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Abstract: The overarching objective of this study was to evaluate the performance of nine precipitation-
based and twelve temperature-based climatic indices derived from four regional climate models
(CRCM5-UQUAM, CanRCM4, RCA4 and HIRHAM5) driven by three global circulation models
(CanESM2, EC-EARTH and MPI-ESM-LR) and their ensemble mean for the reference period of
31 years (1975–2005). The absolute biases, pattern correlation, the reduction of variance (RV) and
the Standardized Precipitation Evapotranspiration Index (SPEI at 3-, 6- and 12-month aggregate
periods) techniques were used to evaluate the climate model simulations. The result, in general,
shows each climate model has a skill in reproducing at least one of the climatic indices considered
in this study. Based on the pattern correlation result, however, EC-EARTH.HIRHAM5 and MPI-
ESM-LR.CRCM5-UQAM RCMs showed a relatively good skill in reproducing the observed climatic
indices as compared to the other climate model simulations. EC-EARTH.RCA4, CanESM2.RCA4 and
MPI-ESM-LR.CRCM5-UQAM RCMs showed a good skill when evaluated using the reduction of
variance. The ensemble mean of the RCMs showed relatively better skill in reproducing the observed
temperature-based climatic indices as compared to the precipitation-based climatic indices. There
were no exceptional differences observed among the performance of the climate models compared to
the SPEI, but CanESM2.CRCM5-UQAM, EC-EARTH.RCA4 and the ensemble mean of the RCMs
performed relatively good in comparison to the other climate models. The good performance of
some of the RCMs has good implications for their potential application for climate change impact
studies and future trend analysis of extreme events. They could help in developing an early warning
system to mitigate and prepare for possible future impacts of climate extremes (e.g., drought) and
vulnerability to climate change across Florida.

Keywords: climate change; RCMs; climatic indices; performance evaluation

1. Introduction

Increase in the concentrations of the atmospheric greenhouse gases (i.e., carbon diox-
ide (CO2), methane [CH4], nitrous oxide [N2O], etc.) trigger the rise in temperature that
eventually changes the frequency of occurrence of extreme precipitation events (e.g., flood,
drought and hurricane) in many regions across the globe [1]. Industrial growth and defor-
estations are among many factors that are playing a great role in raising the concentration
of the atmospheric CO2 that intensify the change in the mean climatic states [2]. As a
result, the frequency of occurrence of extreme events (i.e., floods, droughts, sea level rise,
etc.) has increased in recent decades and caused an impact on the socio-economic and
environmental sectors at large [3–6]. The available global climate projections indicate the
changes in average climate and to some extent about extreme events. The impacts of the
extreme events are becoming even worse and could continue to worsen in the future unless
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remarkable and proper measures are taken to reduce the current greenhouse gas emis-
sions [2,7,8]. The trends of future climate extreme events can be projected and analyzed
through the use of climate projection data from the global and regional climate models [9]
under different emission scenarios.

Regional climate models (RCMs) driven by the global climate models (GCMs) are in-
creasingly used to assess potential changes in climatic states by various studies [10–14]. The
North America COordinated Regional Climate Downscaling Experiment (NA-CORDEX)
provides output from several RCM simulations using different boundary conditions from
multiple GCMs across the majority of North America [15]. The RCM products have the
potential added value of capturing detailed spatial variability, as well as non-linear effects
at local and regional scales associated with their finer spatial resolutions, as compared to the
GCMs [16]. However, the accuracy and performance of each RCM may vary from region
to region since RCMs were derived by considering different boundary conditions (GCMs),
unique physical principles and downscaling approaches [17]. Despite the increasing use
of RCMs to study the impact of extreme events, considerable systematic errors and bias
remain to be challenging for their efficient use and wide application [18]. Thus, several
evaluation and bias correction approaches have been developed and applied in various
studies to improve the accuracy and quality of the RCMs outputs [19–22].

The evaluation of the RCMs is crucial to measure their skills and accuracy in repro-
ducing the observed data during the reference period [19]. A positive outcome of the
evaluation process increases confidence in the potential applications of the RCMs for trend
and other analyses of extreme events for future scenarios [9]. The evaluation process
involves the computation of several climatic indices derived from the original datasets.
These climatic indices, recommended by the Expert Team on Climate Change Detection
and Indices (ETCCDI), mainly measure the exceedance of the fundamental characteristics
(e.g., duration, intensity) of the climatic variables from certain threshold values [23,24]. In
addition, to using climatic indices, the Standardized Precipitation Index (SPI) and Stan-
dardized Precipitation and Evaporation Index (SPEI) are used to evaluate the RCMs [25].
These indices are widely used to measure the deviation of a given climate event from the
long-term mean value and assess the frequency of occurrence of very dry (drought) and
very wet (flood) conditions.

Several studies have evaluated RCMs at continental, country and regional scales
using different evaluation techniques [16,25,26]. However, more evaluation studies of
the RCMs need to be conducted at smaller/local scales (e.g., watershed, basin and state
level) to build confidence in the capability of RCM simulations to capture the detailed
characteristics of the climatic patterns at local scales. In Florida, there are limited studies of
evaluations of the climate models despite the fact that the state is vulnerable to the impacts
of climate change of unprecedented magnitude [27]. Some studies follow a quantitative
evaluation and bias correction approach to assess the performance of a single RCM in
reproducing the variability of the observed climatic variables [28], whereas the majority
of the other studies focused on the assessment of climate change impacts on agricultural
productivity [29], rainfall intensity–duration–frequency (IDF) curves [30], stream flow
simulation [31] and socio-economic sectors [32]. Nevertheless, several RCM evaluations
studies are still limited in Florida. These evaluation studies are crucial for identifying RCMs
that perform relatively better in reproducing the observed precipitation and temperature
during the reference period and their potential application in the impact assessment of
climate change in the future.

Thus, this study evaluates precipitation and temperature simulations from four
RCMs (i.e., Canadian Regional Climate Model version 5 Université du Québec à Montréal
(CRCM5-UQAM), Canadian Regional Climate Model version 4 (CanRCM4), Rossby Center
Regional atmospheric model (RCA4) and HIRHAM5, a combination of High Resolution
Limited Area Model (HIRLAM) and European Centre Hamburg Model (ECHAM) forced
by three GCMs (i.e., Canadian Centre for Climate Modelling and Analysis (CanESM2),
European community Earth-System Model (EC-EARTH) and Max Planck Institute Earth
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System Mode (MPI-ESM-LR) across Florida. The ensemble mean of the four RCM simula-
tions are also calculated and compared with each RCM in the evaluation process to identify
whether any added value that is obtained could be from the combinations of the four
RCMs. The evaluation is based on the climatological mean (31 years average) of the climate
indices and SPEI time series data derived from the daily precipitation and temperature.

2. Materials and Methods
2.1. Study Region

The state of Florida is located in a peninsula between the Gulf of Mexico, the Atlantic
Ocean and the Straits of Florida (Figure 1) at a geographic location ranging approximately
between 25◦ N and 31◦ N latitude [33]. Based on measured weather data obtained from
the Florida Climate Center from 1981 to 2010 (https://climatecenter.fsu.edu/products-
services/data, accessed on 21 December 2019), the average annual precipitation and tem-
perature values are ~1410 mm and ~22 ◦C, respectively. The state is characterized by a
diverse climate suitable for growing different varieties of crops. Florida is ranked as one
of the largest crop-producing states in the U.S. [29,34]. The source of the water supply for
agricultural productivity is both from surface and sub-surface sources replenished from
the annual precipitation. The main rainfall season is from May to October and contributes
70 percent of the annual water budget [29]. Climate change is a future challenge that
threatens the availability of fresh water for crop production [35]. Some studies show that
the impacts of climate change have already been observed and are affecting the agricultural
sectors [29] and the availability of fresh water, prompted by saltwater intrusion due to
sea level rise [36]. The sea level rise is driven mainly by melting ice sheets and thermal
expansion triggered by the elevated temperature due to climate change. The occurrence of
the irregular periodic variation in sea surface temperature over the Pacific Ocean caused the
occurrence of El Niño Southern Oscillation (ENSO). In general, agricultural productivity is
very sensitive and directly interrelated with the occurrence of ENSO [34].

Several studies have been conducted on the impact of climate change on the agri-
cultural sector and the availability of freshwater in Florida [29,33,37]. However, specific
studies are needed to evaluate the available RCMs and identify the regional climate model
that could be used for the assessment and analysis of climate trend and its future impact
in Florida. The climate change scenarios show an elevation in temperature and moisture-
holding capacity of the air resulting in higher frequency and intensity of climate extreme
events such as drought, flood, heatwave, etc. [38]. The application of more reliable RCMs is
crucial for impact assessment and trend analysis of the future climatic conditions in Florida.

2.2. Data Description
2.2.1. Regional and Global Climate Models (RCMs and GCMs)

NA-CORDEX data archives covers output from various RCMs driven by different
GCMs at rotated-pole grids (0.11◦, 0.22◦ and 0.44◦) and interpolated grids (0.22◦ and 0.44◦).
This study uses precipitation and temperature on the dynamically downscaled interpolated
grids derived from four RCMs (CRCM5-UQUAM, CanRCM4, RCA4 and HIRHAM5)
simulations archived at the NA-CORDEX data portal (https://www.earthsystemgrid.
org/search/cordexsearch.html, accessed on 21 December 2019). The description and
relevant characteristics of the four RCM simulations driven by three GCMs (CanESM2,
EC-EARTH and MPI-ESM-LR) are provided in Table 1. In addition, the ensemble mean of
the climatology of these RCMs were also considered in the evaluation process to explore
any added skill of ensemble mean in reproducing the observed climatology. The selection
of the RCMs is mainly based on the availability of the data for various combinations of
RCM, GCM, representative concentration pathways (RCPs) and spatial resolution for the
reference period (1975–2005) and future scenarios. This study only covers the evaluation
of the climatic models for the reference period; however, the selection criteria accounted
for the projected data of the future scenarios for their potential application in our future
climate change impact assessment study. The reference period (1975–2005) represents the

https://climatecenter.fsu.edu/products-services/data
https://climatecenter.fsu.edu/products-services/data
https://www.earthsystemgrid.org/search/cordexsearch.html
https://www.earthsystemgrid.org/search/cordexsearch.html
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30-year climatological period and the future scenarios cover the near-future (2020–2049),
mid-future (2050–2079) and far-future (2080–2100) periods. The interpolated grid data at
spatial resolutions of 0.44◦ (~50 km) and daily temporal scale were used in this study. The
state (Florida) is represented by a total of 55 grid points.
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Figure 1. This figure shows the locations of the stations obtained from Florida Climate Center (a), the elevation distributions
(b) and generated stations at the centroid of each grid (c) over Florida.

Table 1. The list, description and relevant characteristics of the RCMs and GCMs used in this study.

RCMs GCMs (Boundary
Condition) Simulation Acronym Description of the RCMs

CRCM5-UQAM
CanESM2 CanESM2. CRCM5-UQAM Canadian Regional Climate Model version 5

Université du Québec à MontréalMPI-ESM-LR MPI-ESM-LR.
CRCM5-UQAM

CanRCM4 CanESM2 CanESM2. CanRCM4 Canadian Regional Climate Model version 4

RCA4
CanESM2 CanESM2. RCA4 Rossby Center Regional Atmospheric Model

EC-EARTH EC-EARTH. RCA4

HIRHAM5 EC-EARTH EC-EARTH. HIRHAM5
HIRHAM5, A Combination of High Resolution
Limited Area Model (HIRLAM) and European

Centre Hamburg Model (ECHAM)]



Water 2021, 13, 2411 5 of 22

2.2.2. Meteorological Observations

The evaluations of the RCM based daily precipitation and temperature were carried
out using station-based ground observation climate data obtained from the Florida Climate
Center (https://climatecenter.fsu.edu/products-services/data, accessed on 21 December
2019). The daily gridded time series data of precipitation and maximum and minimum
temperature were generated from the stations during the reference period (1975–2005) using
94 stations across Florida. Each grid value of the climatic indices derived from the climate
model data represents the areal average value within each grid box and direct comparison
using station (point-based) data may introduce a systematic error and misinterpretation
of the result [25]. Therefore, we first generated the gridded daily time series data of the
observed climatic variables (station-based) at the same spatial resolutions (~50 km) as
those of the climate models. The Inverse Distance Weighted (IDW) technique is used to
interpolate the station-based climatic variables. The IDW is employed because it gives a
better representation and is a widely used technique in many watersheds [39–41]. The
number of stations used to generate each daily gridded data varies based on the availability
of the data for each day. The time series data of the observed climate variables were
extracted at the center of each grid (Figure 1c) for the evaluation of the RCMs.

2.3. Climate Indices and Their Computation

The climate indices were computed as per the recommendation of the World Meteoro-
logical Organization CC1/CLIVAR Expert Team for Climate Change Detection Monitoring
and Indices (ETCCDMI [23]. There are 27 core indices based on percentile and duration
of an event as well as some user-defined absolute thresholds [23,24]. However, this study
made use of twelve temperature and nine precipitation-based indices (Table 2) to char-
acterize the climatic conditions in Florida. These indices were selected based on their
wide application and potential uses in analyzing and assessing the changes in climate ex-
tremes [42]. The computation of the climatic indices was performed by using the RClimDex
package developed under the R programing language, which is a free, powerful and robust
software [24]. This computation involves checking the input data quality as a prerequisite
before the computation of the climatic indices. The quality control procedure comprised the
examination of the presence of outlier and unreasonable values, which include precipitation
amount less than zero and maximum temperature less than the minimum temperature. The
data quality assessment revealed the good quality of both precipitation and temperature
data obtained from the climate models and observed data sources, except MPI-ESM-LR
GCM that is forced by CRCM5-UQAM RCM. In this climate model (MPI-ESM-LR), unre-
alistic values (i.e., minimum temperature greater than the maximum temperature) were
observed in about 14 days in each station. These erroneous values were filtered out and
considered as missing values during the climate indices calculations. The observed climatic
indices were derived from the gridded data generated by interpolating and resampling the
meteorological stations’ observed climate data to the same spatial resolutions as the RCMs.
After computing each climatic indicator for each RCM, then we calculated the ensemble
mean by taking simple arithmetic mean of the climatology of each individual ensemble
member (RCM) instead of averaging the daily raw data and computing the ensemble
climatic indices. Climate models were initialized with certain initial boundary conditions
that remain for a short duration (short initial condition memory) due to uncertainties
introduced owing to the erratic nature of the weather.

https://climatecenter.fsu.edu/products-services/data
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Table 2. List of ETCCDMI core climate indices used in this study. Further detailed explanation about these and other indices
can be referred from the RClimDex user manual [24].

Indicator Indicator Name Definition Units

CDD Consecutive Dry Days Largest Number of Consecutive Days where Precipitation
<1 mm Days

CWD Consecutive Wet Days Largest Number of Consecutive Days where Precipitation
>1 mm Days

RX1day Maximum 1-Day Precipitation Maximum 1-Day Precipitation Amount in a Given Period mm

Rx5day Maximum 5-Day Precipitation Maximum Consecutive 5-Day Precipitation Amount in a
Given Period mm

R10mm Heavy Precipitation Days Total Number of Days when Precipitation ≥ 10 mm Days
R20mm Very Heavy Precipitation Days Total Number of Days when Precipitation ≥ 20 mm Days

R95p Very Wet Days Total Precipitation when Daily Rainfall >95th Percentile on
Wet Days of the Reference Period from 1975 to 2005 Days

R99p Extremely Wet Days Total Precipitation when Daily Rainfall >99th Percentile on
Wet Days of the Reference Period from 1975 to 2005 Days

SDII Simple Daily Intensity Index Annual Total Precipitation Divided by the Number of Wet
Days (precipitation ≥ 1.0 mm) in the Year mm/day

SU25 Summer Days Number of Days where TX (Daily Maximum) >25 ◦C Days
TR20 Tropical Nights Number of Days where TN (Daily Minimum) >20 ◦C Days
TXx Max Tmax Monthly Maximum Value of Daily Maximum Temperature ◦C
TXn Min Tmax Monthly Minimum Value of Daily Maximum Temperature ◦C
TNx Max Tmin Monthly Maximum Value of Daily Minimum Temperature ◦C
TNn Min Tmin Monthly Minimum Value of Daily Minimum Temperature ◦C

TN10p Cool Nights Percentage of Days when TN <10th Percentile Days
TX10p Cool Days Percentage of Days when TX <10th Percentile Days
TN90p Warm Nights Percentage of Days when TN >90th Percentile Days
TX90p Warm Days Percentage of Days when TX >90th Percentile Days

TMAXmean Maximum Mean Temperature Average Maximum Temperature ◦C
TMINmean Minimum Mean Temperature Average Minimum Temperature ◦C

2.4. Evaluation Metrics

Evaluating the climate models in reproducing the observed climatic variables (i.e.,
precipitation and temperature) for the reference period is exceptional in terms their poten-
tial application of the projected dataset for future impact studies across Florida. Several
statistical approaches are commonly and widely used to evaluate the RCMs. The per-
formances of these evaluation techniques have been explained and supported in several
studies [16,43,44].

The absolute biases between the model and the observed climatology were computed
both for precipitation and temperature-based climatic indices. Negative values indicate un-
derestimation while the positive values indicate overestimation of the climate models. The
values closer to zero show minimum difference and best estimation of the climate models.
The subsequent two subsections explained the absolute biases obtained for precipitation
(nine climatic indices) and temperature (twelve climatic indices) based climatic indices for
the selected six climate models and the ensemble mean across Florida to investigate the
spatial coherence and integrity across space.

The correlation coefficient (r) and the coefficient of determination (r2) are among many
approaches commonly used in various studies [25,42]. The Pearson correlation coefficient
measures the goodness of fit and linear association between two variables [25,42,45]. It
measures how well the climate-model-based climate indices explain the observed climate
indices. Even though the daily time series input data was used to compute the values of
the climatic indices, the temporal scale of the climate indices is annual. This makes the
data length relatively short for the accurate estimation of the Pearson correlation coefficient
values in the reference period. Instead, the pattern correlation coefficient (occasionally
referred to as map correlation) was computed between the maps using climatological mean
values of the climate indices of the observed data and RCMs across Florida. The Pearson
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correlation coefficient (pattern correlation) is used in this study and its mathematical
formulation is shown in Equation (1). Its value ranges between 1 and −1. Positive one
indicates a strong positive relationship whereas negative one indicates a strong negative
relationship and zero indicates weak or no relationship.

r =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1 (xi − x)2 ∑n
i=1 (yi − y)2

, (1)

where r is the correlation coefficient, x represents the climatological mean of the observa-
tional climatic indices, y represents the climatological mean of the RCM simulations of the
climatic indices, x is the average climatological mean of the observational climatic indices,
y is climatological mean of the RCM simulations of the climatic indices and n = number of
data pairs.

Mean square skill score (MSSS) was used to evaluate the spatial pattern of the cli-
matological mean of the climatic indices. The MSSS approach, in general, measures the
relative accuracy of a given RCM simulation and selected reference dataset with respect
to the observations [25,46,47]. There are several versions of MSSS based on the reference
dataset, but the MSSS that considers the variance of the observations (known as Reduction
of Variance, RV) as a reference is being applied in this study. Diaconescu et al. [48] reported
the good skill of this approach in evaluating the RCM simulation-based climatic variables
(i.e., precipitation and temperature) over the Canadian Arctic land areas. The mathematical
formulation of this score is shown in Equation (2).

RVk = 1− ∑N
i=1(yki − xi)

2

∑N
i=1(xi − x′)2 (2)

where yki represents the climatological mean of dataset k (RCM simulations of the climatic
indices) at the grid point closest to station i, xi represents the climatological mean of the
observational climatic indices of station i and x’ represents the spatial average of the
climatological mean of the observational climatic indices across the study region (Florida).
N is the number of stations. The RV, value greater than zero indicates a smaller mean
squared error value of the dataset in comparison to the spatial variance in the observations.

The other evaluation criteria used in this study involves the computation of the time
series of SPEI (3-, 6- and 12-month) values for each RCM and the observed datasets. The
SPEI accounts for the reference evapotranspiration (ETo), in addition to precipitation, which
makes it more advantageous than the SPI [49]. The computational procedure of the SPEI is
similar to that of the SPI except in its consideration of the difference between precipitation
and reference evapotranspiration (P–ETo) as an input variable rather than considering
only precipitation, as in the case of SPI. The SPI calculation procedures can be found in
Bayissa et al. [39]. The Pearson correlation coefficient values were computed using the time
series of each RCM and the observed SPEI for 3-, 6- and 12-month aggregate periods and
used to evaluate each RCM. In this study, SPEI at 3-, 6- and 12-month aggregate periods
were used because of their suitability in characterizing the different types of drought (i.e.,
meteorological, agricultural and hydrological) and flood events [50].

3. Result and Discussion
3.1. Absolute Biases between Model and Observed Climatology
3.1.1. Precipitation Based Climatic Indices

Figures 2–4 show the absolute biases (model minus observation) in the climatolog-
ical mean of the precipitation indices (i.e., CCD, CWD, R99p, Rx1day, R10mm, R20mm,
R95p, Rx5day and SDII). Figure 2 shows the pattern of the absolute biases of some of
precipitation-based climatic indices that include CDD, CWD, R99p and RX1day generated
at the stations located at the center of each pixel across Florida. The observed precipi-
tation and temperature-based climatic indices are show in Appendix A. In general, all
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the RCMs except EC-EARTH.HIRHAM5 overestimated the consecutive dry days (CDD;
rainfall < 1 mm) since negative absolute bias values were indicated in the majority of the
stations. Although the ensemble mean underestimated CDD in majority of the stations with
the absolute biases of +/−5 range, it still showed good skill than some of the RCMs (e.g.,
CanESM2.CanRCM4, CanESM2.CRCM5-UQAM and MPI-ESM-LR.CRCM5-UQAM). Since
the ensemble mean was generated using the simple arithmetic mean of the climatology
of the individual ensemble member, it outperformed some of the RCMs and underper-
formed as compared to some of the RCMs. EC-EARTH.HIRHAM5 estimated CDD very
well as compared to the other climate models with relatively minimum absolute bias of
+/−5 range in 85% of the stations. EC-EARTH.RCA4 also showed good performance
next to EC-EARTH.HIRHAM5 in 77% of the stations under similar CDD criteria. CDD
is an effective index to indicate the dry spell or drought condition and hence there is no
dry biases of the RCMs in the majority of the stations. Except EC-EARTH.HIRHAM5,
most of the RCMs overestimated CWD in majority of the stations. EC-EARTH.RCA4 and
CanESM2.RCA4 showed relatively better skill in explaining CWD as compared to other
climate models with absolute biases ranging between −5 to 5 in 100% and 98% of the
stations respectively. CanESM2.CanRCM4 overestimated CWD mainly in the southern
part. Next to EC-EARTH.RCA4 and CanESM2.RCA4, MPI-ESM-LR.CRCM5-UQAM RCM
and EC-EARTH.HIRHAM5 also performed very well in estimating CWD except an overes-
timation in 31% of the stations and underestimation in 25% of the stations, respectively.
Despite some discrepancy in the skill of the EC-EARTH.HIRHAM5, EC-EARTH.RCA4 and
CanESM2.RCA4 RCMs in reproducing the observed CWD in some stations, these three
RCMs showed relatively better skill in explaining CDD and CWD as compared to the other
RCMs. Errors in the parameterizations of the regional climate model in simulating the
convective systems at the local scale often introduce systemic dry and wet biases. The
wet bias (less CDD and high CWD) in most of the climate models indicates more frequent
occurrence of 1 mm and above daily precipitation as compared to the observation. The
climate models have been portrayed in the past by the issue of estimating more frequent
precipitation events and this problem has not been significantly improved in the RCMs
used in this study [51]. The ensemble mean CanESM2.RCA4 and EC-EARTH.RCA4 rel-
atively showed a better skill as compared to the other RCMs in estimating the extreme
wet days (R99p) with the absolute biases ranging between −15 to 15 in 65%, 56% and 52%
of the stations, respectively. CanESM2.CanRCM4 also showed a good skill in estimating
R99p in 40% of the stations, while the remaining RCMs underperformed in reproducing
R99p. CanESM2.CRCM5-UQAM relatively outperformed other RCMs in estimating the
maximum 1 day precipitation (Rx1day) in 67% of the stations located in different parts and
followed by MPI-ESM-LR.CRCM5-UQAM (58% of the stations) compared with absolute
biases +/−10 range. The ensemble mean CanESM2.RCA4 and EC-EARTH.RCA4 closely
performed in estimating Rx1day in 50, 48 and 46% of the stations while the other RCMs
underperformed in the majority of the stations (absolute biases ranging from −10 to 10).
This result highlights relatively less performance of RCMs to fully capture the extreme
precipitation events as compared to capturing less extreme events attributed to the coarser
spatial resolutions of the RCMs and the high dynamics of the extreme precipitation events
primarily at mesoscale, which can be difficult to fully capture using relatively coarse res-
olution RCMs. Diaconescu et al. [25] reported improvement in the RCMs performance
in characterizing some precipitation based climatic indices during summer owing to im-
provement in spatial resolutions of some of the RCMs. Lower score in simulating some
of the precipitation extremes (e.g., RX1day) was also reported even though finer spatial
resolutions of some of the RCMs (e.g., CRCM5 and CanRCM4). The occurrence of wet and
dry day events can be better reproduced through conducting a detailed analysis of the
convective rainfall for some of the RCMs (e.g., CanRCM4).



Water 2021, 13, 2411 9 of 22
Water 2021, 13, x FOR PEER REVIEW  10 of 24 
 

 

 

Figure 2. The absolute biases estimated using the difference between model climatology and ob‐

served  climatology  for CDD  (first panel), CWD  (second panel), R99p  (third panel)  and Rx1day 

(fourth panel) precipitation indices at the stations generated at the centroid of each grid across Flor‐

ida. 

Figures 3 and 4 show the absolute biases for the remaining precipitation‐based cli‐

mate indices (i.e., R10mm, R20mm, R95p, RX5day and SDII) for the RCMs considered in 

this  study.  Except  the  ensemble mean,  EC‐EARTH.RCA4  and MPI‐ESM‐LR.CRCM5‐

UQAM climate models, the remaining RCMs showed less performance (>90% of the sta‐

tions) with reference to the observed R10mm absolute biases with +/−6 range. The ensem‐

ble mean captured the observed R10mm climatology in 65% of the stations (Figure 3) as 

compared to other RCMs with absolute biases with +/−6 range. Relatively, the good per‐

formance of the ensemble mean in estimating some of the climatic indices (i.e., R10mm) 

indicates the importance of using the average of the individual ensembles instead of using 

a single RCM. MPI‐ESM‐LR.CRCM5‐UQAM explained R20mm very well in 98% of the 

Figure 2. The absolute biases estimated using the difference between model climatology and observed
climatology for CDD (first panel), CWD (second panel), R99p (third panel) and Rx1day (fourth panel)
precipitation indices at the stations generated at the centroid of each grid across Florida.

Figures 3 and 4 show the absolute biases for the remaining precipitation-based climate
indices (i.e., R10mm, R20mm, R95p, RX5day and SDII) for the RCMs considered in this
study. Except the ensemble mean, EC-EARTH.RCA4 and MPI-ESM-LR.CRCM5-UQAM
climate models, the remaining RCMs showed less performance (>90% of the stations) with
reference to the observed R10mm absolute biases with +/−6 range. The ensemble mean
captured the observed R10mm climatology in 65% of the stations (Figure 3) as compared
to other RCMs with absolute biases with +/−6 range. Relatively, the good performance
of the ensemble mean in estimating some of the climatic indices (i.e., R10mm) indicates
the importance of using the average of the individual ensembles instead of using a single
RCM. MPI-ESM-LR.CRCM5-UQAM explained R20mm very well in 98% of the stations
(absolute biases from −6 to 6) followed by CanESM2.CRCM5-UQAM (94% of the stations)
and CanESM2.RCA4 (90% of the stations) while EC-EARTH.RCM4 and the ENSEMBLE
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MEAN equality performed in 79% of the stations in estimating R20mm. Similar to the
other climatic indices, the skills of the climatic model in explaining the 95th percentile of
precipitation, maximum 5-day precipitation (Rx5day) and Simple Daily Intensity Index
(SDII) varied from one model to the other. In general, EC-EARTH.RCM4, CanESM2. RCM4,
CanESM2.CRCM5-UQAM, ENSEMBLE MEAN and MPI-ESM-LR.CRCM5-UQAM have
better skill in explaining these three climatic indices except relatively less performance of
CanESM2.CRCM5-UQAM and MPI-ESM-LR.CRCM5-UQAM climate model in reproduc-
ing 95th percentile precipitation (R95p). The other climate models showed less performance
and often overestimated in the majority of the stations. In general, the evaluation of the
climate models using the precipitation based climatic indices and measured in terms of the
absolute biases indicated the good performance of each model in explaining at least one
climatic index better than the others except the ensemble mean. Moreover, the result further
shows EC-EARTH.RCM4 climate model outperformed the other RCMs in explaining most
of the climatic indices very well under the criteria considered in this section. In overall,
the ensemble of the six RCMs showed the relatively good skill in reproducing some of
the observation-based climatology (e.g., R10mm and R95p) than the individual ensembles.
Since the ensemble mean is derived by considering the simple arithmetic mean value of
the climatology of the six RCM simulations, it outperformed in some of the indices and
underperformed in another climatic indices.
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3.1.2. Temperature Based Climatic Indices

Figure 5 shows the absolute bias in climatology of selected temperature-based indices
(i.e., cool nights-TN10p, cool days-TX10p, warm nights-TN90p and warm days-TX90p)
compared to observed climatology for each model. As expected, all models captured
temperature-based indices compared to precipitation-based indices with bias for the
selected indices falling in +/−1 day range. Out of the four indices, relatively higher
inter-model skill differences are found for TN90p while all models showing the highest
agreement for TX10p. Unlike precipitation-based indices, ensemble averaging has limited
effect on performance with slight improvements in terms of bias magnitudes. Although
averaging resulted in a consistent underestimation compared to individual models, the
spatial pattern of the bias has remained unaffected. Although bias magnitudes are very
small and all models captured the indices reasonably well, models were compared based
on the slight differences in skill.

In general, all the RCMs show a good performance in estimating TN10p as shown in
Figure 5 in the first panel. Each RCM showed a good skill in estimating TN10p in more
than 50% of the stations for the absolute bias ranging from−0.2 to 0.2. For CanESM2.RCA4,
CanESM2.CRCM5-UQAM and EC-EARTH.RCA4 RCMs, 100% of stations show bias within
+/−0.5 range while for the least performing RCMs MPI-ESM-LR.CRCM5-UQAM, 90% of
stations show bias in this range. The other RCMs fall in between the above figures. For
TN90p on the other hand, CanESM2.CanRCM4, CanESM2.RCA4 and CanESM2.CRCM5-
UQAM performed relatively the least with only 90%, 83% and 70% of stations with
bias in the range +/−0.5, while for remaining models, the percentage is 100%. Except
CanESM2.CanRCM4 and CanESM2.RCA4, all the RCMs showed comparable performance
in estimating the minimum range of TX10p in 46 to 48% of the stations. Similarly, all the
RCMs showed the highest agreement in estimating TX90p in more than 44% of the stations
in +/−0.2 range.



Water 2021, 13, 2411 12 of 22
Water 2021, 13, x FOR PEER REVIEW  13 of 24 
 

 

 

Figure 5. The absolute biases estimated using the difference between model climatology and ob‐

served climatology for TN10p (first panel), TX10p (second panel), TN90p (third panel) and TX90p 

(fourth panel) temperature indices at the stations generated at the centroid of each grid across Flor‐

ida. 

In general, all the RCMs show a good performance in estimating TN10p as shown in 

Figure 5 in the first panel. Each RCM showed a good skill in estimating TN10p in more 

than 50% of the stations for the absolute bias ranging from −0.2 to 0.2. For CanESM2.RCA4, 

CanESM2.CRCM5‐UQAM  and  EC‐EARTH.RCA4  RCMs,  100%  of  stations  show  bias 

within +/−0.5 range while for the least performing RCMs MPI‐ESM‐LR.CRCM5‐UQAM, 

90% of stations show bias in this range. The other RCMs fall in between the above figures. 

For  TN90p  on  the  other  hand,  CanESM2.CanRCM4,  CanESM2.RCA4  and 

CanESM2.CRCM5‐UQAM performed relatively the least with only 90%, 83% and 70% of 

stations with bias in the range +/−0.5, while for remaining models, the percentage is 100%. 

Figure 5. The absolute biases estimated using the difference between model climatology and ob-
served climatology for TN10p (first panel), TX10p (second panel), TN90p (third panel) and TX90p
(fourth panel) temperature indices at the stations generated at the centroid of each grid across Florida.

Figure 6 shows the absolute biases of TNn, TNx, TXn and TXx temperature based
climatic indices. The minimum category of the absolute biases that show the closed range
of the RCMs to the observed climatology is considered to compare the performance of
each RCM. The result showed the best skill of EC-EARTH.RCA4 in reproducing TNx,
TXn and TXx in 81, 60 and 83% of the stations as compared to the other RCMs while
CanESM2.CanRCM and MPI-ESM-LR.CRCM5-UQAM outperformed in estimating TNn in
81% of the stations. There is average performance of the ENSEMBLE MEAN in estimating
these four indices. In overall, most of the RCMs performed reasonably well although
poor performance of some the RCMs in reproducing some of the temperature based
climatic indices. The good performance of the RCMs indicates the limited influences of the
boundary conditions, spectral nudging and spatiotemporal resolutions on the temperature-
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based indices and its less variability across space as compared to precipitation although
extreme temperature is highly influenced by the physical parameterization.
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climatology for TNn (first panel), TNx (second panel), TXn (third panel) and TXx (fourth panel)
temperature indices at the stations generated at the centroid of each grid across Florida.

All the climate models underestimated the number of days where the daily maximum
temperature is greater than 25 ◦C (SU25) as shown in Figure 7 (first panel). Relatively better
performance has been observed in the stations located in Northwest by the majority of the
RCMs. In addition, CanESM2.CanRCM4 and EC-EARTH.HIRHAM5 relatively indicated
minimum absolute biases in the southern part. The ENSEMBLE MEAN outperformed
the other RCMs except CabESM2.RCA4 in reproducing the tropical nights (TR20) even
though the other RCMs also showed good performance in some of the stations. Except
EC-EARTH.RCA4, the rest of the RCMs overestimated the tropical nighttime temperature
in majority of the stations. Except the good performance of CanESM2.CanRCM4 in few
stations in northwest part, the rest of the RCMs underestimated the maximum mean



Water 2021, 13, 2411 14 of 22

temperature (TMAXmean) as shown in Figure 7 (third panel). In overall, most of the
RCMs reproduced the minimum mean temperature over 21% of the stations and EC-
EARTH.RCA4 performed well in 56% of the stations as compared to the other RCMs in
+/−1 range. Temperature based indices that are strongly connected to the freezing and heat
stress events have prominent influence on the agricultural crop production. Application of
the regional climate models for agricultural management needs to apply biases correction
and to quantify the uncertainty of the RCMs since crop production is very sensitive to the
freezing and heat stress events in Florida.
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(fourth panel) temperature indices at the stations generated at the centroid of each grid across Florida.
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3.2. Evaluation of RCMs using Pattern Correlation

Figure 8 shows the heatmap plot of the pattern correlation coefficient values derived
using the climate models and the observed climatic indices of precipitation and temper-
ature. The Pearson correlation coefficient approach was used to estimate the correlation
coefficient values of the climatic indices derived from the climate models and the observed
precipitation and temperature variables. The larger value of the pattern correlation coeffi-
cient of CDD was observed by EC-EARTH-HIRHAM5 (r = 0.72) and EC-EARTH.RCA4
(r = 0.62). A higher negative pattern correlation has been shown by CanESM2.CRCM5-
UQAM (r = −0.6) whereas a lower value has been observed by CanESM2.CanRCM4
(r = 0.1). The climate models that showed higher skill in explaining CDD showed the lower
pattern correlation in explaining CWD whereas the climate model that showed lower skill
in explaining CDD showed a higher pattern correlation in explaining CWD. MPI-ESM-
LR.CRCM5-UQAM showed a higher skill in explaining RX1day (r = 0.77) and RX5day
(r = 0.7) than the other climate models. The ensemble mean outperformed the other climate
models in explaining R10mm (r = 0.62), R20mm (r = 0.73), R95p (r = 0.7) and R99p (r = 0.62).
All the climate models explained SU25, TXn, TNn, TMAXmean and TMINmean very well
with a pattern correlation value greater than 0.75, except for a relatively lower value shown
by CanESM2.RCA4 (SU25; r = 0.57 and TMAXmean; r = 0.59) and CanESM2.CanRCM4
(TNn, r = 0.63).
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The percentage of the pattern correlation coefficient of each climate model was calcu-
lated by taking the ratio of the number of higher values (pattern correlation value >0.7)
to the total number of climatic indices (21 indices). This helps to compare the skill of
each climate model in explaining the climatic indices derived from the observed climatic
variables. The result shows that EC-EARTH.HIRHAM5 and MPI-ESM-LR.CRCM5-UQAM
were able to score relatively the maximum percentage (33 and 38 percent), which indicates
the good skill of these two climate models in comparison to the other models. In other
words, these two climate models scored pattern correlation coefficient values greater than
0.7 in 33 to 38 percent of the climatic indices. The ensemble mean is also showed equivalent
skill as that of EC-EARTH.HIRHAM5 in capturing the pattern of most of the climatic
indices. CanESM2.CanRCM4 and CanESM2.RCA4 climate models show the minimum
percentage (5 percent), which shows a weak performance in capturing the pattern of the
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climatic indices. Despite the weak skill of the ensemble mean in estimating the values of
the climate indices, its performance in capturing the pattern of the climatic indices was
substantial (29 percent) compared to the other climate models. Although all the climate
models showed reasonable skill in capturing the pattern of at least some of the climatic
indices, the skill of MPI-ESM-LR.CRCM5-UQAM in capturing the pattern and the values
makes it one of the preferred climate models for future impact assessment study in Florida.

3.3. Evaluation of RCMs using Reduction of Variance (RV)

The heatmap (Figure 9) shows the values of the reduction of variance (RV) that were
calculated among the climate models and the observed precipitation- and temperature-
based climatic indices. The numeric values of RV were labeled in each cell, except for a few
cells highlighted with a white color. These cells have much lower RV values (−1.39 to −46)
that represent poor performance of some of the climate models in reproducing some of
the climatic indices. In general, RV values greater than zero indicate the best performance
whereas the negative values indicate poor performance of the climate models. All the
climate models showed low skill in reproducing CDD (column 1) and TNx (column 14)
climate indices, except for EC-EARTH.RCA4 with an exceptional value greater than zero
(0.12) in reproducing the TNx index. The RV result also showed that the ensemble mean
performed better in reproducing the temperature-based indices (row 7) than in reproducing
the precipitation-based climatic indices. This might be associated with the high spatial and
temporal variability of precipitation as compared to temperature. Moreover, the extreme
values might be attenuated in the process of averaging several climate models together. EC-
EARTH.RCA4 reproduced all the climatic indices (except CDD) relatively better than the
other climate models. The ensemble mean, MPI-ESM-LR.CRCM5-UQAM, CanESM2.RCA4
and CanESM2.CRCM5-UQAM were also shown to be capable of reproducing all the cli-
matic indices except CDD and TNx. All the climate models have shown good performance
with the same RV values (RV = 1) in simulating some of the temperature-based climatic
indices (TN10p, TX10p, TN90p and TX90p).
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3.4. Evaluation of the Climate Model Based on SPEI

The SPEI was computed at 3-, 6- and 12-month aggregate periods for each climate
model and the observed dataset for all the stations (Figure 1). Figure 10 shows the box-
and-whisker plots of SPEI for each aggregate period and each box was generated using
the correlation coefficient result obtained for all 55 stations. The evaluation of the climate
models using the SPEI drought index is crucial to identify the climate model that can
be used to assess future drought conditions across Florida. In general, the result shows
similar performance of each climate model (except for the relatively lower performance of
EC-EARTH-HIRHAM5) as the aggregate period increases. The evaluation of each climate
model based on SPEI-3 shows minimum difference of the correlation coefficient values
among the climate models as compared to the other aggregate periods. CanESM2.CRCM5-
UQAM showed relatively better performance than the other models with a maximum
correlation coefficient of 0.6 (SPEI-3), 0.67 (SPEI-6) and 0.76 (SPEI-12). The performances
of EC-EARTH.RCA4 and the ensemble mean were also remarkable and comparable to
CanESM2.CRCM5-UQAM, except for underestimating the minimum values in the case of
SPEI-12. The result further indicates the potential application of the RCMs in developing a
drought monitoring and early warning system and future trends to mitigate its impacts.

Water 2021, 13, x FOR PEER REVIEW  19 of 24 
 

 

 

Figure 9. The heatmap plot of the reduction of variance (RV) of the climatic indices derived from the observed and climate‐

model‐based temperature and precipitation variables. The number in each cell shows the numeric value of the Reduction 

of Variance and the empty grey cells show values less than −1 (−1.39–46). 

3.4. Evaluation of the Climate Model Based on SPEI 

The SPEI was computed at 3‐, 6‐ and 12‐month aggregate periods for each climate 

model and the observed dataset for all the stations (Figure 1). Figure 10 shows the box‐

and‐whisker plots of SPEI for each aggregate period and each box was generated using 

the correlation coefficient result obtained for all 55 stations. The evaluation of the climate 

models using the SPEI drought index is crucial to identify the climate model that can be 

used to assess future drought conditions across Florida. In general, the result shows sim‐

ilar performance of each climate model  (except  for  the relatively  lower performance of 

EC‐EARTH‐HIRHAM5) as the aggregate period increases. The evaluation of each climate 

model based on SPEI‐3 shows minimum difference of the correlation coefficient values 

among  the  climate  models  as  compared  to  the  other  aggregate  periods. 

CanESM2.CRCM5‐UQAM showed relatively better performance than the other models 

with a maximum correlation coefficient of 0.6 (SPEI‐3), 0.67 (SPEI‐6) and 0.76 (SPEI‐12). 

The performances of EC‐EARTH.RCA4 and the ensemble mean were also remarkable and 

comparable to CanESM2.CRCM5‐UQAM, except for underestimating the minimum val‐

ues  in  the case of SPEI‐12. The  result  further  indicates  the potential application of  the 

RCMs in developing a drought monitoring and early warning system and future trends 

to mitigate its impacts. 

 

Figure 10. The correlation coefficient values of the climate‐model‐based SPEI and the observed SPEI for 3‐ (left), 6‐ (mid‐

dle) and 12‐month aggregates (right). 

   

Figure 10. The correlation coefficient values of the climate-model-based SPEI and the observed SPEI for 3- (left), 6- (middle)
and 12-month aggregates (right).

4. Conclusions

This study evaluates four RCM models (CRCM5-UQUAM, CanRCM4, RCA4 and
HIRHAM5) driven by three GCMs (EC-EARTH, CanESM2 and MPI-ESM-LR) and the en-
semble mean (averaging values of the climate models climatology) by considering four eval-
uation techniques (absolute bias, pattern correlation, reduction of variance and SPEI) for
Florida. Several climatic indices suggested by the international Joint CCl/CLIVAR/JCOMM
Expert Team on Climate Change Detection and Indices (ETCCDI) were derived from the
daily time series of each climate model and used in the evaluation process. The main objec-
tive of this evaluation is to identify the climate model with the best skill in reproducing the
climatic variables during the reference period of 31 years (1975–2005) and to use the future
projection data for our imminent impact study and trend analysis of extreme events.

Each climate model has shown a unique skill in reproducing some of the climatic
indices considered in this study and their skill, however, varies from one evaluation
technique to the other. EC-EARTH.RCA4 relatively reproduced precipitation based climatic
indices with minimum absolute biases as compared to other RCMs. Majority of the
RCMs including the ensemble mean showed comparable performance in reproducing
temperature based climatic indices under the same evaluation criteria. Based on the
pattern correlation criteria, the ensemble mean, EC-EARTH.HIRHAM5 RCM and MPI-
ESM-LR.CRCM5-UQAM RCMs showed relatively better skill in reproducing most of
the climatic indices as compared to the other climate models. The ensemble mean, EC-
EARTH.RCA4, CanESM2.RCA4 and MPI-ESM-LR.CRCM5-UQAM RCMs showed good
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skill when evaluated using the reduction of variance and absolute biases. The ensemble
mean showed relatively better skill in reproducing the temperature-based climatic indices
compared to its skill in reproducing the precipitation-based climatic indices. There were
no remarkable differences among the performances of the climate models compared to
the SPEI. However, CanESM2.CRCM5-UQAM, EC-EARTH.RCA4 and the ensemble mean
performed relatively better than the other model simulations. The better performances
of these RCMs under different criteria have a positive implication for their potential
use/application in climate change impact studies and future trend analysis of extreme
events. This result could help in identifying better information to understand, analyze and
mitigate possible future impacts of climate change across Florida.

Even though the climate models have shown reasonable skill in reproducing the
observed climate variable, their performance may further improve through applying a bias
correction approach (in addition to the evaluation efforts) that is planned for our future
studies. Moreover, the coarser spatial resolution of the climate models might contribute
to the lesser accuracy of the skills of each climate model, particularly when they are
evaluated relatively in a smaller study region. Hence, downscaling the climate models to
a finer spatial resolution using robust dynamical or statistical downscaling approaches
may improve the accuracy of each RCM and this is recommended for future studies. The
evaluation of the RCMs was carried out in this study using the data for the reference
period 1975–2005. The performance of the RCMs may be altered when using different
reference periods.
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