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Abstract: The efficiency improvement of wastewater recycling has been prioritized by ‘Goal 6’ of the
United Nations Sustainable Development initiative. A methodology is developed to synchronously
profile multiple water-quality indices of a wastewater electrodialysis (ED) process. The non-linear
multifactorial screener is exclusively synthesized by assembling proper R-based statistical freeware
routines. In sync with current trends, the new methodology promotes convenient, open and rapid
implementation. The new proposal unites the ‘small-and-fast’ data-sampling features of the fractional
multifactorial designs to the downsizing, by microclustering, of the multiple water quality indices—
using optimized silhouette-based classification. The non-linear multifactorial profiling process is
catalyzed by the ‘ordinalization’ of the regular nominal nature of the resulting optimum clusters.
A bump chart screening virtually eliminates weak performances. A follow-up application of the
ordinal regression succeeds in assigning statistical significance to the resultant factorial potency. The
rank-learning aptitude of the new profiler is tested and confirmed on recently published wastewater
ED-datasets. The small ED-datasets attest to the usefulness to convert limited data in real world
applications, wherever there is a necessity to improve the quality status of water for agricultural
irrigation in arid areas. The predictions have been compared with other techniques and found to
be agreeable.

Keywords: wastewater recycling; water-quality index; electrodialysis; optimal clustering; ordinal
regression; non-linear factorial screening

1. Introduction

Water is indispensable to life, but its chemical behavior perpetually remains a great
enigma [1,2]. This is because the mysterious inner workings of water have not been
adequately deciphered yet—in its basic role to mediate nature’s processes [3]. Water is
a universal solvent that covers two-thirds of the earth’s surface [4]. What makes water
such an astonishing component is that it coordinates nature’s phenomena at all scales—
from the molecular level to the global ‘mega’ atmospheric events. Amazingly, the water
concentration in the human body is about 70%—the main constituent. Replenishing this
amount requires a daily intake of a few liters of clean water. Moreover, 70% of blue water
is channeled into irrigating crops. Alas, there is a global water crisis that forges ahead and,
it adversely affects the global food production, too [5–7]. According to the United Nations
World Water Development Report [8], “the population growth, the economic development
and the changing consumption patterns” are among the main contributors that propel the
annually increasing rate of 1% in global water demand. In an effort to monitor the status
of the evolving water crisis on the planet, the application of a water balance accounting
has been advocated in domestic, agricultural and industrial use. Therefore, the water
footprint indicator was conceived to assist in identifying improvement areas and, hence, in
recommending integrated policy options [9]. Impactful projects are endorsed through the
‘Goal 6’ of the United Nations Sustainable Development [10] to boost the water availability
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worldwide. Humans are very thirsty, inasmuch as one in three people do not currently
have access to safe drinking water [11]. Among the primary business themes to engage on
are: (1) the “improved water quality through effluent treatment”, and (2) the “improved
water efficiency through application of 5R principles: reduce, reuse, recover, recycle,
replenish” [12]. Consequently, to converge on targets 6.3 and 6.A—by 2030—there is a clear
direction with great emphasis on “water efficiency, wastewater treatment, recycling and
reuse technologies” [13].

Improving water quality via enhancing the efficiency of a water recycling process is
critical to sustainably uphold extensive crops. Large-scale wastewater treatment units may
be benefited from data-driven screening/optimization studies that seek to quantify and
control system uncertainty [14,15]. Considering also the various origins of the wastewater
feeds (polluted, brackish and saline sources), it becomes a complex process to manage to
match replenishing volumes to agricultural demands [16]. This is because a successful
water recycling enterprise relies on the technicalities and the economics at the point of use,
besides the quality status of the influx (or drainage) water. Interestingly, electrodialysis
(ED) has been envisaged to be a future workhorse alternative to water treatment [17,18].
Additionally, water quality screening studies, which could be favorable in improving the
water availability for crop growth, require familiarization and experimentation with vari-
ous principal quality indices [19–21]. Published wastewater ED-screening/optimization
investigations have been limited, but they are promising to future advancement [22]. Some
barriers to more extensive experimentation might be the great amount of knowledge that
is needed to organize ‘economical-and-practical’ recycling performance trials, but most
importantly in offering a statistical engineering perspective.

Design of Experiments (DOE) are known to economically regulate trial planning
and execution by concocting preset, yet minimal, factorial recipes; DOE facilitates the
acceleration of innovation and discovery projects [23]. It has been well documented in
past detailed expositions [24–26] that the adoption of DOE—as an efficient and effective
methodology—is substantial in industrial product/process improvement and development
assignments. A great deal of applied industrial research has implemented Taguchi’s DOE
principles that provide strong economic motivation for improved costs, which are derived
from the improved quality performance of products and processes [27,28]. In a nutshell,
Taguchi’s DOE approach attempts to screen and optimize products/processes in a single
phase, which speeds up the discovery effort. The greatest contribution in advancing and
economizing the research procedure is the consistent use of fractional factorial designs
(FFDs) in rigidly structuring the multiparameter sampling plans. FFDs assist in accomplish-
ing the reduction of the research work to a fraction by compressing the required volume of
trials [23]. Although FFDs minimize the search effort by minimizing the examination of the
number of the actual predictor settings, they ensure balance in the ensuing experimental
recipe representation. A particular family of FFDs are the orthogonal arrays (OAs) that
are favored for linear, non-linear and interaction-spotting studies [24]. The Taguchi-DOE
robustification aspect involves the tuning of the product/process performance in terms
of: (1) central tendency (mean response) and (2) variability (signal-to-noise ratio [SNR]
response). There are several successful applications of the classical Taguchi methods to
organize improvement experiments in wastewater treatment [29–33].

Even though the statistical estimators which are utilized in Taguchi methods may not
be universally resilient to exhaustively portray all real phenomena [34–36], their usefulness
in chemometrics in general [37], but also specifically to wastewater recycling aquametrics
have been appreciated [22]. According to Taguchi’s robust design framework, in screen-
ing/optimization studies, the replicated datasets ought to be reduced to the two mentioned
performance measures, thus always rendering their arrangement to comply to the so-called
“unreplicated” state; this state automatically includes the special case where, for practi-
cal/economic reasons, the trial recipe runs have to be executed only once. Consequently,
the DOE analysis is carried out on “unreplicated-like” vectors, casting the dichotomized
dataset in terms of its mean and SNR estimations. Moreover, in industrial applications, the
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OA-sampling pattern is best exploited when the trial plan is saturated to the maximum
contributions that is permitted to handle. However, saturated and unreplicated dataset
configurations are not well-suited to be treated with the ordinary analysis of variance
(ANOVA) or even with the ‘all-purpose’ generalized linear modelling (GLM) techniques.
Both approaches restrictively deliver rated predictions as long as the unexplained error
has been quantified. Datasets in saturated-unreplicated OA form, return no uncertainty
to the ANOVA or GLM treatments, because all degrees of freedom are absorbed by the
predictor estimation. Recognizing the importance of screening studies in expediting in-
novation projects, several specialized alternatives have been developed to overcome such
hindrances and to allow the statistical manipulation of the saturated-unreplicated FFD
datasets [38]. Most commercial statistical software packages opt to implement a combina-
tion of popular techniques by mainly placing emphasis on the classic half-normal test [39],
the Lenth test [40] and the Box-Meyer test [41]; all three tests have been intended to screen
a single characteristic and it is not quite clear yet how they would simultaneously cope
with gauging effect non-linearity. In chemometrics, FFD-collected multiresponse dataset
may undergo orthogonal factorial screening using principal components (PC) decompo-
sition of the response matrix and then treating the resulting PC scores with cumulative
normal probability plots to filter out noise variation [42]. If there is a persistent need
to also screen for non-linearity in a multi-variable arrangement, a convenient option is
to resort to desirability analysis [43,44]. Nevertheless, profiling of water quality indices
involves comparison of ionic content measurements in multifarious species combinations.
Water quality indices are primarily expressed in ratio or percentage-based scales. They are
more complex data types and, hence, they may require more specialized multiparametric
treatments [45].

Returning to the subject of the much simpler screening of the unreplicated FFD/OA-
datasets, it is usually deemed worthwhile to merely assess predictions from different
methods, utilizing a statistical software package, and then find a compromised solution
that logically accommodates the individual outcomes. Matters here become more complex
though, because it was shown that different screening DOE solvers, across different sta-
tistical software brands, provide different results because each product selects different
methods and different criteria to perform comparisons [46]. On the other hand, it may
not be practical, economical or even reasonable for a researcher/engineer/practitioner to
pursue acquiring a great variety of available commercial solvers in order to ensure the
viability of the resulting data analysis. One way to circumvent this problem is to use simple
well-tested workhorse routines from freeware platforms that have also been bestowed
upon sufficient scientific credibility. For example, the R statistical computing platform [47]
appears to have accumulated a great wealth of routines that facilitate DOE planning and
analysis [48]; R-packages are often granted from academic experts and professional re-
searchers. R-packages may be the fulfillment of a published scholarly/technical work
and, they are always accessible to benchmarking with other available statistical software.
The purpose of this work is to offer a new methodology that assembles and seamlessly
synthesizes a few R-packaged graphical/computational routines in order to accomplish
the multifactorial multiresponse non-linear screening/optimization of key water quality
indices. Water quality indices complement the quantification of the efficiency improvement
of a wastewater ED-recycling process that supplies water, which is intended for irrigation
of crops. It will be shown how to reduce the imposing multi-index dataset to a single
clustered nominal response. This is a new concept and it furnishes an alternative to extract-
ing water quality classification information from small data [49–56]. This would quickly
refashion the problem to the naiver non-linear saturated but ‘unreplicated’ form. Next,
the nominal cluster tags are transformed to ordinal OA-entries by tracking the direction
of improvement in each cluster. The resulting non-linear multifactorial structure of the
dataset is rapidly suppressed by exploiting the transparent depiction of the bump chart. A
final ordinal regression (‘naïve’ ranking learning) on the remaining predictors allows the
estimation of a statistical significance value. The composition sequence of the mentioned
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data-conversion steps is unique to this work. The advantage of this presentation is that
it applies the proposed methodology in two novel datasets from a published wastewater
ED-recycling project [19]. The initial ED-dataset demonstrates the converting capability
of the proposed procedure and the second dataset reaffirms the prediction. The second
dataset is embellished by an ancillary type of uncertainty because the empirically gained
feedback information from the initial dataset has been incorporated in the generation of
the second dataset.

2. Materials and Methods
2.1. Main Features

Water quality screening/optimization experiments are carried out using fractional
factorial designs to contain substantially more voluminous sampling efforts. The proposed
approach considers: (a) multiple water quality characteristics, (b) multiple water quality
controllers, (c) potential non-linearity, (d) full-utilization (saturation) of the trial planner and
(e) lone measurements per trial recipe (unreplication). The approach uniquely combines:
(1) the structured data collection advantages of the FFD samplers [23], (2) the multiresponse
mini-data reduction—by clustering and (3) the non-linear non-parametric effect sizing. For
demonstrational purposes, a typical case that examines the influence of four controlling
factors on three characteristic responses is undertaken. The Taguchi-type L9(34) OA [24]
will be examined because it meets the described requirements. Moreover, it has been
previously implemented and investigated in a wastewater electrodialysis study [22,45].
The filtrated drainage wastewater was mainly intended for irrigation purposes in farming.
On the contrary, the logistical costs and project duration for a full factorial endeavor would
be nine times higher than the pre-defined requirements which are established by the L9(34)
OA recipes; it is the FFD tactic that permits such impressive reduction in the data collection
effort. Moreover, by resorting to unreplication the experimental endeavor is reduced by a
factor of 9x times, where x equals the number of additional replication rounds, beyond the
original execution of a single series of the planned OA runs.

2.2. Case Study Summary

The four controlling factors were (coded here for convenience): (1) A: DF—the dilute
flow (L/h), (2) B: CF—the cathode flow (L/h), (3) C: AF—the anode flow (L/h), and (4) D:
V—the voltage rate (V) [22]. The selected water quality characteristics were: (1) RS: the
removed sodium content (%), (2) SAR: the sodium adsorption ratio and (3) SSP: the soluble
sodium percentage (%) [22]. The removed sodium percentage is critical because low values
might signify high osmotic pressure in the soil. In turn, the elevated osmotic pressure
interferes against the favorable aeration and permeability conditions for optimal plant
growth [19–21]. Thus, the characteristic RS response should be maximized.

SAR is a water quality index for assessing the capability potential of an agricultural
irrigation process [19]. SAR is defined as: SAR = Na+/(Ca2+ + Mg2+)1/2, with Na+, Ca2+ and
Mg2+ to denote the ionic concentrations (in meq/L) for sodium, calcium and magnesium,
respectively. Higher SAR values indicate heightened sodium levels; they are construed
as an advancing deleterious risk to plant growth. This is because the soil structure is
progressively damaged by the adsorption of higher sodium concentrations; sodium restricts
soil permeability and infiltration rate and hence induces crust formation and water-logging.
SAR allows the direct categorization of the agricultural soil suitability by monitoring
the sodium content balance [20,21]. Meanwhile, the bivalent cations Ca2+ and Mg2+ are
essential plant nutrients. Increasing concentrations of Ca2+ and Mg2+ promote water
hardness which is beneficial for irrigation purposes. While Na+ is the worst soil dispersant
cation, Ca2+ is the best soil flocculant and hence it favorably influences soil permeability
and easy tilling. The Mg2+ content has a milder effect on the (saturated) soil hydraulic
conductivity, clay-particle dispersion and aeration, in contrast to the respective potency
of Ca2+.
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Inasmuch as SAR is the standard diagnostic parameter for sodicity hazard, there are
guidelines that distinctly classify SAR with respect to nominal interval values. The sodium
hazard classes according to SAR evaluation are: S1-Excellent (0 ≤ SAR ≤ 10), S2-Good
(10 ≤ SAR ≤ 18), S3-Doubtful (18 ≤ SAR ≤ 26), S4-Unsuitable (SAR > 26) [19–21]. Class
S1 is obviously the desirable condition to most crops, class S2 may indicate appreciable
hazard but it may be managed, while class S3 may be suitable only to a few specific crops.

Finally, the soluble sodium percentage (SSP) is defined as: SSP (Na+%) = Na+/(Na+ +
K+ + Ca2+ + Mg2+), with the soluble potassium (K+ in meq/L) to explicitly enter this water
quality parameter [19–21]. Potassium is also an essential nutrient for plants. However,
elevated soluble potassium concentration may have a negative impact on the saturated soil
hydraulic conductivity, but to a lesser degree than that of sodium. Using the SSP water
quality index, the irrigation viability is assessed by employing the Wilcox (Agriculture)
diagram classification [20]; analogous suitability partitions are formed, as mentioned in the
case of the SAR index.

The ED is a semi-permeable membrane-based separation technique that conducts the
deionization process of aqueous solutions [17,18]. The ion migration process is directed
by applying an electric field—through two electrodes—across the feed compartment of
an ED cell. The feed compartment is situated between the cation and anion exchange
membranes, and in the adjacent cation/anion compartment, the brine is collected. ED may
be favored over reverse osmosis with respect to achieving higher recovery rates because:
(1) only ED removes directly solutes from the feed, and, (2) ED works more efficient at
ionic concentrations, which are typically encountered in drainage systems. Furthermore,
the ED as a water separation method for irrigation may be economically preferable when:
(1) there is a need to cater broader categories of cultivations—not only to those that have
been deemed highly profitable, and (2) the ionic molecular weights in the feed are low [22].
The ED process remains simple in its conception and this aids in experimentally controlling
and improve water quality by perhaps adjusting as few as four parameters: the feed flow,
the anode/cathode flow and the electrical potential difference between electrodes. The
delicate relationships among the various water quality index levels have shown to be
experimentally determined for different feed sources [22].

To recapitulate, the raw dataset that will be used in this work to demonstrate the
proposed methodology are comprised of the Abu-Shady’s ED double datasets [22]—in
combination form of the published information in Tables 3 and 4. To complete the confirma-
tion process of the new approach, the final Abu-Shady ED observations will be tested—in
combination form of the published information in Tables 9 and 10.

2.3. Data Manipulation Issues and New Approach Benefits

The synchronous screening of the three water-quality indices against the four con-
trolling ED-factors may need to be transformed to an expression meaningful according to
the regular Taguchi modelling [24,45]. The first comment is that the examined (original)
dataset [22] is in an unreplicated form in both available datasets. Therefore, the customary
SNR concept [24] may not be relevant here in the absence of multiple replicates. Even
so, in the original study [22] the classical SNR formula for a numerical ‘larger-the-better’
characteristic was used. According to the nature of the three indices, their direction should
be minimized for SAR and SSP. However, as it was stated earlier both of those two indices
may relay meaningful information by simply allocating any estimations to their appropri-
ate category rating instead. For example, it is practically immaterial if SAR has a value of
2 or 6 because both of these are less than 10 and hence, they are identified to category S1
(Excellent). On the other hand, the removed sodium content should be maximized. Since
all three water quality characteristics are either percentages or ratios, SNR expressions are
not relevant anyway, but the omega transformation might be considered instead [45]. The
omega transformation becomes meaningful even for a lone observation per recipe run. The
omega transformation is defined as: Ω(db) = 10 log(R) given the odds, R = p/(1 − p), with
p (0 < p < 1): the data expressed in ratio form, or equivalently in percentage. It should
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be remarked that such transformation is indispensable in percentage-based datasets, be-
cause percentage values complicate the additivity of individual values; the percentage
scale is only relevant in the defined range 0–100%. The omega transformation is usually
recommended for datasets that include small or large percentage entries (<20% or >80%).

The proposed approach renders unnecessary: (1) the explicit effect screening for
each water-quality characteristic separately and, (2) the parallel tracking of the individual
trends for each water-quality characteristic separately. Therefore, it is proposed to cluster
the multiresponse dataset into a new single vector column such that to docket a cluster
identification label to each specific run. This idea aims to accomplish four innovative
objectives: (1) it collapses the multiple independent water quality response vectors to a
single one, (2) it creates a single uniform ‘characteristic’ that contains relative information
from all physical characteristics at the same time, (3) it feeds pre-labeled information to a
statistical profiler that enables the assignment of significance to the examined effects, and
(4) it concocts a new method from only proven and easily-accessible techniques.

2.4. Methodological Design and Analysis Stages

The new methodology is outlined as follows:

(1) Select a number of suitable characteristics that could provide a multi-lateral view of
the water quality status of the tested samples.

(2) Select a number of controlling factors that are relevant to screening the respective
water quality properties.

(3) Outline an adequately broad factorial landscape by pinpointing its operational
end points.

(4) Select an appropriate FFD/OA design that accommodates the group of the selected
controlling factors from step 2 and decide on possible investigating factor non-
linearity.

(5) Execute the trial recipes according to the FFD/OA plan of step 4 and collect the data.
(6) Apply cluster analysis to the multiresponse dataset.
(7) Use the Silhouette method [57] to optimize the number of clusters by estimating the

average silhouette width (ASW).
(8) “De-nominalize” the cluster membership identification by “ordinalizing” the cluster

label groups according to the direction of the desirable behavior of the examined
physical characteristics.

(9) Identify the strong effects
(10) Confirm the results with additional data.

2.5. The Computational Aids

The functions ‘kmeans()’ and ‘silhouette()’ from the (free software) R-package (v.R
4.1.0) [47] ‘stats’ and ‘cluster’ (v.2.1.2) were utilized to retrieve information in order to
determine the optimal cluster membership of the examined multiple characteristics. The
module ‘param.design()’ from the R-package ‘DoE.base’ (v. 1.1-6) was used to prepare the
non-linear Taguchi OA designs. The bump chart analysis of the ordinalized response was
facilitated by implementing the R-packages ‘ggplot2()’ (v.3.3.4) and ‘ggbump()’ (v.0.1.0).

3. Results

In Figure 1, the variability among the silhouette maps is portrayed in order to facilitate
the visual evaluation of favorable cluster groupings; they range from 2–6 memberships.
Dataset silhouetting provides an easy cluster cohesion evaluation, since larger score values are
indicating better matching with their own cluster and better separation from their neighboring
clusters. To quickly screen for an optimal membership number, the volatility of the silhouette
bands is depicted in terms of the proper performance measure—the ASW—against the
predefined number of tested clusters, n (Figure 2). Clearly, it may be inferred that working
with a three-clustered dataset will be advisable, since the ASW value is maximized at a
value of 0.61. At this point, it is needed to “de-nominalize” the membership identification
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of the Abu-Shady ED dataset (Tables 3 and 4 in reference [22]). The nominal representation
of the dataset according to the silhouette method results, for n = 3, is listed in Table 1. The
de-nominalization/ordinalization path is recoded as: 2′→3, 3′→2, and 1′→1, where the
primed cluster identification represents the nominal status (initial cluster assignment).

Figure 1. Cont.
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Figure 1. Cluster screening by the silhouette method using group memberships of 2–6 (band maps (A–E)).
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Figure 2. Screening for optimal cluster memberships, n, using estimations of their average silhouette
widths (ASW).

Table 1. Initial cluster assignment and ordinalized re-assignment of the three-characteristic Abu-
Shady ED OA-dataset.

Run # Cluster ID Ordinalized Cluster ID (OCID)
1 3 2
2 3 2
3 2 3
4 3 2
5 2 3
6 3 2
7 1 1
8 1 1
9 1 1

To justify the reason for a “re-engineered” designation (from cluster nominal labeling
to ordinal ranking), the notion is illustrated by providing (Table 2) useful descriptive
statistics that estimate the initial central tendencies of the nominally labeled datasets. It
becomes clear that if it is to maximize RS (mean = 13.41%), and minimize SAR (mean = 5.33)
and SSP (mean = 62.29%), their performance is maximized at a ranking of value ‘3’ (the
highest achievable). Hence, the nominal labeling of ‘2’ becomes the ordinal ranking of
‘3’, i.e., the maximum desirable behavior for all three water quality indices. It becomes
apparent now why the nominal rating of ‘1’ should remain unaltered to the original
designation. Hence, it simply remains to become the ordinal ranking of value ‘1’—least
desirable behavior by all three characteristics. From Table 2, it is observed that the evaluated
measures of the central tendencies are fairly stable; mean and median estimations are
similar in consideration of this small sample. The next step is to use as a guide the
L9(34) OA setup of the Abu-Shady ED dataset (Table 3 in ref. [22]) along with the OCID
dataset from Table 1 so that to prepare a bump chart (Figure 3). The versatility of the
bump chart is conveniently demonstrated in the depiction of the uniformed multiple-
ranking performances of the factors and their quick tracing of changes across settings.
It immediately becomes evident that the variable factors should be treated with a linear
model. The fitted model will be further simplified if factors CF, AF and V are outrightly
eliminated, since no significant disturbance is detected—fluctuations around any ordinal
level are less than half-step. On the contrary, factor DF seems to cause enough attenuation
to span across two adjacent ordinal levels. It is construed that the DF variable should be
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treated with a simple linear model, as observed by the fact that between levels ‘1’ and ‘2’
there is no fluctuation at all. Finally, using ordinal regression with DF to play the role of
the single predictor, it is discovered that DF is statistically significant at a level 0.5 upon
while meeting absolute and relative convergence criteria.

Table 2. Clustered descriptive statistics for the individual characteristics according to the three-
member Silhouette method.

Variable Cluster ID Mean SE Mean Median
RS 1 1.75 1.67 0.08

2 13.41 2.42 13.41
3 5.73 0.81 5.75

SAR 1 6.91 0.18 6.87
2 5.33 0.23 5.33
3 5.83 0.15 5.86

SSP 1 70.34 0.98 70.75
2 62.29 2.37 62.29
3 64.45 1.18 64.66

Figure 3. Bump chart of the L9(34) OA with the OCID dataset.

4. Discussion

The best way to reaffirm the outcomes of the previous section is to repeat the study
with another independent ED dataset. Fortunately, Abu-Shady in Table 9 [22] provided a
second round of trial OA-recipes where the factor AF had been eliminated from further
consideration. Moreover, factor setting values of V had been altered and the testing dataset
was tabulated in Table 10 [22]. The same procedure is repeated on this second dataset as in
the previous section and the new silhouette plots are arranged in Figure 4. From Figure 5, it
is observed that again the 3-cluster case seems to outpace the other four clustering options
in terms of their ASW performance. The nominal clustering of the runs is tabulated in
Table 3. Based on the nominal clustering of the new OA runs, the descriptive statistics for
the three characteristics have been listed in Table 4. The ordinalized clustering, then, is
tabulated in Table 3. The new bump chart (Figure 6) demonstrates again that the factor DF
causes substantial disturbance since it clearly transverses at least two “ordinalized” clusters.
Following up, by treating the factor DF with ordinal regression, the coefficient of DF is even
larger in magnitude—using the confirming dataset (−41.89 from−2.61). The log-likelihood
value at the estimated optimum was also improved from−6.20 to−1.91. Since the absolute,
but not the relative, convergence criterion was met, an application of the Kruskal-Wallis
test [58] of DF on the OCID information, in both screening and testing datasets, confirmed
that the differentiation of the ordinalized clusters in both situations is statistically significant
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at a level of 0.05. The R-function “kruskal.test” from the R-package “STATS” was used
for the required computations. The overall prediction agrees with a recently published
multiresponse nonparametric method which was developed to handle the limitations of
the alternative regular treatments of ANOVA/MANOVA/GLM on overcoming the dual
conditions of ‘unreplication/saturation’ in FFDs/OAs [45].

Figure 4. Cont.
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Figure 4. Cluster screening by the silhouette method using group memberships of 2–6 (A–E) for the testing ED dataset.
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Figure 5. Screening for optimal cluster memberships, n, using estimations of their average silhouette
widths (ASW) on the testing ED dataset.

Table 3. Initial cluster assignment and ordinalized re-assignment of the three-characteristic Abu-
Shady electrodialysis (ED) testing OA-dataset.

Run # Cluster ID Ordinalized
Cluster ID (OCID)

1 3 3
2 3 3
3 3 3
4 1 2
5 1 2
6 1 2
7 1 2
8 2 1
9 1 2

Table 4. Clustered descriptive statistics for the individual characteristics according to the three-
member Silhouette method.

Variable Cluster ID Mean SE Mean Median
RS 1 54.20 2.61 54.70

2 26.92 - 26.92
3 80.04 0.88 80.26

SAR 1 2.83 0.21 2.89
2 4.70 - 4.70
3 1.36 0.084 1.42

SSP 1 45.26 2.31 43.91
2 58.76 - 58.76
3 31.01 1.89 32.58



Water 2021, 13, 2469 14 of 16

Figure 6. Bump chart of the L9(34) OA with the OCID dataset for the confirming trials.

5. Conclusions

Improving wastewater recycling efficiency is necessary for sustainable agricultural
irrigation. Resilient solutions require adaptable data-conversion tools to perform the
complicated screening/optimization studies. This is because a wastewater stock may be
marred by many sources of uncertainty; they have to be detected, quantified and isolated
through the implementation of meaningful and relevant water quality indices. Screen-
ing/optimization studies have shown that DOE planning methods, such as the FFDs and
the Taguchi-type OAs, may speed up the organizing effort and the execution of the required
experimentation with noticeably less budgeted costs and time. Subsequently, the special-
ized analysis of the generated small, but also structured and balanced, datasets are usually
carried out by employing several—all of them well-thought—methods, which are easily ac-
cessible through the use of one or more statistical software packages. The democratization
of the resulting multifarious solutions may then be pursued and a ‘common-ground’ solu-
tion is hopefully to be reached. Since the statistical screening/optimization outcomes might
be contested because of the polyphony of the offered solver gamut, new methodologies
might come to aid if they could offer a description of the active predictor landscape from
yet a different viewpoint. There are situations where a small research unit might find itself
in lack of one or more of those commercially available computing resources. Other times,
there are such computing facilities at hand, but it is requisite to supplement the overall
prediction horizon from still another perspective, perhaps, because there is no alignment of
the solution outcomes among the employed techniques. It has been shown how plurality
of outcomes may be reinforced by introducing new open approaches, which are assembled
from several well-accepted techniques. It is proposed that there be still the possibility of
formulating new methodologies by considering the openness and effectiveness of statistical
freeware routines that, in combination, could provide new insights to solving a difficult
multiresponse multiparameter non-linear screening problem. In enhancing the perfor-
mance of a wastewater ED-recycling process, it is demonstrated that ordinary classification,
with optimally silhouette-selected clusters, may fuse the multiresponse dependencies to a
produce a much simpler single nominal characteristic. The subsequent “ordinalization”
of the nominal clusters allowed the quick graphical profiling of the potentially influen-
tial non-linear factors using solely a bump chart. A final check using ordinal regression
assigned a significance value to the effect. All graphical and computational work was
conducted on freeware routines from the statistical platform R. The tested dataset was
a two-part published experimental output for a rare wastewater ED-recycling problem
in congruence with crop growth planning in arid areas to serving expanding population
needs. The new screening/optimization predictions agreed with other recently published
work. A combination of the aspects of classification and rank learning may be viewed
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as alternative ways to treat complicated small data problems by aspiring to infer their
multiresponse multiparameter non-linear core properties.
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