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Abstract: Distribution of hydrological parameters is varied under contrasting meteorological con-
ditions. However, how to determine the most suitable parameters on a predefined meteorological
condition is challenging. To address this issue, a hydrological prediction method based on meteo-
rological classification is established, which is conducted by using the standardized runoff index
(SRI) value to identify three categories, i.e., the dry, normal and wet years. Three different simulation
schemes are then adopted for these categories. In each category, two years hydrological data with
similar SRI values are divided into a set; then, one-year data are used as the calibration period while
the other year is for testing. The Génie Rural à 4 paramètres Journalier (GR4J) rainfall-runoff model,
with four parameters x1, x2, x3 and x4, was selected as an experimental model. The generalized
likelihood uncertainty estimation (GLUE) method is used to avoid parameter equifinality. Three
basins in Australia were used as case studies. As expected, the results show that the distribution of the
four parameters of GR4J model is significantly different under varied meteorological conditions. The
prediction efficiency in the testing period based on meteorological classification is greater than that
of the traditional model under all meteorological conditions. It is indicated that the rainfall-runoff
model should be calibrated with a similar SRI year rather than all years. This study provides a new
method to improve efficiency of hydrological prediction for the basin.

Keywords: rainfall-runoff model; standardized runoff index; parameter distribution; meteorological
classification; GR4J model

1. Introduction

Rainfall-runoff model is a mathematical model based on the physical law between
rainfall and runoff in nature, which takes the catchment as the research object [1]. Because
the rainfall-runoff system is a complex nonlinear system affected by many factors such as
meteorology, geology and geomorphology, the different meteorological and underlying
surface conditions will inevitably change the relationship between rainfall and runoff [2].
For example, runoff generation in humid areas is mainly saturation excess runoff, while in
arid areas, it is infiltration excess runoff; however, the humid and arid areas depend on the
precipitation [3,4]. When it is assumed that the model parameters do not change with time,
the hydrological cycle process cannot be fully reflected in the model, especially the dynamic
changes of the basin meteorological conditions. Therefore, under the influence of climate
change, it is more realistic to think that the rainfall-runoff model parameters have the
characteristics of changing with time, i.e., time varying [5–7]. The change of basin climate
and underlying surface conditions is very likely to cause the change of rainfall-runoff
model parameters [8–12].

The parameter uncertainty of the rainfall-runoff model, as the main source of model
simulation error, has been widely discussed in recent years [13]. The general practice
is to establish a time-varying parameter for the rainfall-runoff model based on Kalman
filter technology [14–17] or split calibration [18,19]. However, the time-varying law of
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multi-dimensional parameter group is complex, and the correlation between each non-
independent parameter is difficult to be modeled, which further increases the uncertainty
of the rainfall-runoff model system [20]. Therefore, it is more practical to use the constant
value parameters to predict in the experiment.

To obtain a fixed parameter in the previous research, the flowchart of rainfall-runoff
model prediction is as follows [21]: (1) select the appropriate rainfall-runoff model; (2)
select the training period in the historical data based on researcher experience; (3) calculate
the unique parameter group by using the parameter optimization algorithm under the
condition of the optimal solution of the objective function; and (4) bring the group of
parameter values into the testing period for simulation. Obviously, the above process has
the following shortcomings: due to the different rainfall-runoff modes under different
climatic conditions, training period data that are subjectively judged and unselected are
often underrepresented, which leads to the phenomenon of “over fitting” [22] between
the training period parameters and the special meteorological conditions of periodic data,
thereby further increasing the uncertainty of the rainfall-runoff model parameters. As a
result, the simulation efficiency during the validation period does not match expectations.

In order to classify the hydrological data reasonably, Broderick [23] used the differ-
ential split sample testing (DSST) method to divide the hydrological data into two types
of non-continuous “wettest” and “driest” years based on the total annual precipitation
of the experimental basin. However, this method only considers rainfall as the criterion;
it ignores the runoff characteristics of the basin during this period and cannot fully and
accurately reflect the hydrological characteristics of the basin under different meteorologi-
cal conditions.

SRI is a drought index commonly used in hydrological drought monitoring and evalu-
ation. It is proposed by Shukla and Wood [24], referring to the standardized precipitation
index (SPI), and can comprehensively reflect the hydrological and meteorological processes
of the watershed. Khedun [25] pointed out that SRI comprehensively reflects hydrological
and meteorological processes and is better than SPI in describing drought phenomena.
Keskin et al. [26] pointed out that the standardized runoff index is a powerful tool to
evaluate hydrological drought. Xiang Y Y et al. [27] used the standardized runoff index
(SRI) with a three-month timescale (SRI-3) to analyze hydrological drought risk in two arid
river basins characterized by different runoff regimes. Therefore, this study chooses the
SRI indicator to classify the historical data of the river basin.

Based on the above discussion, a rainfall-runoff model for meteorological classification
is established; GR4J model was used as the experimental model, and three basins in
southeastern Australia, which were less affected by human activities, were used as the
experimental basins to explore whether the distribution of rainfall-runoff model parameters
was consistent under different meteorological conditions. In addition, the prediction
method based on the classification of meteorological conditions was compared with the
model simulation effect obtained by the traditional prediction method.

2. Methods
2.1. Rainfall-Runoff Model Based on Meteorological Classification

As shown in Figure 1, the main steps of the rainfall-runoff model based on meteoro-
logical classification are as follows:

(1) The annual SRI value of the study area is calculated.
(2) The hydrological data in the study basin are divided into three categories: dry (D),

normal (N) and wet (W).
(3) The corresponding verification mechanism is formulated by meteorological classification.
(4) The corresponding parameter verification results are substituted into the correspond-

ing similar classification period for testing.
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Figure 1. Flow diagram of the meteorological classification prediction model.

2.2. Standardized Runoff Index (SRI)

The standardized runoff index (SRI) is a hydrological drought index constructed
based on the principle of the standardized precipitation index (SPI). It is similar to SPI,
assuming that the inner diameter flow conforms to a suitable probability distribution
type in a certain period of time, and the SRI is obtained after normal standardization of
runoff. The calculation method is to assume that the runoff in a certain period is x, and the
probability density function of runoff (P—III distribution) is as follows [28]:

f(x) =
βα

Γ(α)
(x − a0)

(a−1)e−β(x−a0) (x > a0) (1)

Γ(α) =
∫ ∞

0
tα−1e−tdt (2)

where α, β and a0 are shape, scale and position parameters, respectively, and α, β > 0; Γ (α)
is gamma function. The L-moment method is used to calculate the values of α, β and a0,
which are brought into the formula and integrated, and the cumulative frequency F(x) of
each item is normalized to obtain the SRI value:

SRI = S
k − (c2k + c1)k + c0

[(d3k + d2)k + d1]k + 1.0
(3)

k =
√

2 ln(F) (4)

F(x) =
1

Γ(α)

∫ β(x−a0)

0
tα−1e−tdt (5)

where: when F ≤ 0.5, S = −1; when F > 0.5, S = 1; d1 = 1.43279, d2 = 0.18927, d3 = 0.00131,
c0 = 2.51552, c1 = 0.80285, c2 = 0.010323.

In this study, the hydrological drought situation of the study basin was divided into
three grades [29] according to SRI value (Table 1).
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Table 1. Hydrological drought classification based on SRI.

Drought Level SRI Value Range Drought Degree

W SRI ≥ 1 Wet
N −0.5 ≤ SRI < 0.5 Normal
D SRI < −1 Dry

2.3. GR4J Model

Génie Rural à 4 paramètres Journalier (GR4J) [30] is a conceptual rainfall-runoff model
which has 4 free parameters only. In the model, two nonlinear reservoirs are used for runoff
generation and confluence calculation. The first routing applies a single unit hydrograph
and the second a unit hydrograph and nonlinear storage function. Groundwater exchanges
with deeper aquifers and/or adjoining catchments are represented using a gain/loss
function applied to each routing channel.

GR4J model consists of four parameters: x1, x2, x3 and x4. Its value range and specific
meaning are listed in Table 2.

Table 2. Parameters of GR4J model.

Parameter Unit Meaning Range

x1 mm Capacity of runoff-producing reservoir 50~1000

x2 mm Groundwater exchange coefficient −10~10

x3 mm Capacity of confluence reservoir 10~200

x4 d Confluence time of instantaneous unit
hydrograph (IUH) 0.7~10

In this study, the Nash–Sutcliffe efficiency (NSE) criterion [31] was used to assess
performance of models between training and testing periods. The NSE is defined as follows:

NSE = 1 − ∑T
t=1(Q

o
i − Qm

i )2

∑T
t=1

(
Qo

i − Qo
i

)2 (6)

where Qm
i and Qo

i represent simulated and observed daily runoff, respectively; Qo
i is the

mean observed streamflow for the estimation period, t is the time step and T is the length
of the estimation period.

2.4. Parameter Selection

Previous studies suggest that parameter values sampled from different regions of the
parameter space can provide equally effective simulation of system behavior [32]. However,
parameter sets may perform quite well in the training period, but their test performance
may be degraded under different conditions [33]. In addition, the parameters may show
different distributions and sensitivities according to the different meteorological conditions
experienced during the training period; these factors will affect the final prediction effect
of the model.

In order to better sample the parameters and improve the effect of calibration and
test, the uncertainty analysis of parameters should be carried out first. In this paper,
the generalized likelihood uncertainty estimation (GLUE) method is adopted, which is a
widely used Monte-Carlo-based model training and uncertainty evaluation method. The
specific principle and steps of the GLUE method are detailed in reference [34]. In this study,
uniform distribution is used as the prior distribution of parameters. In each experimental
watershed, 10,000 groups of random parameter values are generated and brought into
the model for calculation. In this paper, NSE value is used as the likelihood function, and
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the feasible likelihood function threshold is set to further screen the posterior distribution
of parameters.

3. Study Catchments and Data

In this study, three watersheds in southeastern Australia were used. There was no
hydraulic structure or human intervention in the three watersheds. Daily precipitation,
potential evapotranspiration and streamflow time series records were taken from the
national dataset of Australia [35], covering 1976–2011. Due to some data being missing,
the data from 1976 to 2010 were used in the catchment ID 405264 and 405219 and the data
from 1976 to 2005 were used in the catchment ID 225219, with acceptable data quality. The
attributes of southeastern Australian catchments are shown in Figure 2 [36]:
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4. Results
4.1. Meteorological Classification

SRI values are used to identify a meteorological pattern in the historical data of
three basins in Australia. In application, when the testing year was determined, the
corresponding training period can be selected according to the closest SRI value:

f = min
(∣∣SRItesting − SRItraining

∣∣) (7)

According to this standard, the years with the closest SRI value under three patterns,
most Wet/Normal/Dry, were set in one group, as shown in Figure 3. Taking the catchment
ID 405264 as an example (Figure 3a), the two driest years screened by the meteorological
classification algorithm are 1982 and 2006, the two wettest years are 1993 and 1996 and the
two most normal years are 1988 and 2004.

The data period closest to SRI value is selected as a pair of tests target. Taking
catchment ID 405219 as an example, since the annual SRI value of 1993 is the closest to
1996, which determined that the two-year meteorological conditions are consistent, they
are set as a group. Thus, 1993 is the training period, while 1996 is the testing period. The
obtained parameter group from 1993 is used for simulation in 1996; other grouping results
of three experimental basins in Australia are shown in Table 3.
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Figure 3. Classification of experimental watersheds under most W/N/D meteorological conditions
based on SRI. (a) SRI (total year) value of the catchment ID 405264 (b) SRI (total year) value of the
catchment ID 405219 (c) SRI (total year) value of the catchment ID 225219.
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Table 3. Data segmentation results of three experimental watersheds.

Category
ID: 405264 ID: 405219 ID: 225219

Training SRI Testing SRI Training SRI Testing SRI Training SRI Testing SRI

Wet 1993 1.26 1996 1.44 1993 1.11 1996 1.13 1992 1.16 1996 1.10
Normal 1988 0.04 2004 −0.02 1985 −0.04 2004 −0.06 1984 −0.06 1988 −0.03

Dry 1982 −2.31 2006 −2.71 1982 −2.53 2006 −3.03 1982 −2.39 1997 −2.08

4.2. Comparison of the Posterior Distribution of Model Parameters under Different
Meteorological Conditions

Figures 4 and 5 show the variation of rainfall-runoff model posterior parameters
distribution under contrasting meteorological conditions inferred by the GLUE method,
and these figures are the density heat map drawn in R language, using the “denscols”
function to identify the scatter distribution density by different colors. When the color of
the scatter points is darker (red color), the parameter density in this area is higher. On the
contrary, when the scatter color is lighter (yellow color), the parameter density in this area
is lower.
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Comparing Figure 4 with Figure 5, the distribution of the four parameters is signif-
icantly different under three meteorological conditions (i.e., wet, normal and dry), and
the sensitivity performance of the parameters is also different. In the same meteorological
condition, the parameter distribution is close. In wet condition, the high-density area of
parameter x1 (capacity of runoff-producing reservoir) value is higher (400~800) in both
the training and the testing period. In normal conditions, the parameter distribution
is relatively uniform without an obvious clustering phenomenon, and the high-density
area of x1 value in the dry period is lower (400~500). The distribution of parameter x2
(groundwater exchange coefficient) is similar in wet and normal conditions, and there is an
obvious high-density area of x2 value (1~3). In the dry condition, the parameter distribution
is significantly different from other patterns, the range of the feasible parameter area is
reduced and the high-density area of parameter x2 value is increased (2~3). Parameter x3
(capacity of confluence reservoir) is not sensitive in W/N/D and has no obvious clustering
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phenomenon, but its distribution is slightly different from the W/N condition in the dry
condition. The NSE value is low in the low-value area (0.7~1.2) of parameter x4 (confluence
time of IUH), and high in the high-value area (1.2~2) in wet condition, while the NSE values
corresponding to the high-density area of the normal year parameter x4 are consistently in
the feasible range, and the clustering phenomenon of the parameters in the arid period is
not obvious.
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Through analysis, it is considered that in the wet period, the runoff-producing reser-
voir capacity (x1) of the basin will increase compared with the normal and dry period. The
groundwater exchange coefficient (x2) will decrease due to the decrease of runoff recharge
to groundwater caused by the non-closure of the basin. Because the runoff generation mode
is saturation excess runoff generation in the wet period, the confluence time (x4) will in-
crease slightly. On the contrary, in the dry period, due to the reduction of runoff-producing
reservoir capacity, runoff replenishment of groundwater increases, and the groundwater
exchange coefficient (x2) increases. Because the runoff-producing mode of the basin in the
dry period is infiltration excess runoff, the confluence time (x4) decreases. The analysis of
the experimental results further proves that the parameters of the rainfall-runoff model are
non-fixed and change with the change of meteorological conditions.

To verify the consistency of model parameters under similar meteorological conditions,
the Mann–Whitney U independent sample nonparametric test is further adopted for the
distribution fitting test of two groups of parameters, where the null hypothesis(H0) is that
the two independent samples have the same distribution. As listed in Table 4, the test
results show that the parameter distribution of the two periods is highly consistent under
similar meteorological conditions at the 0.05 level of significance.
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Table 4. P-values of Mann–Whitney U distribution fitting test on the catchment ID 405264.

Paired Conditions x1 x2 x3 x4

Wet 0.247 0.152 0.291 0.615
Normal 0.154 0.121 0.963 0.87

Dry 0.658 0.000 0.158 0.79

In the comparative analysis of the posterior probability density distribution of the
model parameters in periods with similar SRI values, it is further found that the posterior
probability density distribution of the parameters is highly similar (Figure 6). It can
therefore be concluded that using the group of data with the closest SRI value as the test
object is more in line with objective reality.
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It can be seen from Figures 4 and 5 that the feasible range of parameters changed with
the difference of meteorological conditions in one basin. If the parameters of the basin
rainfall-runoff model have clear physical meanings and there is a unique “true value”, then
the actual distribution of the parameters should be a certain continuity area around this
true value (high-density areas in Figures 4 and 5), and the parameters should be optimal
within the feasible range of the parameters. The selection of the region is particularly
critical in the range of feasible parameter area. Taking catchment ID 405264 as an example,
under the approximate meteorological conditions of the same basin, the parameter values
should be relatively close. The parameter group is calibrated with the hydrological data
of the closest SRI value during the testing period, and the resulting parameter group is
closer to the real situation of the watershed. The prediction performance of the model
can be improved by selecting different parameter ranges under different meteorological
conditions (Figure 7).
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Figure 7. Feasible range of model parameters under different meteorological conditions (catchment
ID 405264).

4.3. Model Performance

The traditional method for rainfall-runoff model is to divide the data into training
period and testing periods without selecting, namely, the first 2/3 series as the training
period while the other 1/3 series is the testing period. Taking catchment ID 405219 as an
example, in order to test the prediction performance of the basin in the wettest year (1996),
the traditional method takes the data from 1975 to 1993 as the training period, the data from
1994 to 1995 as the warm-up period and the data from 1996 to 2006 as the testing period.
Then, the obtained performance is compared with that which is calculated by the selected
training period (1993) of the meteorological classification, and the results are shown in
Table 5 and Figure 8.

Table 5. Comparison of NSE values between the meteorological classification method (C-M) and the traditional method
(T-M).

Category Period
ID: 405264 ID: 405219 ID: 225219

T-M C-M ∆/% T-M C-M ∆/% T-M C-M ∆/%

Wet
Training 0.816 0.847 +3.80 0.771 0.916 +18.81 0.553 0.673 +21.70
Testing 0.902 0.903 +0.11 0.787 0.861 +9.40 0.203 0.541 +166.50

Normal
Training 0.816 0.839 +2.82 0.771 0.917 +18.94 0.553 0.847 +53.16
Testing 0.576 0.671 +16.49 0.856 0.742 −13.32 0.42 0.472 +12.38

Dry Training 0.816 0.533 −34.68 0.771 0.518 −32.81 0.553 0.268 −51.54
Testing −7.72 0.541 +107.01 −10.9 0.448 +104.11 0.284 0.442 +55.63
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It can be seen from Figure 8, compared with the traditional method (T-M), the efficiency
of hydrological prediction method based on meteorological classification in the testing
period of various meteorological conditions has been improved in varying degrees.

Under extreme meteorological (extremely dry/extremely wet) conditions, prediction
efficiency is significantly improved. This is because the longer the selected training period
is, the closer the runoff characteristics of the basin are to the long-term average level
of the basin. Under extreme meteorological conditions (extremely dry/extremely wet),
the runoff characteristics change abruptly, and the meteorological conditions and runoff
characteristics are significantly different from the long-term runoff process over the years.
Under this condition, the hydrological parameters obtained by long-term data calibration
are no longer suitable. Especially in the drought period, the traditional rainfall-runoff
model cannot obtain good performance. As shown in Figure 8, the traditional prediction
of the three basins in the dry period in the figure shows obvious skewness. Selecting the
data under the same extreme dry meteorological conditions as the training periodic data
is closer to the runoff characteristics of the basin in the extreme dry period in the testing
period, so as to correct this skewness. The C-M method proposed in this paper can find the
year closest to the meteorological conditions for parameter optimization by calculating the
SRI value in the testing period, which is suitable for rainfall-runoff simulation under any
meteorological conditions.

It is worth mentioning that, in the dry condition, T-M outperforms C-M in the training
period, while being worse in the testing period. As mentioned above, it is a phenomenon
of “over fitting” that T-M performs better in training periods. Previous studies have shown
that the performance of various hydrological models is poor in the dry period. When there
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is prediction of runoff under specific meteorological conditions (especially extremely dry)
in the basin, the training period of the T-M method is not distinguished; it includes the
long-term data under dry, normal and wet meteorological conditions. Therefore, it is easier
to find the parameter set that makes the performance better. While the C-M method only
optimizes parameters during the extremely dry periods (it has the closest SRI value of the
testing period), and the data length is very short, the NSE value in the training is therefore
low. The performance in the testing period is better because the parameter group obtained
by C-M method is more in line with the meteorological conditions in the testing period.

It should be noted that the prediction performance of catchment ID 225219 is poor,
because of the difference of underlying surface conditions. The topographic elevation
variation of the ID 225219 river basin is large, while the other two basins’ elevation variation
is relatively small. Since the difference of underlying surface conditions in the basin leads to
the change of the rainfall-runoff relationship, it is difficult to simulate in the ID 225219 basin.

5. Conclusions

This paper compares the parameter distribution of rainfall-runoff model under differ-
ent meteorological conditions and finds that the parameter distribution can be changed. In
order to solve the issue of time-varying model parameters, previous research studies often
added the parameter time-varying correlation function in the rainfall-runoff model. This is
because the correlation between the parameters of the model is complicated. Reestablishing
a set of time-varying laws not only complicates the method system, but also increases the
complexity and uncertainty of the rainfall-runoff model structure. The parameter group
of the model based on meteorological classification is obtained via finding the training
periodic data which are closest to the testing period. The conclusions can be drawn as
follows:

(1) The distribution of hydrological parameters is varied under different meteorological
conditions. However, they are similar for the two years with a proximately equal
SRI value.

(2) The rainfall-runoff model should be calibrated with a similar SRI year rather than all
years. The prediction efficiency of the hydrological model based on meteorological
classification is greater than that of the traditional model with all meteorological
conditions. Especially in the extremely dry condition, in the test period of the three
study basins, the prediction efficiency coefficients were increased 107%, 104% and
55.6%, respectively.

To evaluate the dry or wet conditions, many assessment indexes, such as surface
water supply index (SWSI) and river streamflow dry index (SDI), etc., can be used. In
future research, the comparison of different meteorological classification methods will be
conducted to find the most scientific and reasonable meteorological classification method. A
potential application is the runoff prediction under climatic change, where the precipitation
is the force and the SRI can be predicted. In practical applications, methods such as the
Mann–Kendell trend test and cross wavelet analysis can be used to predict the future
meteorological pattern of the research basin and select the corresponding training period
from the historical data.
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