and industry, as well as to support the health and survival
of the natural ecosystem in arid and semi-arid regions where surface water is scarce [1–3].
However, with groundwater being over-exploited and potentially facing a risk of depletion,
the sustainable management of the groundwater resources becomes a crucial task in
these regions [4–6]. Moreover, in areas where groundwater is used for irrigation supply,
water allocation is usually scheduled ahead of time according to the projected water
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availability [7]. For this purpose, the practical forecast of groundwater resources is quite
essential.

The groundwater level (GWL) is a key parameter required to quantify groundwater
resources. The accurate and reliable prediction of the GWL is fundamental for evaluating
the groundwater availability and effective management of the irrigation schedules [8,9].
Similar to other arid regions globally, the Jiuquan basin has experienced a general ground-
water deterioration in both storage and sustainability [10]. Well-known for lying on the
Silk Road and being a significant irrigated agricultural area of northwest China, the area
urgently needs sustainable groundwater management. To achieve this, the accurate GWL
forecast is of critical importance. However, detailed predictions for the region are still
lacking.

Generally, the physically based models have traditionally been primary tools for
GWL simulation [11–13]. However, the highly nonlinear, non-stationary and relatively
complex hydrological system, the need of lots of hydrogeological data as well as the proper
initial and boundary conditions bring plenty of difficulties in the characterization of the
real hydrological system, and thus threaten the accuracy and the popularization of these
models [14,15]. With the rapid growth of the data-based methods (mainly machine learning
models), conventional algorithms such as the artificial neural network (ANN), the support
vector machine (SVM), the extreme learning machine (ELM), the adaptive neuro-fuzzy
inference system (ANFIS) and genetic programming (GP) have become viable techniques
for groundwater forecasting owing to the greater simplicity in design and flexibility [16,17].
A comprehensive and explicit review of the machine learning application in GWL modeling
can be found in Rajaee et al. [18]. However, the simplified architecture limits their ability to
perform deeper feature extraction and they continue to be regarded as ‘shallow learning’
models as well. The dependable simulating and predicting GWL (including evaluating the
underlying uncertainties) remains relatively challenging.

It is not until recently that the deep learning models (as a new class of machine
learning models) have attracted great research attention, especially in pattern recogni-
tion, signal processing, time series analysis and complex modelling tasks such as image
processing [19–21]. In terms of groundwater modeling, Zhang et al. [22] developed a Short-
Term Long Memory (LSTM) network for the groundwater table, concluding its robust
learning capability to replicate the patterns of the groundwater table. Compared with the
other fields (e.g., solar radiation modeling), the application of the deep learning models in
groundwater prediction is deficient.

In this study, one specific type of the deep learning model of interest is the deep belief
network (DBN), which exhibits an outstanding ability to extract the inherent pairwise
input(s)-target features from the lowest to the highest level [23–25]. Considering the
complexity and nonlinearity of the GWL fluctuations, the DBN algorithm could be an
appropriate choice. However, the utility of the DBN in GWL forecasting is few reported,
urging the necessity to explore its potentiality in this field.

In light of the stochastic and non-stationary characteristics of the GWL fluctuations,
effective data pre-processing tools such as wavelet transform (WT) are usually advocated.
Successful applications of WT have been conducted in hydrological forecasting [26–29].
However, the excessive dependency on the selection of the mother wavelet and the decom-
position level make the WT neither prior knowledge-based nor a regular or automated
tool [18]. Recently, the Empirical Mode Decomposition (EMD), Ensemble EMD (EEMD) and
their improved version (e.g., Complete Ensemble EMD with Adaptive Noise, CEEMDAN)
have been proposed as alternatives. Compared with EMD and EEMD, the CEEMDAN
algorithm reconstructs the original signal completely and noiselessly without trial-and-
error processes. This outstanding advantage results in its feasible application in several
hydrological prediction problems, such as the prediction of runoff, soil water, wind speed
and others [30–34]. Comparatively speaking, the CEEMDAN model seems to outperform
the other two models. Despite the achieved acceptable results of the CEEMDAN algorithm,
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no prior study in multi-timescale GWL forecasting has been carried out to the best of the
authors’ knowledge.

Although the machine learning models’ coupling data pre-processing techniques (e.g.,
EMD, EEMD or CEEMDAN) have achieved more accuracy than the traditional models,
limitations still exist in practical usage. For example, the EMD, EEMD or the CEEMDAN
algorithm decomposes a complex series into the intrinsic mode functions (IMFs) and
residual component (Res), which may lead to the loss of vital information since some of
the resulting IMFs become the unsystematic and disorderly parts among the other IMFs,
and consequently, are likely to deteriorate the forecasting accuracy.

To solve this problem, solutions either to eliminate the IMFs that contained highly
perturbing frequencies signals [35] or to build a model with a two-phase decomposition
system [36–39] are commonly accepted. The removal of the irrelevant IMFs and selecting
the most influential features are thus considered necessary steps when establishing any
EMD, EEMD and CEEMDAN hybrid hydrological forecasting models [40,41]. Normally,
the feature selection (FS) process is achieved collectively using the autocorrelation function
(ACF) and the partial autocorrelation (PACF) method. Nevertheless, being purely linear,
the ACF and PACF procedures cannot capture the nonlinear relationship between the target
and the exploratory variables. Regarding the superior capability of machine learning in
feature selection, the genetic algorithm (GA) is able to deduce the nonlinear relationships
through the heuristic search and optimization techniques [42]. This study, therefore,
attempts to integrate for the first time, the CEEMDAN decomposition method and the GA
feature selection method into a deep belief network model for GWL forecasting.

In addition, in practical GWL forecasting applications, the machine learning models
are often applied without considering the uncertainties. Although a majority of the EMD-,
EEMD- and CEEMDAN (or WT-equivalent)-based deep learning models appear to im-
prove the forecasting capability, the issue of uncertainty is often neglected. Moreover, the
deterministic prediction may not be sufficient to describe the inherent uncertainties. In
this respect, the quantile regression (QR) method, widely used for conditional quantiles
estimation, can be a powerful tool. Without any parameters or prior assumptions, the QR
method can account for the uncertainty from different sources [43]. This paper adopted the
QR method as a data post-processing tool to estimate the uncertainty in modeling GWL
variations.

Considering the numerous machine learning applications in GWL forecasting, this
study aims to implement an innovative and systematic hybrid modelling framework
in GWL forecasting based on the integrated inclusion of data decomposition (data pre-
processing), deep learning, feature selection and uncertainty evaluation (data post-processing)
(Table 1). The objectives are threefold.

Table 1. Summary of machine learning methods in groundwater level modeling for arid and semi-arid regions in the
latest years.

Data
Pre-Processing

Feature
Selection

Machine
Learning/Deep

Learning Method

Uncertainty
Analysis Hybrid Model Reference

WT

SVM; Random Forest
(RF); Linear Boosting
of XGB; Tree Boosting

of XGB

WT-SVR; WT-RF;
WT-XGBL;
WT-XGBT

Rahman et al.
(2020) [16]

WT
Pearson

correlation
analysis

LSTM WT-multivariate
LSTM

Wu et al. (2021)
[27]

Deep Neural Network
(DNN); SVM; ANFIS

Mohapatra et al.
(2021) [44]
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Table 1. Cont.

Data
Pre-Processing

Feature
Selection

Machine
Learning/Deep

Learning Method

Uncertainty
Analysis Hybrid Model Reference

WT

Support Vector
Regression (SVR);
Gaussian Process
Regression (GPR)

W-SVR; W-GPR Band et al. (2021)
[45]

Information
Gain

(IG);Variance
Inflation Factor

(VIF)

RF; Logistic
Regression; Decision

Tree; ANN

Namous et al.
(2021) [46]

Multi-layer Perceptron;
Radial Basis Function
Network; SVM; DNN

Chen et al. (2021)
[47]

ANFIS; SVM;
Kernel-based

Nonlinear Arps
decline; LSTM; Gated

Recurrent Unit

Ao et al. (2021) [48]

DNN

Modified delayed
acceptance Markov
Chain Monte Carlo

(MCMC)

Lykkegaard et al.
(2021) [49]

VMD Boruta ELM Bootstrap VBELM Wu et al. (2021)
[50]

CEEMDAN GA DBN QR CEEMDAN-GA-
DBN This study

(1) To develop a hybrid model (denoted as CEEMDAN-GA-DBN) with the highest
configuration in data decomposition (CEEMDAN), feature selection (GA) and deep learn-
ing (DBN) and to test its validity in GWL forecasting at multi spatial and temporal scales
for the arid Jiuquan Basin.

(2) To evaluate the robustness of the newly proposed GWL prediction scheme (i.e.,
CEEMDAN-GA-DBN) versus a pre-decomposed deep learning (i.e., CEEMDAN-DBN)
model and a standalone deep learning (i.e., DBN) model.

(3) To evaluate all the possible uncertainties of the GWL forecasts by adopting the quan-
tile regression (QR) method and combining the modelling procedure with the deterministic
prediction results of the hybrid CEEMDAN-GA-DBN, the hybrid CEEMDAN-DBN and
the standalone DBN model.

2. Materials and Methods
2.1. Methodological Framework

To achieve the goal of an accurate GWL forecast, the methodological framework
illustrated in Figure 1 is proposed. Firstly, the original input series is partitioned into
the training and testing subsets to prevent future data falling into the training process.
After that, the pre-processing method is implemented to reconstruct the original input
time series and to remove the stochastic and non-stationary characteristics. In this study,
the CEEMDAN was applied to decompose the original data series into IMFs and resid-
uals (Res). Then, the testing set was sequentially appended to the training set to escape
from the ‘hindcasting experiments’ [51]. The same number of IMFs/Res was set for the
training and testing datasets since both can be integrated to simulate the test data series.
Secondly, the feature selection method ought to be applied to identify and remove the
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unneeded, irrelevant and redundant attributes from the IMFs and Res decomposed using
the CEEMDAN method that do not contribute to the accuracy of the predictive models.
In this study, the GA feature selection method was applied to select the most appropriate
variable(s) from all the CEEMDAN decomposed subseries. Then, these selected variables
were further adopted for modelling. Thirdly, the deep learning model (DBN) uses subset
data containing selected variables to forecast each IMF and Res. Afterwards, all extracted
IMFs and Res predicted values were aggregated to generate the 1-, 2- and 3-month ahead
GWL.

Figure 1. Schematic of the CEEMDAN-GA-DBN model.

Once the results of the GWL forecasting are obtained, the predictive uncertainty of
the models is assessed using QR. The QR model is calibrated using the predicted GWL
values as inputs and the true GWL values from the training dataset as outputs. Then, the
desired quantiles (i.e., 0.05 and 0.95) of the GWL values are estimated with the calibrated
QR model based on the predicted GWL in the testing set as inputs.

In this study, the hybrid CEEMDAN-GA-DBN model was proposed based on the
abovementioned methodological framework. To benchmark the GWL forecast performance
of the hybrid CEEMDAN-GA-DBN model, a hybrid CEEMDAN-DBN model without
feature selection process and a standalone DBN model without any decomposition or
feature selection were also applied for 1-, 2- and 3-month ahead GWL forecast at three
GWL observation wells in the Jiuquan Basin, northwest China.

2.2. Data Decomposition Algorithm (Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise)

The complete ensemble empirical mode decomposition with adaptive noise (CEEM-
DAN) algorithm is adopted as a data decomposition method to adaptively decompose the
complex signals (e.g., GWL) into intrinsic mode functions (IMFs). The produced IMFs with
less noise have better stability and regularity than the original data series [52]. Moreover,
the CEEMDAN algorithm can alleviate the mode mixing problem by adopting the white
Gaussian noise. The decomposition process of the algorithm can be summarized as follows.

(1) The mixed signal xi(t) is described as follows:

xi(t) = x(t) + ωi(t), i = 1, 2, . . . , k (1)

where i is the ensemble number of the trials, and x(t) andωi(t) denote the original signal
and the white noise sequences, respectively.

(2) The CEEMDAN decomposes all the xi(t) into ci1(t) and ri(t) by using the EMD. It
should be noted that the purpose of this step is to obtain the IMF1 and its residual item.
The mean of the ci1(t) is calculated to obtain the c1(t) for the first IMF.

IMF1 = c1(t) =
1
k ∑k

i=1 ci1(t) (2)
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Correspondingly, the first residue item is defined.

r1(t) = x(t) − c1(t) (3)

(3) The CEEMDAN decomposes the white noiseωi(t) using the EMD. The Ej(ωi(t))
is defined as a vector representing the j-th IMF of ωi(t), where IMF2 can be express as
follows:

IMF2 = c2(t) =
1
k ∑k

i=1(E1(ωi(t)) + r1(t)) (4)

Additionally, its residual mode is as follows:

r2(t) = r1(t) − c2(t) (5)

(4) Finally, the CEEMDAN algorithm calculates the following j-th residue:

rj(t) = x(t) − cj(t) (6)

(5) By repeating process (3)–(4), the other IMFs are obtained.

IMF(j+1) = cj+1(t) =
1
k ∑k

i=1

(
E1
(
rj(t)

)
+ Ej(ωi(t))

)
(7)

rj+1(t) = rj(t) − cj(t) (8)

The original signal x(t) is then expressed as follows:

x(t) = ∑q
j=1 cj(t) + r(t) (9)

where q is the number of cj(t), and r(t) is the residual item of x(t).
This study conducted the CEEMDAN algorithm by using the ‘Rlibeemd’ package of

the R software. The ensemble number was set to 200 and the amplitude of the added white
noise was 0.2, both of which were acceptable [38,39].

Once the procedure of CEEMDAN was accomplished, the GA method was imple-
mented to select the informative features. GA has long been applied in feature selec-
tion [53–55], readers can refer to Yang and Honavar [56] for more details, no longer re-
peated here. In terms of the parameters of the GA algorithm, the population size was set to
20, the maximum iteration number was 150, the crossover rate was 0.6 and the mutation
rate was 0.02.

2.3. Deep Learning Forecast Algorithm (Deep Belief Network)

Integrated with the CEEMDAN process, an advanced form of the deep belief network
(DBN) model was developed in this study. The DBN, by incorporating multiple hidden
neuronal layers, is typically designed to improve the structure and the learning ability of the
traditional ANN [57]. Thus, the model has been extensively applied to image recognition,
feature extraction, time series forecasting and other practical fields that encounter relatively
complex data [56].

The DBN is a generative model that produces the training data by training the weights
between neurons according to the maximum probability in multiple sequentially stacked
Restricted Boltzmann Machines (RBMs) (Figure 1). RBM is the primary unit of a DBN
and consists of only two layers of neurons, the visible layer for the training input and the
hidden layer for feature detection. Notably, there is a connection between the adjacent
layers, but there are no relationships among the whole RBM layers. The process of training
a DBN model is facilitated by the layer-by-layer approach, for which the hidden layer
inferred from the data vector can be treated as that of the next layer (higher layer).

The learning process of a DBN model can be partitioned into two phases, an un-
supervised pre-training phase and a supervised fine-tuning phase. In the unsupervised
pre-training process, no target variable during the training procedure exists [57]. In this
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phase, when one of the RBMs has been trained, the learned parameters are kept, whereas
the outputs of the hidden layer are seen as the input of the next RBM layer. In this manner,
the RBM can be trained in a sequence until all RBM layers are finally trained. The pre-
training process in a DBN model is required to acquire the optimum solution of the initial
weights, and these values are later used in the subsequent (supervised fine-tuning) phase.
The fine-tuning procedure is implemented to improve the model with supervised learning
labeled data. Finally, further adjustment and optimization of the parameters of the entire
networks are made after training the RBM layers.

In the current study, a 5-layer DBN including 1 input layer, 3 hidden layers and 1
output layer was implemented. Before employing the DBN model, the learning rate of
each RBM hidden layer was set to 0.01, the maximum number of iterations was 500. When
training the DBN model structure, the hidden layers were set to RBM1, RBM2 and RBM3
layers and the number of hidden neurons in each RBM was set to 10–100, the number
of hidden neurons was selected layer by layer through a trial-and-error method, and the
prediction effects of different network structures were compared. The DBN was executed
by the R software under the ‘darch’ package.

2.4. Uncertainty Evaluation (Quantile Regression)

In this study, the predictive uncertainty of the proposed models was evaluated using
the QR method. QR, developed by Koenker and Bassettto, is a linear method used to
estimate the quantiles of a response variable without the need for a prescribed hypothe-
sis [58,59]. Although being proposed more than 50 years, QR’s ability in evaluating the
robustness of the model remains strong and timeless [60]. It has been found that using
QR for estimating forecast errors conditional on the forecasted water levels provides a
relatively simple, efficient and robust means for estimation of predictive uncertainty [61].

For each quantile τ, the relationship between the observed (y) and predicted (ŷ) data
can be expressed as follows:

y = ατŷ + bτ (10)

where ατ and bτ are the slope and intercept of equation (10), respectively, estimated by
minimizing the sum of residuals as follows:

min ∑N
i=1 ρτ (yi−(ατŷi))

(11)

where yi and ŷi are i-th samples from a dataset and ρτ is the QR function of the τ-th
quantile as follows:

ρτ(εi) =

{
(τ− 1) · εi εi < 0
τ · εi εi ≥ 0

(12)

The uncertainties generated using machine learning models were estimated as a set
of forecasted quantiles for each of the desired quantile levels (i.e., p = 0.05 and 0.95). This
study used the ‘quantreg’ package in R software to perform this QR analysis.

2.5. Materials
2.5.1. Study Area

The study area is situated inside the Jiuquan basin of Gansu province, northwest
China, and refers to the oasis area around the Jiuquan city (Figure 2). The study area has
long been an important commodity grain production base and the famous concentrated
industrial crops production area in the Hexi Corridor, more than 2/3 commodity grain,
almost all cotton, 9/10 sugar beet, more than 2/5 oil, beer barley, melon, fruit and vegetables
are provided for the whole province. Moreover, being a significant node in the Gansu
section of the Silk Road Economic Belt, the unique advantages in location, transportation,
cultural and natural resources make the Jiuquan basin superior to promote multi-level
and wide-field exchanges and cooperation. However, limited to the rare precipitation
and surface water resources, groundwater-based oasis agriculture is mainly developed.
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Therefore, the accurate forecast of groundwater level plays an essential role in agricultural
management and groundwater resource scheduling.

Figure 2. Location of the Jiuquan basin, the study area, the groundwater level observation wells and the meteorological
station.

In terms of the geology condition, the Jiuquan basin is surrounded by the Jiayuguan
fault and the Wenshushan uplift in the west, as well as the Gaotai uplift in the east. Due to
the influence of multiple tectonic movements, the Qilian fold belt in the southern Jiuquan
Basin and the Gobi plains are separated by the Geermo Fault, Langweishan–Niutoushan
Fault and the deep fault at the southern edge of the Hexi Corridor. Moreover, due to the
resistance of the Cretaceous–Tertiary strata in the southern basin, the mountainous area
and the Gobi plains have become two independent groundwater system units [62]. The
large fault in front of the mountain objectively hinders the supply of fissure water in the
bedrocks of the mountainous area to the Gobi plains [63]. Therefore, the basin presents
a complete hydrogeological unit of the recharge, runoff and discharge processes ranging
from the Gobi plains to the fine soil plain region and transitioning from a single thick layer
of sand and gravel aquifer to a double-layer or a multi-layer fine-grain aquifer. The aquifer
has a thickness of 50–400 m filled with a large volume of unconsolidated Quaternary
sediments. The groundwater becomes shallower from the southwest to the northeast end
with the groundwater depth of more than 100 m in the southern piedmont belt, 20–40 m
in the middle basin and less than 5–10 m at the outlet of the Beidahe River. According to
Wan et al. (2017), the unconfined groundwater in this area belongs to a snow and ice melt
water–groundwater system, while the confined groundwater was recharged in the late
Pleistocene and middle Holocene and is non-renewable [64]. Ice-snow melted water and
precipitation are the main sources of the shallow and deep phreatic groundwater [65].

The climate of this area is arid continental with an average annual temperature range
of about 5.8–10 ◦C. The mean annual precipitation is 117.5 mm, whereas the annual
average potential evaporation is 2148.8 mm. Harsh natural conditions of rare precipitation
and powerful evaporation make the area extremely short of water. Moreover, in recent
decades, water demand has increased dramatically, groundwater has been exploited due
to urbanization, agriculture and economic development [66]. There is no doubt that the
overuse of the surface water and overexploitation of the groundwater would affect the



Water 2021, 13, 2558 9 of 28

water balance situation, leading to a serious decline in groundwater level and a series
of complicated environmental problems (e.g., desertification, frequent sandstorms and
ecological degradation). Thus, reliable groundwater level forecasting results are of great
significance for the sustainable development of this region.

2.5.2. Dataset

To assess the validity of the hybrid CEEMDAN-GA-DBN model, the monthly GWL
records of three observation wells (i.e., Well I, Well II and Well III) in the Jiuquan Basin were
considered in this study (Figure 2). Due to data availability, monthly GWL data (m above
the sea level) from January 2000 to December 2015 were applied from the Water Authority
of the Jiuquan City. Moreover, precipitation and temperature are the most frequently used
parameters in GWL prediction problems [18]. Hence, the nearby meteorological data were
applied as model inputs, providing a more complete dataset (i.e., GWL; precipitation, Pre;
temperature, Tem). The measured daily Pre and Tem were obtained from the Chinese
Meteorological Administration with a time range of January 2000–December 2015. Since
the purpose of this study is to predict the groundwater at the 1, 2 and 3 monthly time steps,
the daily Pre was added to generate monthly equivalent ones, while the daily Tem was
averaged to acquire monthly average value beforehand.

To escape from overfitting problem, the cross-validation method was performed in
this study. All the data were divided into the following two distinct sets: the training
set (January 2000 to December 2010) and the testing set (January 2011 to December 2015).
Table 2 describes the hydrological statistics of the monthly GWL (m above the sea level),
total precipitation per month (mm) and mean monthly temperature (◦C) used in the
training, testing and total sets. According to the statistical characteristics, no statistically
significant difference existed in the training and testing datasets, indicating that the model
features within the two sets were generally similar. The training set captured enough
reliable information about the hydrological system, and therefore, can be used to train the
predictive model. Moreover, the inputs and target time series were normalized between (0,
1) before model design.

Xnorm =
X− Xmin

Xmax − Xmin
(13)

where Xnorm is the normalized data; and Xmin and Xmax are the minimum and maximum
values of the data, respectively.

Table 2. The statistical parameters of groundwater level (GWL) and related climatic data for three GWL observation wells
in the whole dataset (January 2000 to December 2015), the training dataset (January 2000 to December 2010) and the testing
dataset (January 2011 to December 2015).

Total Precipitation
Per Month

Mean Monthly
Temperature Monthly GWL

Pre (mm) Tem (◦C) Well I (m) Well II (m) Well III (m)

Minimum
All 0 −14.11 1440.03 1436.22 1328.63
Training 0 −14.11 1440.12 1436.39 1328.63
Testing 0 −13.91 1440.03 1436.22 1328.78

Maximum
All 79.50 24.38 1442.63 1441.28 1329.93
Training 52.40 24.38 1442.36 1441.28 1329.93
Testing 79.50 23.10 1442.63 1440.78 1329.82

Mean
All 7.75 8.20 1441.36 1438.74 1329.33
Training 7.77 8.19 1441.30 1438.79 1329.30
Testing 7.70 8.21 1441.50 1438.64 1329.38

Standard
Deviation

All 11.05 11.18 0.54 1.08 0.30
Training 10.01 11.21 0.46 1.07 0.31
Testing 13.15 11.21 0.66 1.10 0.28

Skewness
All 2.83 −0.24 −0.13 −0.08 −0.22
Training 2.19 −0.23 −0.38 −0.04 −0.08
Testing 3.39 −0.27 −0.28 −0.15 −0.55
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2.5.3. Model Structure

In this study, the monthly GWL, total precipitation and average temperature were
taken as potential inputs for the hybrid CEEMDAN-GA-DBN model, the hybrid CEEMDAN-
DBN model and the standalone DBN model. Considering the general difficulties in ob-
taining GWL series in scarce data areas, in the current research, the maximum time delay
was set to 3. This means that the GWL, total precipitation and average temperature at
current month (t) as well as the antecedent months, which lagged 2 months behind (or t
− 2) and 1 month behind (or t − 1), were incorporated as model input for the forecasting
of GWL at the t + 1, t + 2 and t + 3 timescales. Consequently, the input structure of the
hybrid CEEMDAN-GA-DBN, hybrid CEEMDAN-DBN and the standalone DBN models
was set to

GWL(t + n)= f{GWLt−2, GWLt−1, GWLt, Pret−2, Pret−1, Pret, Temt−2, Temt−1, Temt} (14)

where GWL(t + n) was the forecasted groundwater level and the time-series of GWLt−2,
GWLt−1, GWLt, Pret−2, Pret−1, Pret, Temt−2, Temt−1 and Temt were the model’s input
variables.

2.5.4. Model Performance Evaluation

To ascertain the preciseness of the objective model (i.e., the hybrid CEEMDAN-GA-
DBN) against the CEEMDAN- DBN and the standalone DBN models, multiple criteria,
such as correlation coefficient (R), mean absolute error (MAE), root mean squared error
(RMSE), Nash–Sutcliffe efficiency coefficient (NSE), the ratio of the RMSE to the standard
deviation of the observed GWL (RSR) and the Legates and McCabe’s Index were applied.
As a widely used metric, the R value presents the degree of linearity between the forecasted
and the observed variables, and the RMSE measures the global fitness of the predictive
models. In contrast, the MAE provides a more balanced perspective of the goodness-of-fit
based on the estimation errors. The NSE adopts a range of −∞ and 1, indicating the error
between the simulated and the mean observation values. The optimal value of RSR is 0,
indicating the RMSE or residual variation of the model is 0. The Legates and McCabe’s
Index (I), ranging from 0 to 1, is strongly recommended as supplementary model evaluation
tool [67]. The following equations were used to evaluate these metrics:

R =
∑n

i=1 (GWLo
i −GWLo)(GWLp

i −GWLp)√
∑n

i=1 (GWLo
i −GWLo)

2
∑n

i=1 (GWLp
i −GWLp)

2
(15)

MAE =
1
n ∑n

i=1 |GWLp
i −GWLo

i | (16)

RMSE =

√
1
n ∑n

i=1 (GWLp
i −GWLo

i )
2

(17)

NSE = 1− ∑n
i=1 (GWLo

i −GWLp
i )

2

∑n
i=1 (GWLo

i −GWLo)
2 (18)

RSR =
RMSE
σo

(19)

I = 1.0−
∑n

i=1

∣∣∣GWLo
i −GWLp

i

∣∣∣
∑n

i=1

∣∣∣GWLo
i −GWLo′

∣∣∣ (20)

where n = the number of input samples; GWLo
i and GWLp

i = the observed and simulated
GWL at time t, respectively; and GWLo and GWLp = the average of the observed and
forecasted GWL, respectively.

For accurately simulated GWL, R ≈ 1, MAE/RMSE/RSR ≈ 0 and NSE ≈ 1. In
accordance with the relative literature, a model is normally considered very good if NSE
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exceeds 0.75 and RSR exceeds 0.50, good if NSE is greater than 0.65 and RSR is less than 0.6
and satisfactory if NSE is greater than 0.5 and RSR is less than 0.70 [68].

For uncertainty evaluation, this study employed the mean prediction interval (MPI)
and prediction interval coverage probability (PICP), which are both the typical metrics
frequently used to evaluate the uncertainty of the data driven models [69]. The PICP, a
measure of forecast reliability, is the probability that the observed values of an input pattern
lie within the prediction limits; while the MPI, a measure of forecast resolution, monitors
the ability to enclose observed values inside the prediction intervals [70]. Practically,
a model with lower MPI and higher PICP (closer to (1 − α)%) is regarded as a better
model [71]. Mathematically, the MPI and PICP are described as follows:

MPI =
1
n ∑n

t=1

(
PLu

t − PLl
t

)
(21)

PICP =
1
n

count t (22)

where
t : PLl

t ≤ yi ≤ PLu
t (23)

where yi is the observed value; and PLl
t and PLu

t are the lower and upper limits, respectively.
When performing data driven models in GWL forecasting, it is important to compare

the models not only in accuracy, but also in complexity since a complex model is not
practical. The Akaike information criterion (AIC), a standard to measure the goodness of
fit of a statistical model, is able to weigh the complexity of the estimated models [72]. The
lower the AIC index value is, the better model would be.

AIC =
2kn + (nln

(
σε

2)(n− k− 1)
n− k− 1

(24)

where k is the number of parameters, n is the number of samples, and σε
2 is the standard

deviation of the residual.

3. Results and Discussion

In this section, a comprehensive evaluation among the objective model (i.e., CEEMDAN-
GA-DBN), the hybrid CEEMDAN-DBN and the standalone DBN models for 1-, 2- and
3-month ahead GWL forecasting is analyzed and discussed. The performance metrics of
the CEEMDAN-GA-DBN, the CEEMDAN-DBN and the DBN models of Wells I, II and III
(Figure 2) in the training and the testing periods are enumerated in Tables 3–5. Considering
the GWL forecasting purpose in this study, the performance of the proposed models in the
testing period is mainly focused.

Table 3. Performance metrics of the hybridized CEEMDAN-GA-DBN, CEEMDAN-DBN and DBN models in the training
and testing phases for 1-, 2- and 3-month ahead GWL forecasting of Well I.

Training Phase Testing Phase

R MAE (m) RMSE (m) NSE RSR R MAE (m) RMSE (m) NSE RSR

CEEMDAN-GA-DBN
1-month ahead 0.967 0.095 0.117 0.935 0.254 0.930 0.210 0.277 0.819 0.421
2-month ahead 0.940 0.123 0.157 0.883 0.341 0.904 0.225 0.315 0.759 0.486
3-month ahead 0.883 0.204 0.253 0.700 0.545 0.865 0.247 0.333 0.732 0.513

CEEMDAN-DBN
1-month ahead 0.966 0.096 0.119 0.932 0.259 0.923 0.241 0.313 0.770 0.476
2-month ahead 0.941 0.118 0.155 0.886 0.337 0.891 0.248 0.333 0.732 0.513
3-month ahead 0.917 0.131 0.169 0.867 0.364 0.853 0.261 0.363 0.680 0.560

DBN
1-month ahead 0.920 0.147 0.180 0.845 0.392 0.881 0.259 0.341 0.727 0.518
2-month ahead 0.897 0.163 0.203 0.804 0.441 0.815 0.290 0.394 0.624 0.607
3-month ahead 0.874 0.180 0.225 0.764 0.484 0.839 0.304 0.396 0.621 0.610

Note: R = correlation coefficient between observed and forecasted GWL, MAE = mean absolute error, RMSE = root mean square error,
NSE = Nash Sutcliffe Coefficient and RSR = ratio of RMSE to the standard deviation.
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Table 4. Performance metrics of the hybridized CEEMDAN-GA-DBN, CEEMDAN-DBN and DBN models in the training
and testing phases for 1-, 2- and 3-month ahead GWL forecasting of Well II.

Training Phase Testing Phase

R MAE (m) RMSE (m) NSE RSR R MAE (m) RMSE (m) NSE RSR

CEEMDAN-GA-DBN
1-month ahead 0.951 0.238 0.291 0.920 0.283 0.968 0.254 0.291 0.929 0.264
2-month ahead 0.942 0.268 0.338 0.887 0.334 0.941 0.375 0.443 0.840 0.397
3-month ahead 0.942 0.269 0.337 0.887 0.334 0.906 0.412 0.495 0.801 0.442

CEEMDAN-DBN
1-month ahead 0.957 0.240 0.299 0.915 0.291 0.954 0.295 0.365 0.889 0.330
2-month ahead 0.941 0.267 0.343 0.884 0.339 0.942 0.413 0.509 0.789 0.456
3-month ahead 0.944 0.258 0.331 0.891 0.328 0.895 0.428 0.515 0.786 0.459

DBN
1-month ahead 0.915 0.336 0.415 0.836 0.404 0.932 0.345 0.414 0.857 0.375
2-month ahead 0.856 0.416 0.521 0.733 0.515 0.876 0.458 0.575 0.730 0.515
3-month ahead 0.833 0.458 0.556 0.694 0.551 0.835 0.518 0.656 0.652 0.585

Note: R = correlation coefficient between observed and forecasted GWL, MAE = mean absolute error, RMSE = root mean square error,
NSE = Nash Sutcliffe Coefficient and RSR = ratio of RMSE to the standard deviation.

Table 5. Performance metrics of the hybridized CEEMDAN-GA-DBN, CEEMDAN-DBN and DBN models in the training
and testing phases for 1-, 2- and 3-month ahead GWL forecasting of Well III.

Training Phase Testing Phase

R MAE (m) RMSE (m) NSE RSR R MAE (m) RMSE (m) NSE RSR

CEEMDAN-GA-DBN
1-month ahead 0.909 0.098 0.131 0.827 0.415 0.843 0.110 0.157 0.688 0.554
2-month ahead 0.904 0.105 0.135 0.816 0.428 0.810 0.129 0.169 0.630 0.602
3-month ahead 0.872 0.122 0.153 0.757 0.491 0.760 0.134 0.178 0.570 0.650

CEEMDAN-DBN
1-month ahead 0.911 0.096 0.130 0.831 0.410 0.808 0.123 0.175 0.614 0.616
2-month ahead 0.910 0.101 0.130 0.828 0.414 0.798 0.138 0.180 0.583 0.640
3-month ahead 0.897 0.107 0.139 0.799 0.447 0.749 0.149 0.185 0.534 0.677

DBN
1-month ahead 0.880 0.111 0.150 0.772 0.475 0.778 0.133 0.180 0.588 0.636
2-month ahead 0.908 0.096 0.132 0.823 0.419 0.808 0.144 0.182 0.573 0.648
3-month ahead 0.893 0.104 0.139 0.798 0.448 0.820 0.152 0.191 0.507 0.696

Note: R = correlation coefficient between observed and forecasted GWL, MAE = mean absolute error, RMSE = root mean square error,
NSE = Nash Sutcliffe Coefficient and RSR = ratio of RMSE to the standard deviation.

3.1. Performance of the Hybrid CEEMDAN-GA-DBN Model

For 1-month ahead GWL forecasting, the hybrid CEEMDAN-GA-DBN model obtained
very good performances at Well I, Well II and a good performance at Well III following
the NSE and RSR values. Evidently, the hybrid CEEMDAN-GA-DBN model attained the
R, MAE, RMSE, NSE and RSR values of 0.930, 0.210 m, 0.277 m, 0.819 and 0.421 for Well
I, respectively, and 0.968, 0.254 m, 0.291 m, 0.929 and 0.264 for Well II, respectively. For
Well III, the R, MAE, RMSE, NSE and RSR values were found to be 0.843, 0.110 m, 0.157 m,
0.688 and 0.554. Interestingly, the R values for all the three GWL observation wells were
significantly higher than 0.80 for the 1-month ahead forecasting, while RMSE and MAE
were relatively small. That is to say, the hybrid CEEMDAN-GA-DBN model developed
in the present study was able to provide very accurate and reliable forecasts for 1-month
ahead GWL forecasting.

For the prediction of the 2- and 3-month ahead, the evaluation metrics in the testing
phase revealed that the performance of the hybrid CEEMDAN-GA-DBN model was worse
at the 1-month ahead timescale. Hence, there was a notable reduction in the magnitudes
of R and NSE, and a consequent increase in the magnitudes of errors (i.e., RSR, MAE and
RMSE) for Well I, Well II and Well III. The result, demonstrating an inferior performance
of the proposed model at the 2- and 3-month ahead timescales, was consistent with other
studies [38,39]. However, the magnitude of the performance metrics remained within a
high predictive accuracy range. Specifically, taking Well I for example, the hybrid model
(CEEMDAN-GA-DBN) registered a value at the 2-month ahead forecast of R, MAE, RMSE,
NSE and RSR equivalent to 0.904, 0.225 m, 0.315 m, 0.759 and 0.486, respectively, and
the acquired values were 0.865, 0.247 m, 0.333 m, 0.735 and 0.513 for the 3-month ahead
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GWL forecast, respectively. Importantly, the prediction results showed that the hybrid
CEEMDAN-GA-DBN model obtained relatively good performance for the 2-month ahead
GWL prediction and acceptable results for the 3-month ahead GWL prediction for the case
of Well I. Meanwhile, the present study also found that the R values in the testing period
were greater than 0.90, the MAE and RMSE remained significantly low, the NSE values
exceeded 0.80 and the RSR values were less than 0.50 for the case of Well II. For the case
of Well III, the simulation results showed that the hybrid CEEMDAN-GA-DBN method
obtained acceptable performance for 2- and 3-month ahead GWL prediction with the NSE
values being greater than 0.50 and the RSR values being less than 0.70.

Despite the slightly deteriorated performance at the longer lead time, the R values in
the testing period were greater than 0.75 for all the wells. The results stated clearly that the
predicted GWL values fitted the target data quite closely. Indeed, the low MAE and RMSE
values and the high NSE and RSR values demonstrated the high-quality forecast. It should
be noted that the performance of the hybrid CEEMDAN-GA-DBN model was in agreement
with that of the previous researchers who utilized machine learning models to predict
the hydrological systems at multiple timescales [71,73]. In those studies, the predictive
capacity of their models also deteriorated with an increase in the forecasting timescale,
which may be attributed to the reduction in data patterns at longer time steps [74]. Despite
the deteriorated accuracy of 2- and 3- month ahead forecasting, statistical metrics for the
hybrid CEEMDAN-GA-DBN model in the testing phase satisfied the requirements of good
GWL simulation. Therefore, it is certain that the hybrid CEEMDAN-GA-DBN model
achieved good forecasts for long-term GWL simulation.

3.2. Comparison of the CEEMDAN-GA-DBN Model, the CEEMDAN-DBN Model and the
DBN Model

When comparing the capability of the hybrid CEEMDAN-GA-DBN, the CEEMDAN-
DBN and the DBN models for 1-, 2- and 3- month ahead GWL forecasting, it can be seen
that the proposed CEEMDAN-GA-DBN model outperformed the hybrid CEEMDAN-DBN
and DBN models not only for the 1-month ahead GWL predicting, but also for the 2- and 3-
month forecasting horizons (see Tables 3–5).

Taking Well I for instance, for 1-month ahead forecasting, the hybrid CEEMDAN-DBN
and the standalone DBN model yielded R, MAE, RMSE, NSE and RSR values of 0.923, 0.214
m, 0.313 m, 0.770, 0.476 and 0.881, 0.259 m, 0.341 m, 0.727, 0.518, respectively. By contrast,
the hybrid CEEMDAN-GA-DBN model attained R and NSE values of 0.930 and 0.819,
while the MAE, RMSE and RSR were reduced to 0.210 m, 0.277 m and 0.421, respectively.
The CEEMDAN-GA-DBN model reduced 11.50% of RMSE less than the CEEMDAN-DBN
model, and 18.77% less than the DBN model; while it improved NSE by 6.36% more than
the CEEMDAN-DBN model, and 12.65% more than the DBN model. That is, the hybrid
CEEMDAN-GA-DBN predictive model developed in this study provided more accurate
and reliable 1-month ahead GWL forecasting compared with the CEEMDAN-DBN and
DBN models (see Tables 3–5). Although the accuracy of the 2- and 3-month ahead predicted
GWL values was worse than that of the 1-month forecasts, the present results obtained
using the hybrid CEEMDAN-GA-DBN model were comparatively better than the other
two models. For example, compared with that of the CEEMDAN-DBN (0.363 m) and DBN
(0.396 m) models, the RMSE of the CEEMDAN-GA-DBN decreased by 8.26 and 15.91%,
respectively, for 3-month ahead forecasting. Overall, the CEEMDAN-GA-DBN reduced
the RMSE of the CEEMDAN-DBN and DBN models in the testing period about 9.16 and
17.63%, while it improved their NSE by about 6.38 and 15.32%, respectively, for all the lead
times and the three wells.
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The hybrid CEEMDAN-GA-DBN model can also be considered good since the NSE
value was 0.840 and the RSR value was 0.397 for the 2-month ahead forecasting at Well II.
In contrast, the hybrid CEEMDAN-DBN and DBN models were inferior to the CEEMDAN-
GA-DBN. The NSE values reduced to 0.789 and 0.730, while the RSR values increased to
0.456 and 0.515 for the 2-month ahead forecasting of Well II. The results demonstrated
the better performance that the hybrid CEEMDAN-GA-DBN model achieved. Similarly,
the hybrid CEEMDAN-GA-DBN model yielded more accurate results than the hybrid
CEEMDAN-DBN and DBN model for the 3 month-ahead GWL simulation. Therefore, the
simulation results reveal that the hybrid CEEMDAN-GA-DBN method can significantly
improve performance relative to the hybrid CEEMDAN-DBN and the standalone DBN
model in terms of the 2- and 3-month ahead GWL estimations.

While the performance metrics can statistically evaluate the ability of the CEEMDAN-
GA-DBN, the CEEMDAN-DBN and the DBN models, the hydrograph and scatter plots are
capable of assessing and displaying the temporal correspondence of the observed GWL
data and the predicted values. Figures 3–8 show the hydrographs and scatter plots of the
observed and predicted GWL at the 1-, 2- and 3-month ahead times for the CEEMDAN-
GA-DBN, CEEMDAN-DBN and DBN models in the testing period. For interpretation
purposes, the least square regression line, y = ax + b was incorporated in each panel.
The constant a and intercept b were used to assess the model’s overall accuracy. Clearly,
the CEEMDAN-GA-DBN model performed far better for 1-month lead GWL forecasting
than the 2- and 3-month lead time. The performance for a longer lead time deteriorated
gradually (Figures 3–8). Furthermore, it is apparent that the GWL forecasted using the
CEEMDAN-GA-DBN model closely matched with the corresponding observed values.
Figures 3–8 also show the hydrographs and scatter plots of the observed and estimated
GWL values generated using the CEEMDAN-DBN and DBN models in the testing period.
Both the CEEMDAN-DBN and DBN models show relatively good accuracy for the 1-, 2-
and 3-month ahead GWL forecasting. Moreover, it can be seen from the fitted equations
that the CEEMDAN-GA-DBN model yielded a and b closer to 1 and 0 when compared with
that of the CEEMDAN-DBN and DBN models in most cases. The results demonstrated the
significantly better fit the CEEMDAN-GA-DBN model achieved. These figures confirmed
that the CEEMDAN-GA-DBN model has a better generalization skill of the predictive data
compared with the CEEMDAN-DBN and DBN models considered in the current study.
Thus, the best accuracy in GWL forecasting was achieved using the CEEMDAN-GA-DBN
model.

Figure 3. Cont.



Water 2021, 13, 2558 15 of 28

Figure 3. Observed vs. predicted groundwater level for Well I generated by the CEEMDAN-GA-DBN, CEEMDAN-DBN
and DBN models for 1-, 2- and 3-month ahead forecast in the testing period.

Figure 4. Cont.
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Figure 5. Observed vs. predicted groundwater level for Well II generated by the CEEMDAN-GA-DBN, CEEMDAN-DBN 
and DBN models for 1-, 2- and 3-month ahead forecast in the testing period. 

Figure 4. Scatter plot of the observed and predicted groundwater level for Well I generated by the CEEMDAN-GA-DBN,
CEEMDAN-DBN and DBN models for 1-, 2- and 3-month ahead forecast in the testing period.

Figure 5. Observed vs. predicted groundwater level for Well II generated by the CEEMDAN-GA-DBN, CEEMDAN-DBN
and DBN models for 1-, 2- and 3-month ahead forecast in the testing period.
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Figure 6. Scatter plot of the observed and predicted groundwater level for Well II generated by the CEEMDAN-GA-DBN,
CEEMDAN-DBN and DBN models for 1-, 2- and 3-month ahead forecast in the testing period.

Figure 7. Cont.
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Figure 7. Observed vs. predicted groundwater level of Well III generated by the CEEMDAN-GA-DBN, CEEMDAN-DBN
and DBN models for 1-, 2- and 3-month ahead forecast in the testing period.

Figure 8. Cont.
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Figure 8. Observed vs. predicted groundwater level of Well III generated by the CEEMDAN-GA-DBN, CEEMDAN-DBN
and DBN models for 1-, 2- and 3-month ahead forecast in the testing period.

When evaluating the feasibility of a predictive model in GWL prediction, the distribu-
tion of error can show a robust and reliable consequence of the model’s predictability. Fig-
ure 9 demonstrates the error indicators for the hybrid CEEMDAN-GA-DBN, CEEMDAN-
DBN and DBN models. The boxplot diagram shows the degree of the dispersion and
skewness of the error for all the wells. Clearly, the figure illustrates that the CEEMDAN-
GA-DBN technique obtained the minimum error compared with the CEEMDAN-DBN
and DBN models in most instances. This is especially true for the 1-month ahead GWL
prediction and the 2- and 3-month ahead prediction values. Therefore, the current results
confirm that the CEEMDAN-GA-DBN model is superior to the CEEMDAN-DBN and DBN
models in terms of error distributions.

Figure 9. Boxplots of the predicted error for the 1-, 2- and 3-month ahead groundwater level forecast generated by the
CEEMDAN-GA-DBN, CEEMDAN-DBN and DBN models in the testing period.

A visualized comparison of the distribution of the observed and forecasted values for
a forecasting model is an effective way to verify and validate a model. Considering that the
boxplot can present a clear visualization of the data distribution concerning the quartiles
distinctly indicating the outliers. The boxplots diagrammatizing the distribution of the
observed and forecasted GWL values from the CEEMDAN-GA-DBN, CEEMDAN-DBN
and DBN models are shown in Figure 10. It can be seen that the box areas for all three
models are very close to the observed values. Comparatively speaking, the distribution of
the CEEMDAN-GA-DBN-forecasted GWL approaches the observed GWL values than the
CEEMDAN-DBN and DBN models under most circumstances. Consequently, it is further
ascertained that the CEEMDAN-GA-DBN model is expected to generate forecasted GWL
values that closely resemble the measured values.
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Figure 10. Boxplots of the distribution for the observed and simulated groundwater level forecast for the 1-, 2- and 3-month
ahead groundwater level generated by the CEEMDAN-GA-DBN, CEEMDAN-DBN and DBN models in the testing period.

To determine the accuracy of the hybrid CEEMDAN-GA-DBN model, the Legates and
McCabe’s Index was imported. Figure 11 plots the Legates and McCabe’s Index computed
for all the simulated and observed GWLs in the testing phase. It is noteworthy that for a
perfect model, the index must approach one. There is no doubt that the hybrid deep learn-
ing model (i.e., CEEMDAN-GA-DBN) produces significantly better forecasts, evidenced by
the larger Legates and McCabe’s Index. This is important for all the forecasting horizons,
ranging from t + 1 to t + 3, although the accuracy deteriorates as the forecast horizon
increases. Nonetheless, the performance of the CEEMDAN-GA-DBN model, where the
data decomposition was used together with the feature selection, far exceeds that of the
CEEMDAN-DBN and the standalone DBN model.

Figure 11. Cont.
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Figure 11. The Legates and McCabe’s Index in testing phase of the hybrid CEEMDAN-GA-DBN vs. CEEMDAN-DBN and
DBN models for (a) Well I, (b) Well II and (c) Well III.

In terms of model simplicity, the AIC index was used to compare the performance
of the proposed methods. Table 6 shows the AIC values of the CEEMDAN-GA-DBN,
CEEMDAN-DBN, DBN models for 1-, 2- and 3-month ahead GWL forecasting at three
GWL wells. It can be clearly seen that the CEEMDAN-GA-DBN obtained the lowest
AIC values, while the DBN model derived the highest AICs. Taking the results of Well I
as an example, the DBN model obtained AIC values of −114.275, −98.281 and −97.732,
respectively at three forecasting horizons; however, the AIC values of the CEEMDAN-DBN
model decreased by 8.12, 18.93 and 9.62%; for the CEEMDAN-GA-DBN model, the AIC
values reduced by 19.81, 24.88 and 19.50%. The results indicate that the data decomposition
and feature selection processes improved the accuracy of the model rather than increasing
model complexity. Therefore, combining the above accuracy and complexity analysis
results of the proposed models, it can be found that although the CEEMDAN-GA-DBN
model had two more steps (data decomposition and feature selection) than the other
models, it is able to achieve a simpler and more accurate model.
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Table 6. AIC values of the CEEMDAN-GA-DBN, CEEMDAN- DBN and DBN models for the 1-, 2-
and 3-month ahead GWL forecasts at Well I, Well II, Well III.

CEEMDAN-GA-DBN CEEMDAN-DBN DBN

Well I
1-month ahead −136.917 −123.559 −114.275
2-month ahead −122.73 −116.889 −98.281
3-month ahead −116.793 −107.13 −97.732

Well II
1-month ahead −131.507 −106.671 −92.663
2-month ahead −85.33 −70.112 −56.719
3-month ahead −73.025 −68.82 −42.152

Well III
1-month ahead −199.541 −187.797 −184.252
2-month ahead −191.245 −184.587 −183.257
3-month ahead −185.635 −181.233 −178.13

3.3. Uncertainty Analysis

Typically, higher GWL prediction accuracy means less uncertainty and smoother
fluctuations, which is significant for the utilization and planning of groundwater resources.
Therefore, analyzing the uncertainty of the proposed models in GWL simulation is of
great significance. In this study, the predictive uncertainties of the CEEMDAN-GA-DBN,
CEEMDAN-DBN and DBN models were assessed using the QR, the uncertainty informa-
tion of GWL predictions was estimated at 90 and 95% confidence levels.

Tables 7 and 8 present the MPI and PICP values of different wells and different
forecasting horizons. Note that perfect reliability is shown as the PICP value equals the
corresponding confidence level. If similar PICP scores are derived, then the one with
lower MPI is the better. The tables show that the uncertainty analysis results of the
CEEMDAN-GA-DBN, CEEMDAN-DBN and DBN models are not identical in terms of
the MPI and PICP values either at the confidence level of 90% or the confidence level of
95%. It seems very difficult to derive balanced low MPI as well as high PICP values since
other researchers also encountered this problem [65,66]. Nevertheless, the PICP values of
the proposed CEEMDAN-GA-DBN model are higher than that of the CEEMDAN-DBN
and DBN models in most circumstances. Although higher PICP values can be found in the
CEEMDAN-DBN and DBN models in some conditions, their MPI values remain higher
than the CEEMDAN-GA-DBN model. Hence, the proposed CEEMDAN-GA-DBN method
exhibits a slightly better forecasting reliability compared with the CEEMDAN-DBN and
DBN models on the whole.

Table 7. Uncertainty analysis for the 1-, 2- and 3-month ahead GWL forecasts of the CEEMDAN-GA-DBN, CEEMDAN-
DBN and DBN models at 90% confidence level.

Observation Well Lead Time
CEEMDAN-GA-DBN CEEMDAN-DBN DBN

MPI (m) PICP (%) MPI (m) PICP (%) MPI (m) PICP (%)

Well I
1 0.38 56.36 0.37 47.27 0.59 65.45
2 0.51 69.09 0.53 63.64 0.65 63.64
3 0.74 76.36 0.51 62.82 0.68 56.36

Well II
1 0.98 92.73 0.97 85.45 1.41 92.73
2 1.14 80.00 1.07 70.91 1.69 81.82
3 1.08 70.90 1.19 69.09 1.81 76.36

Well III
1 0.37 81.82 0.37 78.18 0.46 85.45
2 0.45 89.09 0.37 78.18 0.44 81.82
3 0.47 83.64 0.47 80.00 0.44 80.00

Note: MPI = mean prediction interval; PICP = prediction interval coverage probability.
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Table 8. Uncertainty analysis for the 1-, 2- and 3-month ahead GWL forecasts of the CEEMDAN-GA-DBN, CEEMDAN-
DBN and DBN models at 95% confidence level.

Observation Well Lead Time
CEEMDAN-GA-DBN CEEMDAN-DBN DBN

MPI (m) PICP (%) MPI (m) PICP (%) MPI (m) PICP (%)

Well I
1 0.41 56.36 0.43 58.18 0.71 70.91
2 0.62 72.73 0.67 83.64 0.84 78.20
3 0.81 81.82 0.69 72.73 1.00 81.82

Well II
1 1.10 96.36 1.17 92.72 1.67 94.55
2 1.30 83.64 1.46 89.09 1.96 83.64
3 1.24 74.55 1.31 76.36 2.07 83.64

Well III
1 0.48 90.91 0.46 89.01 0.57 90.91
2 0.47 89.09 0.52 89.09 0.53 87.27
3 0.61 90.91 0.56 89.27 0.61 90.91

Note: MPI = mean prediction interval; PICP = prediction interval coverage probability.

3.4. Model Interpretation

From the viewpoint of the predictive performances and uncertainty criterion, it can be
appropriately concluded that the proposed CEEMDAN-GA-DBN model provides a more
robust and stable predictive performance in GWL forecasting for multiple forecasting hori-
zons. The high precision of the hybrid CEEMDAN-GA-DBN model may lie in three aspects.
Firstly, the deep belief network algorithm can discover the inherent physical structure and
antecedent features powerfully in datasets without prior knowledge. Therefore, the high-
level nonlinear groundwater dynamic characteristics can be effectively captured through
a deep learning process. Secondly, the intrinsic mode functions (IMFs) decomposed by
the CEEMDAN algorithm express the non-stationary and uncertainty behaviors of GWL
more clearly, making the repeating feature catching process more reliable and predictable.
That is the reason for the much better prediction performance of the CEEMDAN-DBN
model than the DBN model. Thirdly, the irrelevant and redundant attributes of the GWL
were identified and removed from the IMFs using the genetic algorithm-based feature
selection procedure, thus the accuracy and stability of the model was improved. However,
the inconformity of the uncertainty analysis results among the three wells and the three
models reveals that uncertainty is inevitable, even for those models with high accuracy.
Typically, the uncertainty increases as the noise increases [65]. In this study, reasonable
interpretations for this phenomenon may lie in the collective affect from every possible
step of the methodological framework, the hydrogeological heterogeneity of the three
distinguished GWL observation wells, the observed GWL data (the observation or the data
entry processes) and the other sources.

However, when comparing the performance of the proposed models in training and
testing phases, it can be seen that the performance in the former phase is much better than
that in the testing phase in most cases, meaning there is a phenomenon of overfitting to
some extent. Overfitting is an issue within machine learning based applications where a
model learns the patterns of the training dataset too well, perfectly explaining the training
set but failing to generalize this predictive power to other sets. Actually, in this study, the
cross-validation procedure was applied to deal with this problem through dividing all
the data into two distinct sets: the training set and the testing set, but still did not avoid
it. Through a comprehensive literature review, it can be found that the phenomenon that
the performance in the training period is superior to that in the testing period is common
in machine learning/deep learning based GWL forecasting studies [75,76]. In this study,
according to the derived results, although the MAE values in the testing phase were higher
than that in the training phase, the MAE for Well I, Well II and Well III was less than 0.4, 0.7
and 0.2 m, respectively. Compared with the average GWL of 1141.36, 1138.73 and 1329.33
m of the three GWL wells, the error is acceptable. Moreover, the analysis in this study
also proved that the proposed model achieved high accuracy since the magnitude of the
other performance metrics remained within high predictive accuracy ranges in both the
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training and testing periods. Considering this, it can be said that the overfitting problem
only demonstrates the inferior generalization ability of the proposed models, rather than
the accuracy or the application of the model.

In addition, it is noteworthy that in the irrigated areas of the Jiuquan basin (e.g., this
study area), the dynamics of the phreatic groundwater are closely related to agricultural
irrigation. The irrigation water infiltration has important significance to the replenishment
of the groundwater in this area. That is mainly because the groundwater level drops when
pumping during irrigation time, while it rises after irrigation. Overall, the variation of
the GWL changes little over the years, thus no obvious upward or downward trend was
found [77]. This means that the proposed model and derived results in this study remain
useful in multi time steps ahead GWL forecasting since the GWL dynamics were captured
using the CEEMDAN-GA-DBN model through the training process.

4. Conclusions

The accurate and reliable GWL prediction is extremely important for the planning
and management of groundwater resources in arid irrigated regions. In this study, a novel
hybrid forecasting framework (the CEEMDAN-GA-DBN model) was proposed for 1-, 2-
and 3-month ahead GWL prediction. The performance of the CEEMDAN-GA-DBN model
was compared with the hybrid CEEMDAN-DBN model and the standalone DBN model by
the performance metrics and uncertainty criterion.

The results show that the hybrid CEEMDAN-GA-DBN model is able to success-
fully forecast 1-, 2- and 3-month ahead GWL and outperform the CEEMDAN-DBN and
DBN model in terms of the performance criteria including R, MAE, RMSE, NSE, RSR
and the Legates and McCabe’s Index. Moreover, based on the QR method, the proposed
CEEMDAN-GA-DBN model is also very effective from uncertainties analysis. Therefore, it
is certain that the CEEMDAN-GA-DBN model has a high potential for practical applica-
tion in GWL prediction in arid irrigated areas. The CEEMDAN-GA-DBN model can be
explored as a scientific tool applied for GWL forecast without understanding the intrinsic
mechanisms and hydrogeological characteristics or collecting the condition data required
for various interacting elements. Therefore, it is especially valuable for regions with limited
measurement data to develop a physical based hydrogeological model. Yet, attention
should be paid to the uncertainty in the process of model building.

The implementation of the CEEMDAN-GA-DBN proves the conspicuous results of
the proposed framework, indicating a forecasting framework that, when implemented in
practice in arid irrigated areas, can improve the GWL forecasting accuracy. Considering
the extensive range of feature selection methods and deep learning models, in further
studies, any other methods can be explored as alternative tools in their place if necessary
(Figure 12).

Although the proposed deep learning model has achieved an excellent accuracy for
GWL prediction, considerable room remains for further improvement. Firstly, due to a lack
of data in recent years, the performance of the model was mainly focused from 2000 to
2015. Considering the fact that in recent years, water demand has increased dramatically,
and groundwater has been excessively exploited with an annual groundwater extraction
rate of 2.6 × 108 m3, whether the same high accuracy can be derived using the model
remains uncertain and needs to be further studied. Secondly, a comprehensive assessment
should be implemented to analyze the possible uncertainties that had influences on the
performance of the models. For example, the spatial variation of the hydrogeological
parameters should be considered in a future study to improve the model’s accuracy.
Thirdly, certain anthropic or natural factors in the specific area, such as the excessive
groundwater extraction, the change of water users as well as the irrigated areas in this
groundwater-supported agricultural region, the intricate and intense interaction between
river and groundwater in this inland river basin, may affect the accuracy of the GWL
forecast. Therefore, there stands a chance that the model’s accuracy will be improved
remarkably if these universal interfering factors and the controlling factors of different
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wells are taken into consideration. Finally, the performance of the CEEMDAN-GA-DBN
model for 1-, 2- and 3-month ahead GWL forecasting was mainly discussed in this study;
however, as a designed simulation model, further investigation of its potentiality in both
short- and long-term forecasting would be an interesting exploration.

Figure 12. Proposed methodological framework and possible alternative methods.
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