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Abstract: To remove the pollutant methylene blue (MB) from water, a sheet-like skeleton carbon
derived from shaddock peels (SPACs) was prepared by NaOH activation followed by a calcination
procedure under nitrogen protection in this study. Characterization results demonstrated that the
as-prepared SPACs displayed a hierarchically porous structure assembled with a thin sheet-like
carbon layer, and the surface area of SPAC-8 (activated by 8 g NaOH) was up to 782.2 m2/g. The
as-prepared carbon material presented an ultra-fast and efficient adsorption capacity towards MB
due to its macro-mesoporous structure, high surface area, and abundant functional groups. SPAC-8
showed ultrafast and efficient removal capacity for MB dye. Adsorption equilibrium was reached
within 1 min with a removal efficiency of 99.6% at an initial concentration of 100 mg/g under batch
adsorption model conditions. The maximum adsorption capacity for MB was up to 432.5 mg/g.
A pseudo-second-order kinetic model and a Langmuir isotherm model described the adsorption
process well, which suggested that adsorption rate depended on chemisorption and the adsorption
process was controlled by a monolayer adsorption, respectively. Furthermore, column adsorption
experiments showed that 96.58% of MB was removed after passing through a SPAC-8 packed column
with a flow rate of 20 mL/min, initial concentration of 50 mg/L, and adsorbent dosage of 5 mg. The
as-prepared adsorbent displays potential value in practical applications for dye removal due to its
ultrafast and efficient adsorption capacity.
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1. Introduction

The rapid development of synthetic dyes has efficiently promoted the industrial
growth in applications such as the leather, paint, textile and other industries. However,
the usage of large amounts of dyes has resulted in severe environmental issues due to the
disposal of dye-containing wastewaters in aqueous systems [1–3]. Wastewater containing
synthetic dyes reduces light penetration in receiving water bodies and thus affects the
photosynthetic activities of aquatic flora, destroying the aqueous system, thereby badly
affecting the food sources of aquatic organisms [4]. For instance, the presence of malachite
green in water can cause breathing problems and swimming difficulties for fish [5]. Various
techniques including adsorption, membrane separation [6], biological treatment [7], and
catalytic degradation [8,9] have been investigated to remove dye pollutants from water
bodies. Owing to its outstanding advantages of low cost, effectiveness and operability, the
adsorption technique has been extensively used for pollutant removal [10]. Undoubtedly,
preparation of a high-performance material is the key to efficient removal of dyes.

Various materials such as activated carbon [11], nano-composites [12], polymers [13],
graphene-based composites [14], etc. have been used as adsorbents for pollutant removal.
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Activated carbon-based adsorbents present unique advantages for pollutant adsorption due
to their high adsorption capacity, renewability and low cost. Furthermore, activated carbon
is easy to obtain, and can be derived from agricultural waste. [1,15]. Yu et al. [16] prepared
a honeycomb-like activated carbon from popcorn following with NaOH activation. The
prepared activated carbon presented a high adsorption capacity for Rhodamine B dye with
an equilibrium time of 12 h. Auta et al. [17] investigated the removal capacity of methylene
blue (MB) and acid blue 29 (AB29) dyes by waste tea-derived activated carbon. Their
results showed that waste tea activated carbon presented a maximum adsorption capacity
of 554.30 and 453.12 mg/g for MB and AB29 with an equilibrium time of about 12 h.
Gupta et al. [18] prepared an activated carbon material from lignocellulosic agro-waste,
and investigated its adsorption capacity towards dyes. The results illustrated that the
adsorption reached equilibrium within 20 min at an initial concentration of 50 mg/L, and
the maximum adsorption capacity for MB was 537.6 mg/g.

Numerous works towards dye removal by biomass derived activated carbon materials
have been studied, and an efficient dye adsorption capacity demonstrated. However,
previous studies on dye removal by biomass-derived carbon materials suffered from slow
uptake rates. Rapid adsorption of dye pollutants can greatly reduce the time consumed
and labor costs in practical applications. Some researchers have been concerned with
improving the rate of pollutant removal. For example, Lin et al. [19] fabricated a hollow
poly-dopamine nanomaterial for rapid removal of dye pollutants from water. The results
demonstrated that more than 98% of MB dye was removed by the prepared adsorbent
in 20 s. Gissawong et al. [20] investigated the adsorption capacity of sponge embedded
with deep eutectic solvent towards dye and organophosphorus pesticide pollutants with a
vortex-assistant model, and reported a rapid pollutant removal rate with removal efficiency
higher than 75% in 30 s. Nevertheless, the adsorbents for rapid pollutant removal from wa-
ter are very much limited to advanced materials, including porous polymers, mesoporous
silica, MOF-based adsorbents, etc., which would result in higher use cost than the use of
biomass-derived carbon materials as adsorbents in practical applications.

Herein, we demonstrated an approach to prepare shaddock peel-derived activated
carbon materials (SPACs) composed of a sheet-like skeleton possessing a hierarchical pore
structure by sodium hydroxide activation during a calcination process under nitrogen
protection. Methylene blue (MB) was chosen as model dye pollutant to evaluate the
adsorption capacity of the as-prepared adsorbents both in batch and column models. The
as-prepared SPACs adsorbents exhibited an ultrafast and efficient adsorption capacity
towards MB dye from aqueous solution. This study provides an efficient approach to the
removal of dye pollutants from water.

2. Experimental
2.1. Materials and Reagents

Shaddock peels used as our raw material were collected from a local market. Chemical
reagents including methylene blue (MB), hydrochloric acid (HCl) and sodium hydroxide
(NaOH) were purchased from Sinopharm Chemical Reagent Co., Ltd. (Beijing, China). All
the solutions used in the experiments were prepared with deionized water.

2.2. Preparation of SPACs Adsorbents

The SPACs adsorbents were prepared by a carbonization procedure under nitrogen
followed by NaOH activation. Firstly, shaddock peels were cut into small pieces after re-
moving the outer yellow layer. Then the shaddock peel pieces were cleaned with deionized
water and put into a freeze drier for 2 days. After drying by the freeze-drying method, the
shaddock peel pieces were crushed into a powder using a grinder. Ten g of shaddock peel
powder was further mixed with NaOH and 20 mL deionized water by stirring thoroughly
for 2 h, and then put into a freeze-drier for 2 days. The weights of NaOH added were set
at 0, 2, 4, 6 and 8 g and the resulting activated carbons were denoted as SPAC-0, SPAC-2,
SPAC-4, SPAC-6 and SPAC-8, respectively. The dried mixture was transferred into a hori-
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zontal quartz tube furnace (BTF-1200CC-S, Anhui BEQ Equipment Technology Co., Ltd.,
Hefei, China), which had been purged with nitrogen for 1 h. The calcination procedure
was carried out by heating from 30 to 800 ◦C with a heating rate of 2 ◦C/min, and then
holding at 800 ◦C for 2 h under a nitrogen atmosphere. After cooling to room temperature,
the obtained activated carbon materials were rinsed with 0.1 M HCl solution and deionized
water to neutrality. Finally, the SPACs adsorbents with hierarchical pore structures were
obtained after drying in a vacuum oven overnight at 80 ◦C.

2.3. Characterizations of Adsorbents

The morphology of the as-prepared SPACs adsorbents was characterized by scanning
electron microscopy (SEM, SU8010, HITACHI, Tokyo, Japan) and transmission electron
microscopy (TEM, JEM-2100, JEOL, Tokyo, Japan). The BET surface area and average pore
diameter of as-prepared adsorbents were analyzed by a nitrogen adsorption/desorption
apparatus (Micromeritics ASAP 2020 M, Atlanta, GA, USA). The surface chemical state
was investigated using X-ray photoelectron spectroscopy (XPS, VG Multilab 2000 X spec-
trometer, Thermo Fisher Scientific, Waltham, MA, USA). Raman spectra were obtained by
using a LabRam-1B Raman system (HORIBA Scientific, Tokyo, Japan) equipped with a
532 nm excitation laser.

2.4. Adsorption Experiments

To better demonstrate the adsorption capacity of as-prepared SPACs adsorbents
towards MB dye, both batch and column adsorption model were investigated in this exper-
iment.

• Batch adsorption. Typically, 10 mg of SPACs adsorbents was placed in a glass vial
(20 mL) which containing 10 mL MB solution with a fixed initial concentration of
100 mg/g. Then, the glass vial was sealed and shaken on a SHA-B shaker (Changzhou
Tianrui Instrument Co. Ltd., Changzhou, China) with a speed of 200 rpm. After
adsorption for a certain time, the solution was filtered by using a syringe-driven filter,
which was equipped with a 0.45 µm filter membrane. The concentration of MB in
filtrate was determined using a UV-vis spectrophotometer (722N, Shanghai Jinghua
Instrument Co. Ltd., Shanghai, China) at a wavelength of 662 nm. The amounts of MB
adsorbed per mass of SPACs (q, mg/g) and MB removal rate (R, %) were calculated
by means of the following Equations (1) and (2), respectively:

q =
(C0 − Ce)V

m
(1)

R =
C0 − Ce

C0
× 100% (2)

where, C0 (mg/g) is the initial concentration of MB, and Ce (mg/g) represents the
equilibrium concentration, respectively; V (mL) is the solution volume; m (g) denotes
the mass of adsorbent.

• Column adsorption. The column adsorption procedure was performed by using a solid
phase extraction device (Shanghai Lichen Instrument Technology Co., Ltd., Shanghai,
China) and plastic columns with inner diameter of 5.6 mm and length of 66.3 mm.
An AP-02B vacuum pump (Tianjin Automatic Science Instrument Co., Ltd., Tianjin,
China) was used to maintain the volumetric flow rate. Briefly, 5 mg of adsorbents
were filled to plastic columns with heights of 6 mm, and MB solutions with initial
concentration of 10–200 mg/L were passed through the column at a volumetric flow
rate of 20 mL/min. The concentrations of solutions collected after through the column
were analyzed by using UV-vis spectrophotometer at a wavelength of 662 nm. MB
removal rate (R, %) were calculated using abovementioned Equation (2).
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3. Results and Discussion
3.1. Characterizations of As-Prepared Adsorbents

The surface morphology and size of as-prepared adsorbents (SPAC-0, SPAC-2, SPAC-4,
and SPAC-8) were investigated by SEM. Figure 1a illustrates the irregular block texture
without apparent porous structure of the SPAC adsorbents. After chemical activation by
NaOH, SPACs preserves a honeycomb-like structure with abundant pores (Figure 1b,c).
SPAC-4 presents more abundant pores than SPAC-2 with increasing amount of NaOH
addition from 2 g to 4 g. Furthermore, following activation by 8 g NaOH, SPAC-8 exhibits
a thin sheet-like skeleton structure assembled together to form hierarchical porous textures
(Figure 1d). TEM characterization demonstrates that SPAC-8 presents a morphology similar
to a sheet-like structure with distributed mesopores (Figure 1e,f). Porous and thin sheet-like
structures of SPACs were obtained with the carbonization procedure after NaOH activation.
The chemical activation mechanism of NaOH can be depicted in Equations (3)–(6) [21–24].
Firstly, Na2CO3 and H2 components are generated by reaction of NaOH and C. Then, part
of the Na2CO3 reacts with C to produce CO, and the other part decomposes into Na2O and
CO2 components under the employed high temperature conditions. Meanwhile, Na2O can
also react with C to create CO compounds. In summary, the activation process with NaOH
will result in the release of plenty of reaction gases containing CO2, CO, and H2 at high
temperature in the nitrogen atmosphere. The gas release and carbon atoms elimination
leave numerous vacancies in the materials, which result in the observed hierarchical porous
textures [16,25,26].

6NaOH + 2C→ 2Na + 3H2+2Na2CO3 (3)

Na2CO3+2C→ 2Na + 3CO (4)

Na2CO3 → Na2O + CO2 (5)

Na2O + C→ 2Na + CO (6)
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Figure 1. SEM images of SPAC-0 (a), SPAC-2 (b), SPAC-4 (c), SPAC-8 (d), and TEM images of
SPAC-8 (e,f).

The N2 adsorption-desorption isotherms and pore size distributions of SPAC-0, SPAC-
4 and SPAC-8 are shown in Figure 2. The N2 adsorption-desorption isotherms show
a typical type IV isotherm and H3 hysteresis loop for SPAC-0 and SPAC-8 (Figure 2a).
SPAC-4 presents a type III isotherm with H3 hysteresis loop (appearing in the range from
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0.4 to 1.0 of relative pressure). The increase of N2 adsorption in the relative pressure
range of 0–0.9 and distinct hysteresis loop is correlated to the abundant mesoporous
and macroporous structures [27,28]. The steep increase of N2 adsorption in the relative
pressure range of 0.9–1.0 indicated that macropore structures were generated for SPAC-4
and SPAC-8 [29]. The BET specific surface areas of prepared SPAC-0, SPAC-4 and SPAC-8
materials were calculated to be 108.7, 490.5 and 782.2 m2/g, respectively. In comparison to
SPAC-0, the BET specific surface area of SPAC-8 increased dramatically due to chemical
activation by NaOH, which promoted the formation of mesoporous and macroporous
structures on SPACs during the thermal decomposition process [30,31]. The mesoporous
and macroporous textures of the prepared SPACs adsorbents are further verified by the
pore size distribution, which is calculated from the corresponding density functional theory.
It can be observed from Figure 2b that the pores size of SPAC-4 and SPAC-8 has a wide
range of size distribution from 17–50 nm for mesopores and 50–1200 nm for macropores.
However, there are only slight mesopores distribution and no obvious macropores texture
for SPAC-0 adsorbent, which is in good accordance with the SEM results (Figure 1a).
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Figure 2. N2 adsorption-desorption isotherms (a) and pore size distributions (b) of SPAC-0, SPAC-4 and SPAC-8.

Raman spectra of the prepared SPACs adsorbents are depicted in Figure 3a. As shown
in Figure 3a, all SPACs studied exhibit two typical broad peaks of amorphous biomass
carbon at ~1350 and 1590 cm−1, which are corresponding to the disorder-induced D-band
and in-plane vibrational G-band, respectively. The intensity ratio of D and G band (ID/IG),
which is used to evaluate the defects of carbon materials, is calculated to be about 0.98 for
all the prepared SPACs, indicating that the prepared SPACs exhibit disordered structures
because of gas release during the carbonization procedure.

The chemical states and functional groups of as-prepared SPAC-8 adsorbent was
investigated by XPS analysis. As shown in Figure 3b, two kinds of elements including C
and O were detected for SPAC-8 in the survey XPS spectra with the atomic C of 94.14% and
atomic O of 5.44%, respectively. The high-resolution XPS spectra of C 1s (Figure 3c) can
be deconvoluted into four peaks, corresponding to sp2 C (284.8 eV), C-O (286.2 eV), C=O
(288.3) and O-C=O (290.6 eV), respectively [32–34]. The deconvolution of O 1s presents
three peaks at 531.1, 532.3 and 533.3 eV, which are attributed to C=O, C-O and O-C=O bond,
following the consistent consequences with de-convoluted results of C 1s XPS spectra
(Figure 3d). Abundant oxygen-containing groups obtained on adsorbents would easily
promote the formation of hydrogen-bonding between adsorbents and adsorbates, which
can accelerate the adsorption capacity [35].
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high-resolution C 1s spectra (c), high-resolution O 1s spectra (d) of SPAC-8.

3.2. Adsorption Performance of MB with Batch Model
3.2.1. Effect of Contact Time

A short contact time on equilibrium adsorption plays an important role in the rapid
removal of pollutants by an adsorbent [36]. Figure 4a shows the effect of contact time on
the removal capacity of prepared SPACs adsorbents towards MB dye. It can be seen that
the removal efficiencies of SPACs adsorbents towards MB dye increase with the increase of
contact time firstly, and then reach a stable value with further prolonged time. Predictably,
the SPACs adsorbents after NaOH activation present much higher adsorption capacity than
that without NaOH activation (SPAC-0) towards MB dye. Approximately 100% of MB was
adsorbed by SPAC-2, SPAC-4, SPAC-6 and SPAC-8 adsorbents after adsorption equilibrium
with initial concentration of 100 mg/L. It is worth noting that SPAC-8 demonstrates quite
fast adsorption rate towards MB dye. The removal efficiency of SPAC-8 can reach 99.6%
within 1 min. The ultra-fast adsorption rate towards MB can be attributed to the high
surface area and the hierarchical porous structures of the SPACs.
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Figure 4. Effect of (a) contact time and (b) initial concentration on removal capacities of SPACs
towards MB.
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3.2.2. Effect of Initial Concentration

Figure 4b reveals the effect of initial concentration on adsorption efficiency towards
MB by using SPACs adsorbents with a contact time of 30 min. Obviously, the adsorption
efficiency of SPACs adsorbents increases with the increase in MB concentration from
10 to 400 mg/L, and then reaches adsorption equilibrium with further increase of the
MB concentration. The adsorption capacity of SPACs presents a distinct increase with
increasing addition amounts of NaOH from 0 to 8 g due to its chemical activation in the
carbonization process. The maximum adsorption capacity of SPAC-8 is 432.5 mg/g, which
is far higher than that of SPAC-0 (128.6 mg/L).

3.3. Adsorption Kinetics

To evaluate the adsorption rate, the adsorption kinetics of as-prepared SPACs adsor-
bents towards MB were investigated using both pseudo-first-order and pseudo-second-
order kinetic models. The pseudo-first-order kinetic assumes that mass transfer and diffu-
sion of adsorbates to adsorbents control the adsorption process, whereas chemisorption
mainly determines the adsorption process for pseudo-second-order kinetic model [37,38].
The adsorption kinetic data was fitted using pseudo-first-order model (Equation (7)) and
pseudo-second-order model (Equation (8)) in the following equations:

ln(qe − qt) = lnqe − k1t (7)

t
qt

=
1

k2q2
e
+

t
qe

(8)

where qe and qt are the amounts of adsorbed dye (mg/g) at equilibrium and at time t (min),
respectively; k1 (/min) and k2 (g/mg·min) are the pseudo-first and pseudo second order
rate constants, respectively.

The fitted curves of experimental data are given in Figures S1 and S2, and kinetic
model parameters as well as correlation coefficients are summarized in Table 1. As shown
in Figures S1 and S2 and Table 1, the correlation coefficients (R2) of the pseudo-second-
order kinetic model present greater than 0.99 for all the adsorbents, which are higher than
those of pseudo-first-order model. Furthermore, the calculated values of the equilibrium
adsorption capacity (qe,cal) from pseudo-second-order show perfect agreement with the
experimental values (qe,exp). These results demonstrate that chemisorption is the main
factor to control the adsorption rate rather than diffusion and mass transfer.

Table 1. Kinetic model parameters and correlation coefficients (R2) for the adsorption of MB onto SPACs.

Adsorbents qe,exp (mg/g)
Pseudo-First-Order Pseudo-Second-Order

qe,cal (mg/g) k1 (/min) R2 qe,cal (mg/g) K2 (g/mg·min) R2

SPAC-0 23.3 28.1 0.1455 0.9844 24.8 0.0077 0.9923
SPAC-2 100.3 78.9 0.1747 0.9607 103.1 0.0026 0.9946
SPAC-4 100.4 123.9 0.2521 0.9598 101.0 0.0078 0.9998
SPAC-6 100.4 106.6 2.482 0.8765 101.0 0.0754 0.9999
SPAC-8 100.2 148.0 4.001 0.9917 100.0 0.2000 0.9999

3.4. Adsorption Isotherms

To investigate the adsorption mechanism of the MB dye molecules on the surface
of SPACs adsorbents, the adsorption isotherms was fitted according to Langmuir and
Freundlich isotherm models, respectively. Wherein the Langmuir isotherm applies for a
homogeneous adsorption surface, the Freundlich isotherm is applied to predict adsorption
over heterogeneous surfaces [39,40]. The Langmuir and Freundlich isotherm model can be
expressed as Equations (9) and (10):

Ce

qe
=

Ce

qm
+

1
kLqm

(9)
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lnqe = lnkF +
1

nF
lnCe (10)

where Ce is the equilibrium concentration (mg/L) and qm represents the maximum adsorp-
tion amounts on monolayer coverage (mg/L). kL is a constant related to the free adsorption
energy (L/mg). kF and nF represent the Freundlich isotherm constant and adsorption
intensity, respectively.

The fitting curves of the Langmuir and Freundlich model are shown in Figure S3, and
the adsorption isotherm parameters and correlation coefficients (R2) for the adsorption of
MB were summarized in Table 2. Comparing the correlation coefficients of the Langmuir
and Freundlich fitting curves, the results suggest that the Langmuir isotherm model can
describe the adsorption process towards MB for the as-prepared adsorbents better than the
Freundlich isotherm model. It can be observed that adsorption process is mainly controlled
by a monolayer adsorption process.

Table 2. Adsorption isotherm parameters and correlation coefficients (R2) for the adsorption of MB onto SPACs.

Adsorbents qm,exp (mg/g)
Langmuir Freundlich

qm (mg/g) kL (L/mg) R2 nf Kf R2

SPAC-0 128.7 127.6 0.632 0.9999 9.15 67.5 0.8281
SPAC-2 278.7 274.7 0.569 0.9972 7.63 226.6 0.7420
SPAC-4 339.6 337.8 0.643 0.9997 8.43 169.6 0.7404
SPAC-6 362.2 359.7 0.381 0.9994 8.31 180.5 0.7938
SPAC-8 432.5 434.8 0.228 0.9993 13.6 429.9 0.8199

3.5. Comparisons of Adsorption Capacities with Other Adsorbents

To evaluate the adsorption capacity of as-prepared adsorbent towards MB, compar-
isons of adsorption capacities with various adsorbents are list in Table 3. The maximum
adsorption amount of as-prepared SPAC-8 adsorbent is 432.5 mg/g, which performs an
adsorption capacity comparable to other adsorbents. What is noteworthy is that the ad-
sorption time of SPAC-8 towards MB is lower than 1 min to achieve equilibrium, which
presents much higher adsorption rate than other adsorbents. The ultra-fast adsorption rate
provides a potential application for MB removal with column adsorption in practice.

Table 3. Comparisons of adsorption capacities towards MB with other adsorbents.

Adsorbents Adsorption Capacity (mg/g) Adsorption Time (min) Reference

Magnetic chitosan/graphene oxide 95.16 60 [41]
HKUST-1 modified cellulose/chitosan composite 526.3 900 [42]

Loofah fiber-graft-polyacrylic acid 302.4 3 [43]
Cellulose−clay nanocomposite hydrogels 782.9 20 [44]

Activated carbon derived from cashew nut shells 476 1440 [45]
Activated carbon derived from Malawian baobab

fruit shells 334.45 60 [46]

Cellulose microfilament spheres 497.5 180 [47]
SPAC-8 432.5 ≤1 This work

3.6. Reusability of SPAC-8

The regeneration and reusability of adsorbents play an important role in their po-
tential practical applicability. After adsorption of MB by SPAC-8 adsorbent, desorption
experiments were carried out by rinsing the MB adsorbed on the adsorbent with ethanol
three times and with deionized water three times. Afterwards, the dried SPAC-8 adsorbent
was used again for adsorbing MB to evaluate the reusability. In this work, the adsorption-
desorption experiment was repeated for four cycles. As shown in Figure 5, the removal
efficiency of SPAC-8 towards MB displays a gradually decreasing trend with increasing
reuse times because of the decreased number of active sites [48,49]. It is worth mentioning
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that even though the removal efficiency decreases when reusing the adsorbent, the removal
efficiency of SPAC-8 can reach more than 80% after five regeneration cycles, which indicates
that the prepared adsorbents possess good regenerability and reusability.
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3.7. Column Adsorption

To demonstrate the potential application of as-prepared adsorbents for MB removal
in practice, column adsorption experiments of SPAC-8 adsorbent were performed in this
work by using a solid phase extraction device. Firstly, the effect of flow velocity (10, 20, 30
and 40 mL/min) on MB removal capacity was evaluated with an initial MB concentration
of 50 mg/L, solution volume of 10 mL and adsorbent dosage of 5 mg. As shown in
Figure 6, approximately 100% of the MB is removed after passing through the SPAC-8
packed column with a flow velocity of 10 mL/min, and the solution becomes colorless. The
removal efficiency towards MB decreases to 96.58% following the increase of the flow rate
to 20 mL/min, and continues to decrease with further flow rate increases. The diminished
removal capacity towards MB is ascribed to insufficient residence time of the solute in the
column, which results in a short contact time between the MB and the adsorbent, and the
solution is discharged from the column before reaching adsorption equilibrium [50,51].
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Furthermore, the effect of MB initial concentration on the removal efficiency of the
SPAC-8 adsorbent in a column adsorption model was investigated with a flow rate of
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20 mL/min, solution volume of 10 mL and adsorbent dosage of 5 mg. As shown in
Figure 7, the removal efficiency of SPAC-8 adsorbent is approximately 100% when the
initial concentration of MB was is equal to or lesser than 25 mg/L, and the solution
collected from column outlet turned completely colorless. The color change from blue to
colorless with an initial concentration of 50 mg/L, solution volume of 10 mL, flow rate
of 20 mL/min, and adsorbent dosage of 5 mg can be better visualized in the recorded
Video S1. The removal efficiency displays a gradual decline with the increase of initial
concentration of MB due to the adsorption capacity limitation of SPAC-8 and the restricted
contact time between solute and adsorbents while MB solution passes though the packed
column. The adsorbed amounts of SPAC-8 towards MB increases firstly with increasing
initial concentration from 5 mg/L to 250 mg/L, and reaches a constant level with further
extend initial concentration due to the limitation of maximum adsorption capacity. With
the column adsorption model, the maximum adsorption capacity of SPAC-8 adsorbent
is 401.1 mg/g towards MB dye, which is lower than the maximum adsorption capacity
with the batch adsorption model. This phenomenon can be explained by an insufficient
residence time of the solute in the column that leads to inadequate diffusion of the solute
into the adsorbent pores [50].
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4. Conclusions

In summary, the carbon materials derived from shaddock peels were prepared by a
calcination procedure under nitrogen protection after NaOH activation. The as-prepared
carbon material displayed a macro-mesoporous hierarchical structure composed of a thin
carbon layer. The high surface area and abundant functional groups make SPAC-8 exhibit
an ultra-fast and efficient adsorption capacity towards MB, resulting in a maximum adsorp-
tion of 432.5 mg/g and short equilibrium time (within 1 min) at an initial concentration
of 100 mg/L. Column adsorption also demonstrated the ultra-fast removal capacity of
SPAC-8 towards MB. The excellent adsorption performance towards MB make SPACs good
potential adsorbents for dye removal from wastewater.
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