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Abstract: Inland waters are very sensitive ecosystems that are mainly affected by pressures and
impacts within their watersheds. One of water’s dominant constituents is the suspended particulate
matter that affects the optical properties of water bodies and can be detected from remote sensors. It
is important to know their composition since the ecological role they play in water bodies depends on
whether they are mostly organic compounds (phytoplankton, decomposition of plant matter, etc.) or
inorganic compounds (silt, clay, etc.). Nowadays, the European Space Agency Sentinel-2 mission has
outstanding characteristics for measuring inland waters’ biophysical variables. This work developed
algorithms that can estimate the total concentration of suspended matter (TSM), differentiating
organic from inorganic fractions, through the combined use of Sentinel-2 images with an extensive
database obtained from reservoirs, lakes and marshes within eastern zones of the Iberian Peninsula.
For this, information from 121 georeferenced samples collected throughout 40 field campaigns over
a 4-year period was used. All possible two-band combinations were obtained and correlated with
the biophysical variables by fitting linear regression between the field data and bands combination.
The results determined that only using bands 705 or 783 lead to the obtaining the amount of total
suspended matter and their organic and inorganic fractions, with errors of 10.3%, 14.8% and 12.2%,
respectively. Therefore, remote sensing provides information about total suspended matter dynamics
and characteristics as well as its spatial and temporal variation, which would help to study its causes.

Keywords: total suspended matter (TSM); particulate organic matter (POM); particulate inorganic
matter (PIM); remote sensing; sentinel 2 MSI; water quality; lentic inland waters; wetlands

1. Introduction

Lentic inland water (lakes, reservoirs and wetlands) are very sensitive ecosystems to
pressures and impacts on their watershed, which also affect their climate system [1]. In
the Mediterranean Basin, climate models predict an increase in the intensity of floods and
the severity of droughts in the coming decades [2], bringing on more frequent episodes of
torrential rains which may accelerate the silting processes in addition to increasing amount
of organic matter and suspended solids. These changes can also alter the functions of
aquatic ecosystems and compromise their uses [3]. Thus, the quality improvement and
protection of these waters have become a global priority of the 21st century making it
necessary to know, at every moment, the quality of these water bodies for ecological and
management purposes. Water quality is a general descriptor of water properties in terms
of physical, chemical, thermal, and/or biological characteristics. By combining in situ
measurements and collecting water samples that are subsequently analyzed in a laboratory,
we can provide accurate information for a specific place in time and space. However, from
a spatial or temporal point of view, these sampling campaigns do not provide enough
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information needed for an accurate assessment or management of the entire water body.
As a complement, remote sensing observations facilitates the knowledge of these measures
and, especially, their spatial variation [4] in near real time which makes them a cost-effective
way of monitoring water quality [5].

Passive remote sensing is the process of inferring surface parameters from measure-
ments of the electromagnetic radiation coming from the water’s surface. This radiation can
be a reflection of solar energy or energy emitted from the Earth, which is in the thermal in-
frared (TIR) and microwave portions of the spectrum. The reflected solar light in the visible
and near infrared spectrum is used in hydrology for water quality studies [4]. Copernicus is
a joint initiative of the European Commission (EC) and the European Space Agency (ESA),
designed to establish a European capacity to provide and use monitoring information from
an environment and security point of view, through different satellite missions known
under the name of Sentinel. Copernicus mission was initially optimized for vegetation
studies, urban planning and terrestrial ecosystems. However, the inclusion of new bands
in the red-edge (the limit of red and infrared spectral regions), as well as its radiometric
quality and high spatial resolution, have proven its usefulness for inland waters studies [6].
Data provided by the Copernicus mission increases the usefulness of limnological data
collected in situ [7], thanks to the synoptic view and frequent satellite passes (temporal
resolution of 5 days). These characteristics make this sensor an exceptional device for
measuring inland waters’ biophysical variables [5].

The presence of different suspended particles in surface water can significantly change
the backscattering properties of water bodies. Remote sensing methods for monitoring
water quality rely upon the capacity to measure these changes in the backscattered spectral
signature of water in order to report these measured changes by empirical or analytical
models as water quality variables [4]. Variables often derived quantitatively using re-
mote sensing methods include phytoplankton pigments such as chlorophyll-a [Chl-a] [8],
cyanobacterial pigment phycocyanin (PC) [9], concentration of total suspended matter
(TSM) [10], absorption by colored dissolved organic matter (CDOM) [11], Secchi disk depth
(SDD) or water transparency [12], turbidity [13] and water temperature [7]. It is also viable
to establish the contour and surface of water bodies [14].

This work is centered on the TSM, the name provided to the total mass of suspended
particles measured per volume of water [15] held in the water of a stream, river, lake or
reservoir by turbulence [16]. TSM is, in general, a mixture of live and detritic (non-living)
particulate organic matter, such as phytoplankton or detritus, and inorganic matter such as
clay, silt and other suspended minerals [17,18]. High TSM values (usually >1000 mg/L)
affects the depth at which the photosynthetically active radiation can arrive at The physical
alterations they produce can, simultaneously, lead to undesirable aesthetic effects [19],
increase water treatment costs [20], reduce navigability of canals and decrease the longevity
of dams and reservoirs [21]. In addition, in the abundant presence of suspended solids with
high organic content, decomposition can occur in situ and reduce the dissolved oxygen
levels in water, producing a critical oxygen shortage [20]. If sediments are smaller than
<63 µm in diameter, it is possible for toxic or harmful substances to adhere to them, which
in turn, facilitates their transport [22]. Hence its importance as a variable, which is one of
the most commonly used for the characterization of water and participates in the water
quality indices that currently exist [23]. The ecological consequences that TSM can produce
depend on whether they are composed mostly of organic compounds (phytoplankton or
its detritus, decomposition of plant matter, etc.) or inorganic compounds (sand, silt, clay,
etc.). Estimation of its concentration is possible using multispectral remote sensing tools.
Most water quality studies by remote sensing focus solely on the determination of TSM
concentration, and only a few authors separate the estimation of organic and inorganic
solids, as for example the recent studies carried out by Kratzer et al. [24], Schartau et al. [25]
and Kutser et al. [26].

The main objective of this study is to develop algorithms that can estimate the total
concentration of suspended solids, differentiating the organic from the inorganic fraction,
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through the combined use of Sentinel-2 images and an extensive database of different types
of water bodies in Spain.

2. Materials and Methods
2.1. Study Area

In this work, databases of different projects were used, obtained in the Iberian Penin-
sula during field campaigns from July 2016 to November 2020 sampling 28 reservoirs in the
Ebro watershed, eight reservoirs in the Júcar watershed, as well as 17 marshes surrounding
the Albufera of Valencia lagoon. We focused our study on reservoirs with different trophic
status, from oligotrophic to eutrophic or hypertrophic (as in the case of Albufera lagoon
and marshes).

2.1.1. Ebro Hydrographic Watershed

The Ebro River watershed is the largest hydrographic basin in Spain, with a total
area that occupies 17% of the national territory [27]. The Ebro River, which is the main
Spanish river, drains 85,530 km2 along the southern-facing slopes of the Cantabrian and
Pyrenees Mountain ranges, as well as the Northeastern-facing slopes of the Iberian Massif,
outflowing into the Mediterranean Sea at Amposta, 180 km south of Barcelona [28,29].
In the Ebro River watershed, there are currently about 200 water bodies with artificial or
modified natural-river characteristics (reservoirs, dammed lakes, weirs, artificial lakes and
ponds) that present a great diversity in size, capacity, uses and landscape context. These
hydraulic works range from small, low-volume dams to large reservoirs of thousands hm3

of capacity [30], the largest reservoirs being Mequinenza, Canelles, Ebro and Yesa. The
reservoirs in this watershed vary from 1530 hm3 of capacity and 75.4 km2 of maximum
surface to 2.5 hm3 of capacity and 4.25 km2 of surface [27].

Apart from supplying irrigation, many socio-economic activities in this basin need
water for their development: population, industry, livestock, hydroelectricity, refrigeration,
aquaculture, and other recreational uses, such as navigation [29,30]. This work was carried
out over the summer, when we analyzed 28 reservoirs (Figure 1), collecting a single sample
between June and August, which was the time of maximum stability of the water mass
due to stratification, and the most adverse period for water quality [31].
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Figure 1. Location of selected reservoirs in the Ebro hydrographic watershed. Modified from [31].

2.1.2. Júcar Hydrographic Watershed

The Júcar River watershed is located in the eastern part of the Iberian Peninsula and
occupies an area of 42,989 km2. Its formed by the aggregation of watersheds that flow
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into the Mediterranean Sea [32], its main rivers being the Júcar, Turia, Mijares, Palancia,
Serpis and Vinalopó [33]. It is a highly-regulated watershed, with 27 reservoirs and a total
capacity of 2646 hm3 [34] the largest reservoirs are Alarcón, Tous, Contreras and Benagéber.
The reservoirs in this basin vary from 1112 hm3 capacity and 68.4 km2 maximum surface
to 6 hm3 capacity and 0.82 km2 surface [32].

Water is used mainly for irrigation, urban and industry water supply and hydropower
generation [35]. A total of eight reservoirs were selected to carry out this study, and samples
were collected during June and August (Figure 2).
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2.1.3. Albufera Marshes

On the alluvial platform of Júcar and Turia Rivers lies the Albufera of Valencia Natural
Park, one of the most important wetlands of Spain (300 km2), which has a lagoon with an
approximate area of 27 km2 [37]. This natural reserve includes the lake and the surrounding
areas composed of large extensions of marshes and several rows of dunes, a first line
of mobile dunes, along with others, fixed by a pine and scrub forest, that protect the
wetland from the coast [38]. The marshes that surround the Albufera are modified and
mainly occupied by rice crops. These rice fields function as a temporary wetland with a
hydrological cycle of medium summer flooding during rice growth, emptying in September
for harvesting, and high flood (maximum) during autumn and winter, drying again
in spring for farming work until sowing of a new crop cycle in April–May. If during
January–February the flooded fields are drained again, their water drains through the
lake [39]. Once the rice has been harvested the residual straw is organized into bales, which
usually are stacked near the rice fields, with the possibility of strong weather conditions
returning this to the flooded rice field. Considering that the water has poor circulation, the
residual straw results in decomposing organic matter that will produce anoxic or hypoxic
conditions in the water, along with mineralization. Their presence may also produce
interferences in the satellite reflectance.

During the autumn season, specifically in November, a total of 17 points in the marshes
were sampled to carry out this study (Figure 3).
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2.2. Field Data Collection and Laboratory Measurements

In all remote sensing studies, synchronous with satellite images, field data are needed.
These in situ measurements provide the possibility to calibrate and validate the local or
regional retrieval algorithms [40]. From July 2016 to November 2020, a total of 40 field
campaigns were completed, and 121 georeferenced samples were collected. Following
sampling protocols [41], at the reservoirs we located, by echo-sounding, a point in the
area of maximum depth, which has to be situated 300–500 m from the dam to prevent
disturbances by the possible outflow. These protocols were not applied to the samplings in
the marshes due to the fact that they are shallow areas (0.5 m), therefore the sampling was
carried out at a point 10–15 m from the shore. For each reservoir and marsh, between 1 and
4 in situ spectrometric measuring points were taken at a suitable distance from shoreline
to avoid mixed pixels (land-water mixed reflectance). Tables A1 and A2 in Appendix A
shows the number of samples for each test site, their location and additional information.

Secchi disk is a standard white disc 20 cm in diameter that is submerged vertically
until it is no longer visible. Secchi disk depth (SDD) consists of measuring the mean
value of the point at which the disk completely disappears and the depth at which it
reappears [42]. SDD was measured in situ. At each sampling point, water samples were
collected and stored in refrigeration at 4 ◦C in the dark, for later transport to the laboratory.
PVC tubes were used to take samples from the surface down to SDD, because integrated
samples are more representatives. [Chl-a] was measured by fluorometry (Turner C3) and
in the laboratory by spectrometry. Samples were filtered through 0.4–0.6 µm pore size
Whatman GF/F glass fiber filters, extracted according to Shoaf & Lium [43] and calculated
as in Jeffrey & Humphrey [44]. TSM was determined by gravimetry [45], consecutively
measuring the particulate matter retained on individual filters Whatman 934–AH type
(1.5 µm pore). This method involves two steps; first, the filter that contains the particulate
matter is dried at 105 ◦C to obtain the value of dry TSM and, subsequently, it is heated
at 460 ◦C for six hours. The value obtained is from the particulate inorganic matter (PIM)
and, by difference from the value obtained previously (TSM), particulate organic matter
(POM) is calculated. The combustion of particulate organic matter (POM) supposes a loss
of weight that we usually call Loss on Ignition (LOI).
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2.3. Satellite Images and Atmospheric Correction

The ESA Sentinel-2 mission (S2) consists of a two-satellite constellation flying in
tandem: S2A (launch date: 23 June 2015) and S2B (launch date: 7 March 2017). Each
satellite is equipped with the MSI sensor (Multispectral Instrument), which measures
Earth’s reflected radiance for 13 spectral bands, from visible to near infrared (NIR) and
short-wave infrared (SWIR), with spatial resolutions of 10, 20 and 60 m [46]. Table 1
summarizes the principal features of S2-MSI.

Table 1. Main characteristics of S2-MSI spectral bands [46].

Band Number Central Wavelength (nm) Bandwidth (nm) Spatial Resolution (m)

1 443 20 60
2 490 65 10
3 560 35 10
4 665 30 10
5 705 15 20
6 740 15 20
7 783 20 20
8 842 115 10
8a 865 20 20
9 945 20 60
10 1380 30 60
11 1610 90 20
12 2190 180 20

The field campaigns were planned on cloud-free days in which the S2 satellites
acquired images over the selected areas [5,47]. The time gap between the satellite image
capture and the field collection campaigns was extended for at least three days, one before
and one after the day of image capture, following the methodology of Kutser [48]. Images
used in this study were downloaded from Copernicus web (European Union) and USGS
(United States Geological Survey) archives. The dataset consists of S2-Level 1C imagery
(the level 1C (top of atmosphere; TOA) images are georeferenced without atmospheric
correction) for both the Ebro and Júcar reservoirs and S2-Level 2A (bottom of atmosphere;
BOA) imagery. The level 2A images are georeferenced with atmospheric correction that
gives reflectance below the atmosphere for the water bodies and marshes, according to [6].
The images from the Sentinel satellites have the possibility of being processed with a
program that was specially developed by ESA for them, the SNAP (Sentinel Application
Platform, Brockman Consulting), which is free to download and use.

The retrieval of water constituents, or its optical properties, is achieved from the water
leaving reflectance spectrum, measured at the top of atmosphere and thus requiring a
correction for atmospheric effects. This multivariate problem is extremely challenging in
optically complex water (or Case-2 waters). The C2RCC (Case-2 Regional CoastColour),
a processor built-in SNAP, is composed of a set of additional neural networks that are
trained to perform the inversion of spectrum for the atmospheric correction. Those neural
networks are also capable of performing the retrieval of inherent optical properties of
the water body [49]. A version developed for turbid water, called C2RCC for Complex
Waters (known as C2X), is also available at SNAP. Sen2Cor is a Level 2A (L2A) proces-
sor whose main purpose is to correct single-date Sentinel-2 Level-1C products from the
effects of the atmosphere in order to deliver a Level-2A surface reflectance product [50].
Sen2Cor processor was designed for vegetation and land, but also provides good results
for eutrophic or hypertrophic waters, such as Albufera of Valencia and its surrounding
marshes [6,51]. All images were resampled at 20 m, those corresponding to the Júcar and
Ebro reservoirs were corrected using the C2RCC processors according to their trophic
status, while those corresponding to the Albufera’s marshes were discharged with the
atmospheric correction given by the Sen2Cor processor. If the water bodies studied vary in
their trophic status between oligotrophic and hypereutrophic, then the most appropriate
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atmospheric corrector must be chosen. To obtain reflectance data, nine pixels’ parameter
values were extracted around the coordinates of each measurement point; subsequently,
the mean of these 9 values is calculated and the outliers are eliminated using the standard
deviation and the mean of the remaining values’ results as the spectrum of the measured
parameter [52]. With these spectrums, and together with the field data, the database for the
spectral indices calibration was built.

2.4. Automatic Water Quality Products from C2RCC Processor

The C2RCC processor automatically generates, by default, two band folders with
the products corresponding to the IOPs (inherent optical properties of water) and the
concentrations of chlorophyll and total suspended solids. These last two products are
calculated through arithmetic conversion factors from the IOPs [51]. However, this is not
the case with the Sen2Cor processor, because it is a generic atmospheric correction method,
not developed specifically for water. Therefore, only automatic water quality products for
the Ebro and Júcar reservoirs could be obtained by means of C2RCC.

2.5. Algorithm Retrieval

An atmospherically corrected multispectral image contains reflectance data in different
bands centered at certain wavelengths. An idea of the bands to be used can be obtained
from the spectrum of the element under study, which will provide its absorption and
reflectivity characteristics. These bands can be used, by themselves, or combined by some
arithmetic operation, to obtain a correlation between the field data and the data from the
satellite sensor [52,53].

With the Spectral Index (SI) assessment toolbox in the Automated Radiative Transfer
Models Operator (ARTMO) package [54], all possible band combinations of different for-
mulations can be defined and evaluated. This tool allows the transformation of spectral
observations into useful estimates. The basic principle is to correlate mathematical combi-
nations of reflectance measured at different wavelength ranges, with biophysical variables
of interest. Simple ratio (SR = R1/R2) and normalized difference (ND: (R2 − R1)/(R2 + R1))
formulations as well as various curve fitting functions (linear, exponential, power, logarith-
mic, and polynomial) have been used to obtain all two-band reflectance (Ri) combinations
according to these formulations. Implementing a cross validation (CV) tool, a portion of
the database was used to train the model while another portion was used to validate, and
then all combinations were calculated. Thus, ARTMO selects the best index, calibrating
and validating all data. ARTMO provides the results and their correlation matrix ordered
according to their average value of determination coefficient R2. All infrared simple bands
have also been correlated with the biophysical variables of interest (Figure 4).
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The process for the setting-up of the algorithms was developed using all data of TSM,
POM and PIM. Once we had three data sets, algorithms were calibrated with a regression
between the field data, and band combinations using S2-MSI spectral bands, finding the
best fitting function. Then, the algorithms were validated adjusting a linear regression
between field and estimated data, using as goodness, the determination coefficient (R2),
the root mean-square error (RMSE) and the normalized root-mean-square error (NRMSE).

RMSE =

√
∑N

i=1
(

xestimated
i − xmeasured

i
)2

N
(1)

NRMSE =
RMSE
σ(Y)

(2)

where xi
estimated is the predicted value, χi

measured is the observed value, N is the sample size
and σ(Y) is the highest predicted value.

3. Results
3.1. Field Data Study

To obtain information about the influence of each variable on the transparency of the
water, in a first analysis the relationship was studied between Secchi disk depth (SDD)
(and [Chl-a]) with organic and total suspended matter (Figure 5) of all in situ measured
points. As can be seen, both TSM and POM have a strong inverse correlation with SD
(Figure 5a,b). From this, it can be deduced that, in these reservoirs, the transparency of the
water is fundamentally influenced by the suspended solids, both mineral and organic.
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For the relationship with [Chl-a], POM has higher correlation than TSM (Figure 5c,d).
As shown, the POMs that present the highest correlation with chlorophyll are those belong-
ing to the Júcar reservoirs and the Marshes of Albufera, indicating that most of the solids
in these areas are phytoplankton and detritus. However, between [Chl-a] and TSM there
is lower correlation, especially in those water bodies where [Chl-a] values are low (Ebro
reservoirs) (Figure 5c).

3.2. C2RCC Automatic Processor for Water Quality Products

With the objective of making an independent validation of the automatic product of
TSM provided by the atmospheric correction C2RCC in SNAP, Figure 6 shows that the TSM
results provided by the processor are positively distributed and show a good correlation
with the TSM data measured in the field, presenting an error (RMSE) of 14.4 mg/L. This
error can be reduced to 5.3 mg/L using the equation presented in Figure 6. Field data is
approximately 1/3 of the data offered by the automatic TSM product.
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3.3. Algorithms Retrieval

In order to find the best algorithms that can estimate TSM, PIM and POM separately,
the correlations between the reflectance obtained from the satellite images and the variables
measured have been calculated. First, we decided to test the combinations using all the
data of the three variables. The regression between the field data and the estimated results
were too low (R2 < 0.3), so we decided to reduce the concentration range of used samples.
After various adjustments and tests, the best combinations were extracted for TSM with
values lower than 30 mg/L, for POM with values lower than 6 mg/L and for PIM with
values lower than 13 mg/L. For all the results, the best fitting function turned out to be the
linear adjustment.

Once the results are obtained, the ARTMO toolbox provides us their correlation
matrices, through a heatmap that indicates the correlation coefficients between the factors
in a more visual way, for all possible band combinations. As can be seen in Figures 7 and 8,
the correlations presented by the bands, used for developing the different algorithms,
positively determine their quality.
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Results relating measured values of these three studied variables and different band
combinations, and error statistics results relating measured and estimated values are sum-
marized together in Table 2 (TSM), Table 3 (POM) and Table 4 (PIM). The best 10 results are
shown for each variable, these being the ones that presented a higher R2 and lower RMSE.

Table 2. Algorithm results for TSM. Only the best 10 results are shown.

Band Comb. (x) Formula
(y = TSM in mg/L) R2 RMSE (mg/L) NRMSE (%)

705 y = 293.06x + 1.5369 0.7918 2.7 10.3

783 y = 454.58x + 2.7696 0.6829 3.3 12.7

740 y = 459.41x + 2.6277 0.6682 3.4 13.0
443−783
443+783 y = −12.42x + 13.62 0.6377 3.6 13.6

490−783
490+783 y = −13.51x + 15.411 0.6353 3.6 13.6
560−705
560+705 y = −13.752x + 13.585 0.6275 3.6 13.8

705
560 y = 11.407x + 1.6564 0.6169 3.7 13.9

443−865
443+865 y = −13.947x + 16.298 0.5930 3.8 14.4
560−783
560+783 y = −15.573x + 17.901 0.5891 3.8 14.4

865
443 y = −13.299x + 3.1289 0.5522 4.0 15.1
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Table 3. Algorithm results for POM. Only the best 10 results are shown.

Band Comb. (x) Formula
y = POM in mg/L R2 RMSE (mg/L) NRMSE (%)

783 y = 133.02x + 0.7976 0.5785 0.84 14.75
665
560 y = 4.0442x + 0.0715 0.5619 0.86 15.04

443−865
443+865 y = −4.0683x + 4.716 0.5611 0.86 15.05

865
443 y = −4.5634x + 0.7954 0.5563 0.87 15.13

740 y = −129.97x + 0.7707 0.5543 0.87 15.17
705
560 y = 3.1611x + 0.5007 0.5395 0.88 15.42
783
443 y = 3.3831x + 0.6307 0.5333 0.89 15.52

560−705
560+705 y = −3.4773x + 3.5726 0.5328 0.89 15.53
560−783
560+783 y = −4.491x + 5.1542 0.5317 0.89 15.55
490−865
490+865 y = 4.3313x + 5.1168 0.5309 0.89 15.56

Table 4. Algorithm results for PIM. Only the best 10 results are shown.

Band Comb. (x) Formula
y = PIM in mg/L R2 RMSE (mg/L) NRMSE (%)

705 y = 153.57x + 1.2252 0.6302 1.56 12.17

783 y = 210.75x + 1.9694 0.3472 2.08 16.17

740 y = 208.06x + 1.9144 0.3424 2.08 16.23
665
560 y = 5.7616x + 0.9984 0.2918 2.16 16.84

560−705
560+705 y = −4.905x + 5.9536 0.2717 2.19 17.08
443−865
443+865 y = −5.4007x + 7.2749 0.2561 2.22 17.26

490−783
490+783 y = −5.0836x + 6.8363 0.247 2.23 17.36

705
560 y = 4.029x + 1.7254 0.2269 2.26 17.59
865
443 y = 5.6585x + 0.2233 0.2233 2.26 17.64

560−783
560+783 y = −5.1331x + 7.1515 0.18 2.32 18.12

Results using only data from 0.6 mg/L to 30 mg/L for TSM, have demonstrated that
combining bands located between 443–865 nm the errors obtained between data measured
in situ and estimated data are less than 4 mg/L. Even only using the bands located in the
red-edge region, this error could be reduced up to 2.7 mg/L. The reflectance in 705 nm
(R705) is the one that presents the best correlation with the TSM as shown in Figure 9. It is
observed that, adjusting by the method of least squares to a linear fitting function, the best
adjustment is obtained with the equation:

TSM (mg/L) = 293.06 R705 + 1.5369 (3)

Reservoirs located in the Ebro watershed are those with the lowest amounts of sus-
pended solids, while the Albufera marshes have the highest values. Reservoirs located in
the Júcar watershed present more varied values.

For the organic fraction (POM) of TSM (Table 3), the best algorithms using only data
from 0.0035 mg/L to 6 mg/L were the simple band R783 and the R665/R560 ratio, with
errors of 0.84 mg/L and 0.86 mg/L between the measured and estimated data.
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Figure 9. TSM in situ data in function of R705 using all data under 30 mg/L.

Figure 10 shows the correlation between R783 and the in situ data. In this case it has
been adjusted by the method of least squares to a linear fitting function, to obtain the best
adjustment with the following equation:

POM (mg/L) = 133.02 R783 + 0.7976 (4)
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Figure 10. POM in situ data in function of R783 using all data under 6 mg/L.
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For PIM, it emerged that R705 is the one that presents the best correlation (shown in
Figure 11) with an error of 1.56 mg/L between measured and estimated data.

Adjusting by the method of least squares to a linear fitting function, the best adjust-
ments are obtained with the equation:

PIM (mg/L) = 153.57 R705 + 1.2252 (5)

From Figures 10 and 11, can be seen that the Ebro and Júcar watershed reservoirs have
inorganic sediment predominance, whereas in the marshes the organic component dominates.
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3.4. Mapping TSM, POM and PIM Using New Algorithms for Sentinel-2 Imagery

As an example, Figures 12 and 13 show two reservoirs chosen from the studied
sampling points, with different trophic status and from which maps have been obtained
for each variable included in this study. For this, from an S2-Level1C image, resampled
to 20 m, trimmed and subsequently corrected with C2RCC, Equations (3)–(5) have been
applied. A 3 × 3 average filter has also been applied to the obtained maps, to correct the
“salt and pepper” effect provided by the atmospheric corrector.

The selected dates correspond to before 5 January 2021 and after 15 January 2021, a
heavy rain episode. Thus, it is possible to observe both the contributions that may have
been produced in the reservoirs and the distribution patterns. In both reservoirs, the dam
is in the most northern part. As can be observed, the three variables follow the same
distribution pattern, accumulating the highest values in the inflow area of the reservoir and
leaving the area of the dam cleaner. However, one predominates over another depending
on the image. Heavy rain episodes increase the quantity of TSM of both reservoirs, but the
relationship between the organic and inorganic fractions maintains a similar proportion.
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4. Discussion

Turbidity is an optical property of water that partially scatters light. Suspended sedi-
ments are responsible for most of said scattering. Ergo, the more suspended particles, the
higher the water’s turbidity. The bands more appropriate for TSM estimation, as discussed
in Ruddick et al. [55], depend on its concentration, and for high TSM concentrations the
best results are obtained with longer wavelengths (700 nm and beyond). Curran et al. [56]
and Novo et al. [57] demonstrated that single band algorithms could be accepted where
TSM augments with increasing reflectance. Despite that, according to Doxaran et al. [58],
composite matter in water changes the reflectance of the water body, implying variation in
colors, and thus different spectral bands’ combinations might be used for TSM estimation.
Many studies often use a single red band (625–700 nm) for TSM estimation. Even so, it
should be noted that the efficiency of these algorithms diminishes in areas with extreme
sediment loads where radiometric measurements in the red band no longer correlate with
increases in TSM, because a saturation effect can occur according to Luo et al. [59]. Some
authors such as Novoa et al. [60] state that, to avoid these limitations, multiband models
based on the relationship of bands must be developed and applied.

In our study, the data range for which the TSM estimation algorithms were obtained
is 0.6 mg/L to 30 mg/L. Most of the algorithms obtained have been formulated with
combinations between bands ranging from 443 to 842 nm; nevertheless, the best result
was obtained using only the simple band R705. Sòria-Perpinyà et al. [61] use a range of
TSM similar to ours, with concentrations under 20 mg/L. Their results, also using MSI-S2
imagery, obtained with a R700 band algorithm present a R2 0.85, RMSE 1.55 mg/L and
NRMSE 7.8 %. In this same study, an algorithm based on R783/R492 combination was
obtained, but in this case the concentrations were above 20 mg/L. TSM has also been
estimated using the reflectance peak near 700 nm, from sensors such as MERIS, in relatively
low concentrations <32 g/m3 (R2 > 0.81) in the studies of Härma et al. [62], Kallio et al. [63]
and Koponen et al. [64]. Doxaran et al. [65], using the ratio 850/550 for highly turbid waters
(<985 mg/L), show the high potential of NIR bands for TSM estimation, but exhibiting
a strong non-linear correlation. For the MSI-S2, this ratio did not give significant results,
which may be due to the fact that the concentrations are much lower.

Several bio-optical algorithms have been created to estimate the Particulate Organic
Carbon (POC) concentration in oceanic layers [66–70] and eutrophic lakes [71]. These algo-
rithms were obtained for band ratios corresponding to red-to-blue (R665/R490), red-to-green
(R665/R560), or blue-to-red (R490/R665) for ocean studies and for blue-to-green (R443/R560
and R490/R560) ratios for lake studies. Besides, systems with an organic prevalence whose
spectral signatures stem from algae concentrations sharing the pronounced absorption
features and backscatter peaks described for chlorophyll. Gitelson et al. determined in
several studies [72,73] that [Chl-a] has a peak near 700 nm and that this reflectance peak
was important for measuring chlorophyll concentrations. Dekker et al. [74] mentioned
that the scattering and absorption characteristics of [Chl-a] can also be studied when more
than one band is used. Even so, with this study it has been deduced that the band that
best estimates the organic fraction of TSM is R783. The second-best result for estimating
POM in our study, is the ratio 665/560 nm. Algorithms using ratios of reflectance in the
blue (~400–500 nm) to that in the green or red (~500–700 nm) have been found to be well
correlated with [Chl-a] [75]. Ratios used include MERIS bands 665/550 nm [76]. The red
band (665 nm) makes use of the [Chl-a] absorption maximum and acts to normalize the
effects of [Chl-a] absorption and backscattering by particulate matter [15].

Algorithms for perceived PIM are very similar to those for TSM (especially in sedi-
ments with high inorganic rates) and use red and NIR bands [76,77]. The reason is that
inorganic particles contribute greatly to scattering in the NIR [78]. Our study has deter-
mined that, for a range of 0.188–12.84 mg/L, PIM can be estimated through the use of the
R705 band algorithm with a high R2. There are several publications [76,77,79] showing that
the elevated signals in the NIR part of the spectrum are a good predictor of TSM. Water
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samples used in these studies were very rich in mineral particles (250 mg/L). Therefore, if
the water has a high amount of mineral particles, it is attributed to an elevated NIR signal.

Despite the fact that the automatic products offered by the C2RCC processor may
present an acceptable correlation (R2 = 0.5506) with the data measured in situ and suitable
statistics (RMSE = 14.41 mg/L; NRMSE = 30%), these results can be improved by the
algorithms proposed in this study, which present both better correlations (R2 = 0.7918) and
lower error compared to the real data (RMSE = 2.7 mg/L; NRMSE = 10.3%).

The use of remote sensing as a tool for capturing information applied to Limnology
and hydrological planning represents a saving in time and costs for water resources’ evalu-
ation and, therefore, for the management, rationalization, optimization and modernization
of hydrological planning. The experience acquired from the beginning of remote sensing
programs to the present day in the study and monitoring of Spanish water bodies using
multispectral images, indicates the need to incorporate data collection in situ, and to adjust
specific algorithms in areas as unique as those chosen for this study.

5. Conclusions

Our results have demonstrated the potential of remote sensing techniques to dif-
ferentiate POM and PIM and thus map out the composition of suspended particles, in
order to provide their spatial and temporal variations. It is important to determine the
composition of TSM in the study area given that the transparency of the water is funda-
mentally influenced by the suspended solids, sometimes the mineral fraction rather than
the organic one.

In this work, with statistical significance for continental waters, 10 indices are proposed
for the estimation of TSM, 10 indices for the estimation of the POM and one index for
the estimation of PIM, found from data obtained in very different water bodies. Results
show that the use of a single band (R705 for TSM and PIM determination and R783 for
POM determination) can provide a robust and sensitive algorithm for these variables.
The correlations presented by the use of the single band algorithms were R2 = 0.7918 for
TSM algorithm, R2 = 0.5785 for POM algorithm and R2 = 0.6302 for PIM algorithm. The
normalized errors presented by these algorithms were 10.3% for TSM algorithm, 14.8%
for POM algorithm and 12.2% for PIM algorithm. The single band selected algorithms
have been verified after application in Sentinel-2 images and in water bodies is viable. The
C2RCC processor provides acceptable automatic results regarding TSM determination and
could be an alternative to using specific algorithms.

Wind speed, rainfall, human activities or soil type can affect TSM, POM and PIM
changes. In future studies, a comprehensive analysis of multiple factors surrounding
water bodies would be necessary to determine possible trends in variation. In particular,
the application of similar sensors or more advanced sensors would assist in constructing
consistent and more complete satellite-derived time series data. In order to deepen the
range of application of the algorithms developed, it would be convenient to extend the
investigation to a larger number of water bodies with different trophic status (lakes, ponds,
reservoirs, marshes, etc.).
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Appendix A

Table A1. Summary of sampled water bodies. Abbreviations: lat.: latitude; lon.: longitude.

Name Position (Decimal Degree) Watershed Volume (hm3) Samples Season

Lat. Lon.

Alloz 42.71 −1.95 Ebro 65.31 1 Summer
Barasona 42.13 0.32 Ebro 85 1 Summer

Bellús 38.39 −0.47 Júcar 69 7 Summer
Benagéber 39.72 −1.09 Júcar 221 13 Summer
Beniarrés 38.80 −0.35 Júcar 27 3 Summer
Canelles 42.03 0.65 Ebro 678 2 Summer

Contreras 39.62 −1.53 Júcar 361 13 Summer
Cueva Foradada 40.98 −0.69 Ebro 22.08 2 Summer

Ebro 42.97 −4.07 Ebro 540 1 Summer
Estanca de Alcañiz 41.06 −0.18 Ebro 7 1 Summer

Eugui 42.97 −1.51 Ebro 21.88 1 Summer
Flix 41.23 0.54 Ebro 11.41 1 Summer

Gallipuén 40.87 −0.41 Ebro 4.36 1 Summer
Itoiz 42.8 −1.36 Ebro 417.47 1 Summer

La Casota de Baldoví 39.3 −0.32 Albufera <0.1 2 Autumn
La Loteta 41.8 −1.32 Ebro 104.85 1 Summer
La Peña 42.3 −0.73 Ebro 15.45 1 Summer

La Sotonera 42.1 −0.69 Ebro 189 5 Summer
La Tranquera 41.2 −1.79 Ebro 84.26 3 Summer

Las Torcas 41.2 −1.08 Ebro 6.66 1 Summer
Lechago 40.9 −1.29 Ebro 18.6 1 Summer

Mª Cristina 40.02 −0.16 Júcar 18 4 Summer
Mansilla 42.1 −2.93 Ebro 67.7 2 Summer

Mezalocha 41.4 −1.07 Ebro 3.92 2 Summer
Monteagudo 41.3 −2.17 Ebro 10 1 Summer

Oliana 42.1 1.29 Ebro 101.1 3 Summer
Regajo 39.89 −0.52 Júcar 6 7 Summer
Rialb 41.9 1.20 Ebro 402.8 2 Summer

Ribarroja 41.2 0.43 Ebro 209.6 2 Summer
Santolea 40.7 −0.32 Ebro 60 1 Summer

Séquia Vella Palmar 39.3 −0.31 Albufera <0.1 2 Autumn
Sequiol de Romero 39. −0.33 Albufera <0.1 2 Autumn

Sitjar 40.01 −0.23 Júcar 49 6 Summer
Sobrón 42.7 −3.10 Ebro 20 2 Summer

Tancat de L’Illa 39.3 −0.31 Albufera <0.1 1 Autumn
Tancat de L’Olla 32.3 −0.31 Albufera <0.1 1 Autumn

Tancat del Fangar 39.3 −0.32 Albufera <0.1 3 Autumn
Tancat de Mília 39.3 −0.35 Albufera <0.1 1 Autumn

Tancat de Sacarés 39.3 −0.35 Albufera <0.1 2 Autumn
Tancat de la Taüt 39.3 −0.33 Albufera <0.1 2 Autumn

Terradets 42.05 0.88 Ebro 33.19 1 Summer
Tous 39.13 −0.65 Júcar 379 8 Summer

Turbina Rabisanxo 39.3 −0.35 Albufera <0.1 1 Autumn
Urrúnaga 42.9 −2.65 Ebro 72 1 Summer

Utxesa-Secà 41.4 0.51 Ebro 4 1 Summer
Yesa 42.6 −1.17 Ebro 447 1 Summer
Total 121
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Table A2. Samples collected by year and place.

Watershed/Year 2016 2017 2018 2019 2020

Júcar 2 30 29 0 0
Ebro 9 11 15 7 0

Albufera Marshes 0 0 0 0 17
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